Document Type : Reseach Article

Authors

Electrical Engineering Department, National Institute of Technology, Kurukshetra, Haryana, India

Abstract

This research article describes the frequency regulation of an interconnected power system that includes wind energy systems and thermal non-reheat systems, with a proportional integral derivative (PID) controller optimized using metaheuristic algorithms such as Genetic-Algorithm (GA), Harmony-Search-Algorithm (HSA), Bat-Algorithm (BA), and Flower-Pollination-Algorithm (FPA). With the demand for precisely efficient energy systems growing, system engineers are increasingly looking for the finely optimized control solution that also has the benefit of faster convergence and avoids entrapment in local minimal. To minimize the fitness function which is based on ITAE (Integral of Time multiplied Absolute Error) criteria composed of frequency and tie-line power changes, we have obtained an optimum solution in terms of PID controller gain values using the metaheuristics optimizing techniques. Change in frequency in area 1, deviation in tie-line power, and change in frequency in area 2 obtained from different techniques are compared. The results obtained by simulating MATLAB/Simulink convey that PID controller gain values optimized using the HSA technique provide better dynamic performance compared to BA, FPA and GA techniques. The simulation results have been experimentally validated using hardware-in-loop (HIL) on a real-time simulator based on field-programmable gate arrays (FPGA). The HSA optimized PID controller is used to investigate the robustness of the system by Step-Load-Perturbation (SLP) and Random Step Load Pattern (RSLP). Results obtained by running simulation also show that the HSA optimized PID controller for the same optimized gain value can withstand the SLP and RSLP variation made in the system.

