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ABSTRACT: 

This paper proposes a novel method for rapidly and accurately detecting Multiple Sclerosis (MS) lesions and 

analyzing the progression of lesions and the disease based on differences between histograms of hemispheres and 

volumetric changes in brain regions over time. The brightness and contrast of pixels are first improved, and MRI slices 

are then analyzed to detect and eliminate the effects of motion artifacts while imaging. However, an accurate diagnosis 

tracks changes in volumes of brain regions caused by plaques emerging on brain MRIs in white matter, gray matter, 

and cerebrospinal fluid (CSF) and the concurrent analysis of differences between histograms of hemispheres. The 

marker-controlled watershed algorithm was employed to extract MS lesions and plaques. Various MRI centers differ 

in imaging diameters for which there are no unified standards, leading to different MRI slices. Hence, an individual's 

two MRI slices of two different occasions are not comparable. Measuring the brain volume can make the proposed 

method independent of the imaging diameter. This study analyzed the patients with at least three imaging records in 

the archives of imaging centers. The images were collected from Pars MRI Center and Hajar Hospital MRI Center in 

Shahrekord, Chararmahal and Bakhtiari Province, Iran. Both centers used Avanto MRI devices and performed 

imaging at 1 T and 1.5 T, respectively. 

 

KEYWORDS: Multiple Sclerosis (MS), Volumetric Analysis of Brain Regions, Histograms of Hemispheres, Marker-

Controlled Watershed Algorithm. 

  

1.  INTRODUCTION 

Multiple Sclerosis (MS) is a destructively 

progressive neuro-inflammatory autoimmune disease 

caused by destroying protective covers (i.e., myelin 

sheaths) around nerves. As a result, the brain will 

communicate with the other body parts with difficulty. 

However, the exact cause of MS is still unknown. 

Currently, the only treatment for MS includes 

rehabilitation and symptom management. There are 

some gray and white areas in the human brain MRI. 

The myelin-covered axons constitute the largest 

volume of this white matter, a great extent of which is 

destroyed in MS. Sclerosis or plaque refers to a wound. 

The disease is called multiple sclerosis because of 

emerging small or large numbers of wounds and 

plaques in different areas of the nervous system. The 

functions of nerves are damaged wherever these 

wounds emerge. A plaque can be as tiny as a needle or 

as large as a ping-pong ball. The lesions are diagnosed 

by doctors examining MRIs. T2-weighted (T2-W) 

MRIs were used in this study, where the brightest area 

indicates the cerebrospinal fluid (CSF), whereas the 

darkest area represents the white matter. Moreover, the 

gray matter is displayed by the average brightness, 

whereas lesions (i.e., plaques) are shown as the 

average-to-high brightness. The center of gravity on an 

image and the line between the two hemispheres are 

first determined to eliminate the effects of motion 
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artifacts while imaging and to separate the 

hemispheres. After separating the two hemispheres in 

all slices through accurate analysis and comparison of 

their histograms, the results are compared with healthy 

individuals' hemispheres. Their differences are then 

considered to determine the MS progression caused by 

the proliferation of brain plaques. Afterward, K-means 

and PCM algorithms are employed to distinguish white 

matter, gray matter, and CSF in all existing MRI slices 

without separating lesions from these three areas and 

by considering only three clusters. This process aims at 

tracking MS progression. The marker-controlled 

watershed algorithm is then adopted to extract lesions 

and plaques from all MRI slices and determine their 3D 

boundaries. 

 

2.   DESCRIPTION OF PAPER 
Controlling a patient's head motions is considered a 

serious challenge in MRI. This challenge is much more 

important when patients have difficulty to keep their 

heads still for long. To detect and eliminate the effects 

of head motions while imaging, this paper employs the 

technique of finding and selecting the center of gravity 

and the longest diameter on the elliptical plane of each 

axial brain slice, i.e., the line separating the two 

hemispheres. Afterward, the two hemispheres are 

distinguished. Fig. 1 demonstrates some cases of head 

motions in MRI. 

 

 
 

Fig. 1. Images of head motions in MRI. 
 

The center-of-mass algorithm is adopted to find the 

brain's center, separate the two hemispheres, and 

eliminate motion artifacts. Each axial slice of an MRI is 

first binarized, and a mask of the brain image is then 

prepared. To this end, the designated MRI slice is 

binarized to eliminate its noise as much as possible. 

Afterward, a rectangle is placed on the MRI slice 

boundaries. The PCA algorithm is then utilized to 

extract the slice mask. It is now possible to distinguish 

between the right and left hemispheres by having the 

elliptical mask center through the mass algorithm and 

using its long diameter as the middle line of the brain. 

Fig. 2 illustrates different steps in extracting the 

designated slice mask from an MRI. The diameters are 

calculated by determining the intersection of each 

diameter passing through the ellipse center, and the 

longest diameter is selected as the middle line of the 

brain. "Ref. [25]" 

 

 
Fig. 2. Different steps in extracting the designated axial 

slice mask from an MRI. 

 

By having the boundary line between the two 

hemispheres and comparing its angle with the vertical 

axis, it is possible to detect and modify any rotations or 

deviations of the head while imaging. This process is 

implemented on all axial slices of an MRI, as shown in 

Fig. 3. 

 

 
Fig. 3. The orthogonal eigenvector with the PCA: The 

left diagram indicates an eigenvector (e1) that 

represents the maximum variance through the center of 

the elliptical region and e2 that is perpendicular to e1. 

The right image depicts the eigenvectors extracted from 

brain MRIs and applied to images. 

 

The histogram of each hemisphere is now drawn on 

all axial slices of a patient's MRI. The histograms of 

both hemispheres from each slice are then compared to 

extract their differences. This process determines how 

much the disease has affected each hemisphere and 

other parts of the body. Differences between the 

histograms of hemispheres can also be considered to 

pinpoint the potential locations of brain lesions. The 

corresponding histograms of a patient's previous MRIs 

are then compared to determine MS progression. When 

a patient is under treatment through specific 

medications prescribed by a doctor, the effects of 

treatment on his/her body can be analyzed. Fig. 1 

demonstrates seven MRI slices taken from a 42-year-

old woman with MS. The two hemispheres are 

distinguished in each slice. 
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Fig. 4. Samples of axial T2-W MRI slices of the brain 

and separation of the two hemispheres for a patient 

with MS 
 

The histogram of each slice is now obtained. The 

area under the histogram curve is deleted for better 

analysis, and only its envelope is drawn. Since the 

histograms of the human brain hemispheres are exactly 

symmetric, a difference between the two histograms 

can indicate the presence of a brain lesion or can only 

be caused by noise. The noise can be identified and 

eliminated through a more accurate comparison 

between points of difference in the histograms of 

hemispheres and the characteristics of noise and brain 

lesions. The remaining points will be the possible 

locations of brain lesions caused by MS. These lesions 

can be followed on all slices to extract their 

approximate 3D sizes. The participants in this study 

had at least three MRI records; thus, their other images 

can be monitored to analyze MS progression and its 

reaction to the treatment procedure. The following 

images (A, B, C, D, E, F, and G) demonstrate seven 

axial slices of MRIs taken from a patient with MS. The 

proposed method was employed to pinpoint the 

possible regions of MS lesions. 

 

 
Fig. 5. Separating two hemispheres of the reference 

MRI slice and comparing their histograms from a 

patient with MS 

 

 
Fig. 6. Separating two hemispheres of MRI Slice 1 and 

comparing their histograms from a patient with MS 

 

 
Fig. 7. Separating two hemispheres of MRI Slice 2 and 

comparing their histograms from a patient with MS 

 

 
Fig. 8. Separating two hemispheres of MRI Slice 3 and 

comparing their histograms from a patient with MS 
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Fig. 9. Separating two hemispheres of MRI Slice 4 and 

comparing their histograms from a patient with MS 

 

 
Fig. 10. Separating two hemispheres of MRI Slice 5 

and comparing their histograms from a patient with MS 
 

 
Fig. 11. Separating two hemispheres of MRI Slice 6 

and comparing their histograms from a patient with MS 

 

Four statistical measures, including mean, variance, 

standard deviation, and entropy, were employed to 

analyze and compare the histograms of hemispheres. 

Tables 1–4 present the results. 

 

 

 

 

 

Table 1. The means of two MRIs from a patient with 

MS 

 
 

Table 2. The variances of two MRIs from a patient 

with MS 

 
 

Table 3. The standard deviations of two MRIs from a 

patient with MS 

 
 

Table 4. The entropies of two MRIs from a patient 

with MS 

 
 

Tables 1 to 4 show the means, variances, standard 

deviations, and entropies of corresponding slices in the 

two MRIs captured by Avanto at 1.5 T. It is possible to 

compare changes in the disease over time and pursue 

its progression. It is also essential to analyze volumetric 

changes of brain regions caused by plaques in white 

matter, gray matter, and CSF on MRIs to better 

determine disease progression. 