Keywords

[1]     K. Jagatheesan et al., “Application of flower pollination algorithm in load frequency control of multi-area interconnected power system with nonlinearity,” Neural Comput. Appl., vol. 28, pp. 475–488, 2017, doi: 10.1007/s00521-016-2361-1.
[2]     H. Gozde, M. Cengiz Taplamacioglu, and I. Kocaarslan, “Comparative performance analysis of Artificial Bee Colony algorithm in automatic generation control for interconnected reheat thermal power system,” International Journal of Electrical Power and Energy Systems, vol. 42, no. 1. pp. 167–178, 2012, doi: 10.1016/j.ijepes.2012.03.039.
[3]     S. P. Singh, T. Prakash, and V. P. Singh, “Coordinated tuning of controller-parameters using symbiotic organisms search algorithm for frequency regulation of multi-area wind integrated power system,” Engineering Science and Technology, an International Journal, vol. 23, no. 1. pp. 240–252, 2020, doi: 10.1016/j.jestch.2019.03.007.
[4]     H. Li, X. Wang, and J. Xiao, “Adaptive Event-Triggered Load Frequency Control for Interconnected Microgrids by Observer-Based Sliding Mode Control,” IEEE Access, vol. 7, pp. 68271–68280, 2019, doi: 10.1109/ACCESS.2019.2915954.
[5]     L. C. Saikia, J. Nanda, and S. Mishra, “Performance comparison of several classical controllers in AGC for multi-area interconnected thermal system,” International Journal of Electrical Power and Energy Systems, vol. 33, no. 3. pp. 394–401, 2011, doi: 10.1016/j.ijepes.2010.08.036.
[6]     L. Xi et al., “A virtual generation ecosystem control strategy for automatic generation control of interconnected microgrids,” IEEE Access, vol. 8, pp. 94165–94175, 2020, doi: 10.1109/ACCESS.2020.2995614.
[7]     R. K. Sahu, S. Panda, and S. Padhan, “Optimal gravitational search algorithm for automatic generation control of interconnected power systems,” Ain Shams Engineering Journal, vol. 5, no. 3. pp. 721–733, 2014, doi: 10.1016/j.asej.2014.02.004.
[8]     S. Baghya Shree and N. Kamaraj, “Hybrid Neuro Fuzzy approach for automatic generation control in restructured power system,” International Journal of Electrical Power and Energy Systems, vol. 74. pp. 274–285, 2016, doi: 10.1016/j.ijepes.2015.05.029.
[9]     P. Sharma, A. Prakash, R. Shankar, and S. K. Parida, “A Novel Hybrid Salp Swarm Differential Evolution Algorithm Based 2DOF Tilted-Integral-Derivative Controller for Restructured AGC,” Electr. Power Components Syst., vol. 47, no. 19–20, pp. 1775–1790, 2019, doi: 10.1080/15325008.2020.1731870.
[10]   J. Chacón, H. Vargas, S. Dormido, and J. Sánchez, “Experimental Study of Nonlinear PID Controllers in an Air Levitation System,” IFAC-PapersOnLine, vol. 51, no. 4. pp. 304–309, 2018, doi: 10.1016/j.ifacol.2018.06.082.
[11]   A. Sungthong and W. Assawinchaichote, “Particle Swam Optimization Based Optimal PID Parameters for Air Heater Temperature Control System,” Procedia Computer Science, vol. 86. pp. 108–111, 2016, doi: 10.1016/j.procs.2016.05.027.
[12]   C. T. Chao, N. Sutarna, J. S. Chiou, and C. J. Wang, “An optimal fuzzy PID controller design based on conventional PID control and nonlinear factors,” Appl. Sci., vol. 9, no. 6, 2019, doi: 10.3390/app9061224.
[13]   S. K. Pandey, S. R. Mohanty, and N. Kishor, “A literature survey on load-frequency control for conventional and distribution generation power systems,” Renewable and Sustainable Energy Reviews, vol. 25. pp. 318–334, 2013, doi: 10.1016/j.rser.2013.04.029.
[14]   D. E. Olivares et al., “Trends in microgrid control,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905–1919, 2014, doi: 10.1109/TSG.2013.2295514.
[15]   A. M. Ersdal, L. Imsland, and K. Uhlen, “Model Predictive Load-Frequency Control,” vol. 31, no. 1, pp. 777–785, 2016.
[16]   Y. Mi, Y. Fu, C. Wang, and P. Wang, “Decentralized sliding mode load frequency control for multi-area power systems,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4301–4309, 2013, doi: 10.1109/TPWRS.2013.2277131.
[17]   K. Sabahi, M. Teshnehlab, and M. A. shoorhedeli, “Recurrent fuzzy neural network by using feedback error learning approaches for LFC in interconnected power system,” Energy Conversion and Management, vol. 50, no. 4. pp. 938–946, 2009, doi: 10.1016/j.enconman.2008.12.028.
[18]   S. Saxena and Y. V. Hote, “Stabilization of perturbed system via IMC: An application to load frequency control,” Control Engineering Practice, vol. 64. pp. 61–73, 2017, doi: 10.1016/j.conengprac.2017.04.002.
[19]   S. Padhan, R. K. Sahu, and S. Panda, “Application of firefly algorithm for load frequency control of multi-area interconnected power system,” Electr. Power Components Syst., vol. 42, no. 13, pp. 1419–1430, 2014, doi: 10.1080/15325008.2014.933372.
[20]   R. K. Sahu, S. Panda, and U. K. Rout, “DE optimized parallel 2-DOF PID controller for load frequency control of power system with governor dead-band nonlinearity,” International Journal of Electrical Power and Energy Systems, vol. 49, no. 1. pp. 19–33, 2013, doi: 10.1016/j.ijepes.2012.12.009.
[21]   H. Golpîra, H. Bevrani, and H. Golpîra, “Application of GA optimization for automatic generation control design in an interconnected power system,” Energy Conversion and Management, vol. 52, no. 5. pp. 2247–2255, 2011, doi: 10.1016/j.enconman.2011.01.010.
[22]   K. Naidu, H. Mokhlis, and A. H. A. Bakar, “Multiobjective optimization using weighted sum Artificial Bee Colony algorithm for Load Frequency Control,” International Journal of Electrical Power and Energy Systems, vol. 55. pp. 657–667, 2014, doi: 10.1016/j.ijepes.2013.10.022.