 
3.  VOLUMETRIC ANALYSIS 

Considering the serious effects of the noise and 

heterogeneity of images on the non-brain tissues such 
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as the skull and fat, it is advisable to remove the non-

brain tissues to reduce the computation time and 

improve the efficiency of processing steps. Hence, the 

brain is first separated from the background, and the 

skull is removed from the image. The skull appears 

very bright on T2-W MRIs of the brain. Hence, the 

histograms of nonblack points are extracted from the 

primary image and are then used along with an 

appropriate threshold to first extract and remove only 

the skull from an MRI. Fig. 12 demonstrates an MS 

patient's skull removed from the middle axial slice of a 

T2-W brain MRI through the proposed method. "Ref. 

[24],[27]" 

 

 
Fig. 12. The left image is the main image; the right 

image is the main image without the skull. 

 

Separating MS plaques on T2-W MRIs would be 

very similar to the brain tissue and CSF; therefore, 

separation plaques will not always be correctly 

detectable and can be prone to a high error level. 

Hence, we do not intend to remove plaques from white 

matter, gray matter, and CSF to analyze changes and 

progression over time. Instead, we would like to 

consider plaques among those regions and measure the 

progression in each hemisphere and the entire brain 

tissue by analyzing the volumetric changes of those 

three regions and the changes in plaques. Since plaques 

are naturally the inflammation of demyelination, they 

are mainly detected as CSF and WM on T2-W MRIs 

while image segmentation. They change the areas of 

brain regions in each slice and finally change the 

volumes of regions in the entire brain tissue. If 

inflammation declines, the volumes of regions will 

proportionately change again. By analyzing these 

changes, it is possible to predict the future behavior, 

type, and progression of MS. To this end, we decided 

to select patients with at least three MRIs over time. 

The designated MRIs were taken from 20-70-year-old 

men and women. 

 

 

 
Fig. 13. (A): An MRI slice from an MS patient; (B): 

Improving resolution and brightness and separating the 

skull from the image; (C): Using the K-means 

algorithm with three clusters to separate three brain 

regions; (D) Separating CSF; (E): Separating WM; (F): 

Separating GM. 
 

In the next step, the GM, WM, and CSF regions 

should be separated on a skull-free MRI to calculate the 

volume of each brain region. For this purpose, we use a 

combinatorial method of setting a brightness threshold 

with the image histogram and improving brightness and 

resolution. After that, the K-means algorithm is 

employed to better segment brain images based on the 

brain MRI slice type. Finally, the FCM algorithm is 

adopted to separate the segmented regions. Fig. 13 

illustrates the steps of this process. 

 

 
Fig. 14. Separating GM, WM, and CSF regions from 

MRI slices of an MS patient 
 

The brain regions were separated, and the area of 

each region (i.e., GM, WM, and CSF) was calculated in 
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each slice. Since slices differ in diameter and area, they 

affect the total brain volume differently. Therefore, the 

middle slice with the longest diameter should be 

selected as the reference slice, and a coefficient should 

proportionately be extracted for other slices to 

determine their effects on the total brain volume. The 

areas of GM, WM, and CSF regions are then multiplied 

by the corresponding coefficients of slices. The 

resultant products are then added to calculate the 

volumes of GM, WM, and CSF regions in percentage. 

In Fig. 14, this process was applied to all MRI slices. 

"Ref. [22],[27]" 

 In this method, a patient's brain volume is obtained 

from his/her MRI independently of other patients' 

MRIs. The volume of each region is expressed as a 

percentage of the total brain volume. This method can 

be applied to all images regardless of the imaging 

diameter. However, the shorter the imaging diameter 

with further slices, the higher the accuracy of 

calculating the volumes of regions. Table 1 reports the 

evaluation results of a 50-year-old woman with three 

brain MRIs at the MRI Center of Hajar Hospital in 

Shahrekord. She underwent the second imaging process 

seven months after the first imaging process. She 

underwent the third imaging process four months after 

the second. Imaging was performed on all three 

occasions on Avanto with a power of 1.5 T and a 

diameter of 5 mm. The means, variances, standard 

deviations, and entropies of images were measured to 

compare the results. 

 
Table 5. Volumetric changes of GM, CSF, and WM 

regions in three MRI process and observation of 

progression. 

The 50-year-

old female 

patient in the 

first MRI 

process 

GM CSF WM 

July 16, 2016 57.446% 22.701% 19.852% 

February 9, 

2017 
44.818% 26.108% 29.073% 

June 8, 2017 44.182% 26.323% 29.494% 

 
Since the inflammations of demyelination around 

axons have bright surfaces on T2-W MRIs of the brain, 

they can be detected as parts of CSF or WM. Therefore, 

we expect to be able to determine MS progression by 

following the volumetric changes of these two regions 

and analyzing the volumetric changes of another brain 

region on MRIs captured from a patient over time. 

Hence, we can take more effective steps in providing 

treatment and predicting the type and severity of future 

complications. According to the results, the 50-year-old 

female patient experienced progressing changes in CSF 

during the one year of MS, indicating the increasing 

problems caused by the growth and multiplicity of MS-

caused plaques. Hence, her progression can be 

predicted as the primary progressive MS (PPMS), 

which was also confirmed in the follow-up performed 

by her doctor. Thus, the results were accurate. 

 

Table 6. Comparing the volumes of GM, CSF, and 

WM regions in mean, variance, entropy, and standard 

deviation in three MRI processes for Progression 

observation. 
The 50-year-

old female 

patient in 

the first 

MRI process 

Entropy SD Mean Variance 

July 16, 2016 6.3775 52.4263 60.9141 2750.8 
February 9, 

2017 
6.4536 52.4868 65.5911 2755.4 

June 8, 2017 6.7836 52.5171 71.0756 2763.94 

 
Table 6 presents the results of statistical measures 

such as entropy, standard deviation, mean, and 

variance, which confirmed the research findings. 

 
4.  EXTRACTION OF BRAIN LESIONS AND 

PLAQUES 

The marker-controlled watershed transform was 

employed in the final step of MS diagnosis to extract 

lesions and plaques from MRIs. The watershed 

transform uses the gradient domain of an image as the 

target surface. The pixels with the longest gradient 

domains on an MRI are mapped onto the watershed 

lines representing the boundaries of regions. In the 

marker-controlled watershed algorithm, segmentation 

rules are based on a marker for converting an input 

image so that the algorithm can indicate the similarities 

of objects on the converted image. The markers 

represent the components of an image and are utilized 

to prevent excessive segmentation in the watershed 

segmentation method. The internal markers depend on 

the objects of interest inside an image, whereas the 

external markers depend on the background. After 

segmentation, the boundaries of watershed regions are 

placed on the favorable edges; hence, each object is 

separated from its neighboring objects. Integrating 

morphology operators (e.g., opening and closing) on an 

image and then image reconstructing in each step can 

eliminate the tiny components of an image much more 

efficiently than the conventional standard method. It 

can also mitigate the redundancy effect; therefore, the 

excessive tiny regions are removed from the image in 

two steps (i.e., application of an opening operator and 

image reconstruction in the first step and application of 

opening-closing operators and reconstruction in the 

second step). Similarly, the small discrete regions are 

connected to improve the image quality, select the 
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favorable markers, and segment regions with high 

accuracy. According to the marker-controlled 

watershed algorithm (Fig. 15), this method resolved 

most of the complications and limitations in 

conventional methods. "Ref. [11],[19]" 

 

 
Fig. 15. The block diagram of the proposed marker-

controlled watershed transform algorithm for brain 

MRI segmentation 

 
The resultant foreground marker image was placed 

on the main image to better interpret the segmentation 

results. Adding this image to the main image will 

highlight the regions and improve segmentation. Since 

some closed regions were not marked in the image 

segmentation, they will not be segmented correctly in 

the final segmentation results. Moreover, the 

foreground markers move toward an objects’ edge in 

some cases. The bubble and thick edges of markers 

should be modified and smoothed to resolve these two 

problems. They should then be made slightly smaller. 

To this end, the closing operator is first applied to the 

image. After that, the erosion operator is used. In the 

next step, the background markers of the image should 

be marked. Since dark pixels belong to the background 

on these images, the background markers can be 

extracted by placing an image's correct threshold and 

selecting dark pixels. Although the background pixels 

should logically be black pixels, the background is 

made thin towards the foreground as much as possible 

through the SKIZ technique because it is not preferable 

to keep background markers very close to the 

segmentation candidate objects in an ideal case. This 

process is performed through the watershed transform 

by calculating the distances of edge lines extracted 

from the foreground using the same transform. 