[23]   S. Panda, B. Mohanty, and P. K. Hota, “Hybrid BFOA-PSO algorithm for automatic generation control of linear and nonlinear interconnected power systems,” Applied Soft Computing Journal, vol. 13, no. 12. pp. 4718–4730, 2013, doi: 10.1016/j.asoc.2013.07.021.
[24]   A. Ibraheem, P. Kumar, and D. P. Kothari, “Recent philosophies of automatic generation control strategies in power systems,” IEEE Trans. Power Syst., vol. 20, no. 1, pp. 346–357, 2005, doi: 10.1109/TPWRS.2004.840438.
[25]   Y. Han, P. M. Young, A. Jain, and D. Zimmerle, “Robust control for microgrid frequency deviation reduction with attached storage system,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 557–565, 2015, doi: 10.1109/TSG.2014.2320984.
[26]   A. Gbadega Peter and A. K. Saha, “Electrical Characteristics Improvement of Photovoltaic Modules Using Two-Diode Model and its Application under Mismatch Conditions,” Proc. - 2019 South. African Univ. Power Eng. Conf. Mechatronics/Pattern Recognit. Assoc. South Africa, SAUPEC/RobMech/PRASA 2019, pp. 328–333, 2019, doi: 10.1109/RoboMech.2019.8704846.
[27]   P. C. Pradhan, R. K. Sahu, and S. Panda, “Firefly algorithm optimized fuzzy PID controller for AGC of multi-area multi-source power systems with UPFC and SMES,” Engineering Science and Technology, an International Journal, vol. 19, no. 1. pp. 338–354, 2016, doi: 10.1016/j.jestch.2015.08.007.
[28]   X.-S. Yang, Nature-Inspired Metaheuristic Algorithms Second Edition, vol. 2. 2010.
[29]   Z. W. Geem and J. H. Kim, “A New Heuristic Optimization Algorithm: Harmony Search,” Simulation, vol. 76, no. 2, pp. 60–68, 2001.
[30]   K. Mirzaei Talarposhti and M. Khaki Jamei, “A secure image encryption method based on dynamic harmony search (DHS) combined with chaotic map,” Optics and Lasers in Engineering, vol. 81. pp. 21–34, 2016, doi: 10.1016/j.optlaseng.2016.01.006.
[31]   V. K. Kamboj, S. K. Bath, and J. S. Dhillon, “Implementation of hybrid harmony search_random search algorithm for single area unit commitment problem,” Electr. Power Energy Syst., vol. 77, pp. 228–249, 2016.
[32]   X. S. Yang, “A new metaheuristic Bat-inspired Algorithm,” Stud. Comput. Intell., vol. 284, pp. 65–74, 2010, doi: 10.1007/978-3-642-12538-6_6.
[33]   A. H. Gandomi, X. S. Yang, A. H. Alavi, and S. Talatahari, “Bat algorithm for constrained optimization tasks,” Neural Comput. Appl., vol. 22, no. 6, pp. 1239–1255, 2013, doi: 10.1007/s00521-012-1028-9.
[34]   X. S. Yang, “Flower pollination algorithm for global optimization,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7445 LNCS, pp. 240–249, 2012, doi: 10.1007/978-3-642-32894-7_27.
[35]   S. Pant, A. Kumar, and M. Ram, “Flower pollination algorithm development: a state of art review,” Int. J. Syst. Assur. Eng. Manag., vol. 8, pp. 1858–1866, 2017, doi: 10.1007/s13198-017-0623-7.
[36]   H. Chiroma, N. L. M. Shuib, S. A. Muaz, A. I. Abubakar, L. B. Ila, and J. Z. Maitama, “A review of the applications of bio-inspired Flower Pollination Algorithm,” Procedia Computer Science, vol. 62. pp. 435–441, 2015, doi: 10.1016/j.procs.2015.08.438.
[37]   E. Sahin, “Design of an Optimized Fractional High Order Differential Feedback Controller for Load Frequency Control of a Multi-Area Multi-Source Power System with Nonlinearity,” IEEE Access, vol. 8, pp. 12327–12342, 2020, doi: 10.1109/ACCESS.2020.2966261.
[38]   P. Dahiya and A. K. Saha, “Frequency Regulation of Interconnected Power System Using Black Widow Optimization,” IEEE Access, vol. 10, pp. 25219–25236, 2022, doi: 10.1109/ACCESS.2022.3155201.
[39]   D. Guha, P. K. Roy, and S. Banerjee, “Study of differential search algorithm based automatic generation control of an interconnected thermal-thermal system with governor dead-band,” Applied Soft Computing Journal, vol. 52. pp. 160–175, 2017, doi: 10.1016/j.asoc.2016.12.012.
[40]   M. Gheisarnejad, “An effective hybrid harmony search and cuckoo optimization algorithm based fuzzy PID controller for load frequency control,” Applied Soft Computing Journal, vol. 65. pp. 121–138, 2018, doi: 10.1016/j.asoc.2018.01.007.
[41]   F. Al-Basri, “Adaptive fuzzy gain scheduling for load frequency control talaq, j,” IEEE Power Eng. Rev., vol. 17, no. 10, p. 40, 1997.
[42]   Z. W. Geem, “Optimal cost design of water distribution networks using harmony search,” Eng. Optim., vol. 38, no. 3, pp. 259–277, 2006, doi: 10.1080/03052150500467430.
[43]   S. Ahmed, K. K. Ghosh, P. K. Singh, Z. W. Geem, and R. Sarkar, “Hybrid of Harmony Search Algorithm and Ring Theory-Based Evolutionary Algorithm for Feature Selection,” IEEE Access, vol. 8, pp. 102629–102645, 2020, doi: 10.1109/ACCESS.2020.2999093.
[44]   K. Jagatheesan, B. Anand, S. Samanta, N. Dey, A. S. Ashour, and V. E. Balas, “Design of a proportional-integral-derivative controller for an automatic generation control of multi-area power thermal systems using firefly algorithm,” IEEE/CAA J. Autom. Sin., vol. 6, no. 2, pp. 503–515, 2019, doi: 10.1109/JAS.2017.7510436.
[45]   A. Fathy and A. G. Alharbi, “Recent Approach Based Movable Damped Wave Algorithm for Designing Fractional-Order PID Load Frequency Control Installed in Multi-Interconnected Plants with Renewable Energy,” IEEE Access, vol. 9, pp. 71072–71089, 2021, doi: 10.1109/ACCESS.2021.3078825.
[46]   V. Veerasamy et al., “A Hankel Matrix Based Reduced Order Model for Stability Analysis of Hybrid Power System Using PSO-GSA Optimized Cascade PI-PD Controller for Automatic Load Frequency Control,” IEEE Access, vol. 8, pp. 71422–71446, 2020, doi: 10.1109/ACCESS.2020.2987387.