 
5.  EXPERIMENTAL RESULTS 

Fig. 16 compares the segmentation results of the 

marker-controlled watershed algorithm in the proposed 

method on MRIs with those of a conventional 

algorithm. According to the results, the marker-

controlled image in the proposed method overcame 

excessive segmentation. Fig. 16(a) depicts an MRI 

selected randomly from the test samples. According to 

Fig. 16(b), a gradient was first applied to the selected 

sample to determine the image minimum at each gray 

level. The resultant minimums can be considered as 

appropriate markers for applying the watershed 

transform to the image. The watershed lines start 

expanding from those minimums. Hence, Fig. 16(c) 

indicates the result of using this idea through the 

watershed transform on the gradient domain. Since 

MRIs are prone to various noises of Gaussian, Poison, 

rail, and pulse (pepper-salt) types, it is essential to use 

noise reduction and elimination methods to improve the 

quality of these images for better diagnose of diseases. 

In the next step, morphology operators are employed to 

reduce noise and improve image quality as much as 

possible. Fig.16(d) demonstrates opening operations in 

one step, where some narrow paths are disconnected 

and broken down, or the tiny bumps caused by 

fluctuations, and nonlinear effects are removed from 

the image. The combinatorial opening-closing 

operations are then performed to further reduce and 

remove noise. Fig. 16(g) shows the outputs of these 

operations. As a result, the effects of noise remaining 

on the edges and margins of the thin edges of the image 

will greatly be reduced, and the resultant image will 

have nearly no noise on its edges, which are separable.  

 

 
Fig 16: The results of implementing the proposed 

method on the exclusive images taken from Pars Clinic 

and Hajar Hospital of Shahrekord: (a) The main image; 

(b) Gradient on the domain; (c) The watershed 

transform on the domain gradient; (d) opening; (e) 

Image reconstruction after opening; (f) Image 

reconstruction after application of opening; (g) 

Opening and closing (LOC); (h) Edge lines of image 

regions after application of the watershed algorithm; (i) 

Local maximum from opening-closing through image 

reconstruction (fgm); (j) Adding local maximums to the 

main image; (k) Reconstruction by placing a threshold 

on opening and closing; (l) Edge lines of the image 

watershed Conclusion 

 

According to Fig. 16(g), a binary image is created 
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by placing a threshold on the reconstructed image 

obtained from opening-closing operations. After the 

watershed algorithm was adopted, it was easy to 

determine the image edge lines on which excessive 

segmentation was dealt with. According to Fig. 16(h), 

it is possible to follow the regions segmented in the 

marker-controlled watershed algorithm by adding local 

maximums to the main image. The regions can be 

highlighted in different colors for better visual 

detection. Although the number of iterations decreased 

in this algorithm, the runtime remained constant. In 

each iteration, the elapsed time prolongs as expected by 

only increasing the number of markers. This algorithm 

requires a reasonable amount of memory. If a normal 

distribution is considered for markers on the image 

regions, it will be possible to estimate the number of 

points belonging to each watershed region. "Ref. 

[1],[5]. 

The center-of-mass algorithm was used to find the 

center of the brain. An appropriate threshold was 

selected in the PCA algorithm to create an elliptical 

mask of a brain MRI on which the long diameter was 

considered the middle line of the brain. "Ref. [32],[34]" 

The histograms of the right and left hemispheres were 

then extracted using the line between the two 

hemispheres. The means and variances of all existing 

MRI slices were then obtained and compared to find 

the possible differences caused by lesions and plaques 

in MS. Since the visual observation by doctors to reach 

a diagnosis, especially in the early stages of a disease, 

cannot be accurate enough and would also be based on 

a doctor's competence and experience; the proposed 

method can be efficient in making a faster diagnosis. 

This method was implemented on 56 patients, and the 

resultant accuracy was more than 98%, indicating its 

satisfactory performance. The temporal volumetric 

analysis of brain regions was also used along with the 

proposed method to improve the accuracy of results up 

to 100%. The results of the volumetric analysis also 

diagnosed the type of MS from which the designated 

case suffered. This method was evaluated on all types 

of MS: primary progressive MS (PPMS), relapsing 

remitting MS (RRMS), progressive-relapsing MS 

(PRMS), and secondary progressive MS (SPMS). The 

tests were conducted on 56 patients who had undergone 

at least three brain MRI processes at either Hajar 

Hospital MRI Center or Pars MRI Center in 

Shahrekord. The results of diagnoses and MS types of 

patients were consistent with the medical diagnoses 

made by doctors. Hence, it can be concluded that the 

calculation accuracy was 100% on the evaluated 

patients, indicating this method's high accuracy. 

Finally, the marker-controlled watershed algorithm was 

employed to extract lesions and plaques and analyze 

their changes to evaluate MS progression. 
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