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ABSTRACT: 

This paper proposes a novel approach based on the copula models for estimating Millimeter-Wave channel parameters 

with Rician fading in a correlated MIMO system. Even though the use of these waves faces numerous challenges, having 

an accurate estimation of their parameters would be a crucial notion for the improved performance of this channel. Since 

the considered system in this paper is a MIMO system with nearby transmitter antennas, the components of the received 

signals are correlated. However, a general model is not available for this kind of correlation. By taking into account the 

correlation, this model enables a precise Joint Probability Density Function (JPDF) by employing copula models for the 

received signals in the antennas. We also obtain more precise channel parameter estimates using this density function. 

The multi-path fading parameters in a MIMO system and the correlation coefficients between the transmitter and 

receiver antennas are both presented in this paper. Some simulations are employed to assess the validity and reliability 

of estimating Millimeter-Wave channel parameters in a MIMO system. 
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1.  INTRODUCTION 

       The Millimeter-Wave frequency signal is beginning 

a new era in wireless communication. Compared to the 

frequency of the channels currently used in wireless 

systems, they have a much higher frequency spectrum 

between 30 and 300 GHz. As a result, these waves 

provide communication channels with higher 

bandwidth, capable of reaching data rates of several 

gigabits per second [1],[2]. Moving up to the Millimeter-

Wave spectrum, with an enormous amount of available 

bandwidth, will satisfy the need for broadband wireless 

mobility. Numerous bandwidth issues could be quickly 

resolved with this frequency [3].  

      Most consumer wireless systems operate at carrier 

frequencies below 6 GHz. The larger spectral channels 

are the first and foremost advantage of moving to 

Millimeter-Wave carrier frequencies. As mentioned 

before, the bandwidth of these waves is not comparable 

to the spectrum of other common waves, which means 

this difference will significantly increase the speed of 

transmission data rates [4]. Therefore, having an 

accurate parameter estimation of Millimeter-Wave 

channels will be particularly important for its best 

implementation.  

    Due to their short wavelength, these waves need many 

antennas to transmit the signal from the transmitter to the 

receiver, so there is a line of sight (LOS) between them.     

Therefore, considering the Rician fading for Millimeter-

Wave channels is reasonable, one of the significant 

differences between modeling this channel and other 

common channels. Also, since many antennas are used 

for Millimeter-Wave transmission, a MIMO system 

model is used for the Millimeter-Wave channel [5].  

      Higher capacity is achieved by transmitting data and 

signals using MIMO systems, significantly improving 

data throughput and connection range without needing 

extra bandwidth or transmission power. Another ideal 

assumption about channel coefficients is that they are 

considered independent and identically distributed (i.i.d) 

[6]. Nevertheless, the previous assumption is not 

adequate. Also, a correlation exists among the antennas 

in many practical and empirical conditions due to poor 

scattering conditions or physical proximity between the 

antennas [7]. Thus, it is important to investigate the 

behavior of MIMO systems in correlated fading 

environments [8].  

      This paper considers a 2 × 2 MIMO system for the 

Millimeter-Wave channel. 

      The transmitting antennas in this system are close 

together and correlated, but the receiving antennas are 

separated and independent of one another [9],[10]. This 

system has an infinite number of antennas that can be 
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considered. The Rician model is also considered for the 

fading environment [11]. The parameters and correlation 

coefficients of the Millimeter-Wave MIMO channel for 

adjacent transmitters and isolated receivers have been 

calculated using a PDF-based method [12]. The 

proposed estimation approach is based on a PDF of the 

signals. The copula is a powerful instrument that 

considerably improves our proposed estimation method 

because the signals in this system are correlated. The 

copula model is appropriate when correlated with two or 

more random variables [13]. Therefore, the copula 

theory aids in calculating the overall PDF of the received 

signal at the receiver, which includes some correlated 

parts, and this PDF derived from the copula theory 

greatly aids in having better estimates of the desired 

channel parameters. The results of the estimation and the 

improvements made in this paper can be found in 

Section 4. 

       This paper is organized as follows: In Section 2, we 

discuss the Millimeter-Wave MIMO system and the 

design channel model. Section 3 presents the proposed 

method for estimating the channel and explains the 

copula theory and its applications in our case. In Section 

4, simulations of the results are investigated, and finally, 

the results obtained in Section 5 will be concluded. 

 

2.  MILLIMETER-WAVE MIMO SYSTEM 

MODEL 

       Due to the different propagation properties, 

Millimeter-Wave channel models differ significantly 

from channel models applied at lower frequencies [14]. 

Standard features used in Millimeter-Wave channel 

models include low-frequency systems with various 

parameters for multi-path delay propagation, angle 

propagation, and Doppler shift (for example, cluster 

pathways that lead to increased scattering in the 

channel). In addition, to provide sufficient link margin 

in most Millimeter-Wave communication systems, an 

array of antennas should be used on both sides of the 

system channel, as shown in Fig. 1, which produces a 

MIMO communication system in the channel model.  

 

 

 

 

 

 

 

 

 

 

Fig. 1. A 2 × 2 MIMO system model. 

 

     The MIMO system used for the desired channel 

model will differ due to the different channel 

characteristics and additional hardware issues at the 

Millimeter-Wave frequencies. So, this inevitable 

relationship between MIMO and Millimeter-Waves is 

the real goal that we emphasize in signal processing for 

Millimeter-Wave MIMO systems [4].  

      The wireless channels are considered a model for the 

MIMO system, which is based on the following 

equation: 

 

𝑟 = 𝐻𝑠 + 𝑛,                                                                (1) 

 

Where 𝑟 represents the received signals, 𝑠 represents 

the transmitted signals, 𝐻 is the 𝑁𝑟 × 𝑁𝑡  channel matrix 

with random entries, and 𝑛 represents noise or 

disturbances and unwanted signals in the path between 

the transmitter and receiver. As shown in Fig. 1 and from 

the MIMO system model in (1), the channel matrix for a 

2 × 2 system is determined as follows [6]: 

 

[
𝑟1
𝑟2
] = [

ℎ11 ℎ12
ℎ21 ℎ22

] [
𝑠1
𝑠2
] + [

𝑛1
𝑛2
],                                  (2) 

 

Where 𝑅 represents the received signals and element 

 ℎ11, . . . , ℎ22 represents the gain of the paths between the 

transmitter and receiver antennas, the vector 𝑠 is the 

transmitted signals, and the parameters 𝑛 exist as noise 

in this system. It should be noted that this work can be 

generalized to dimensions much more significant than 

size 2 × 2 and is not limited to this number of antennas 

and can be expanded. 
 

2.1.  Millimeter-wave channel model 

       There are typically two-channel models for 

Millimeter-Wave: parametric and nonparametric. The 

nonparametric model is taken into account in this paper. 

Due to the high frequency of the Millimeter-Wave, the 

wavelength of that signal is too small. Hence, several 

antennas are required to convey the signals from the 

transmitting antenna to the receiving antenna. The 

Millimeter-Wave channel fading is the Rician kind 

because there is most likely a line of sight (LOS) 

between them [5]. 

       If 𝐻𝑙 is a matrix with dimensions 𝑁𝑟 × 𝑁𝑡, it will 

contain all ℎ𝑛𝑡,𝑛𝑟
𝑙  whose channel attenuation has a 

complex MIMO system [15],[16]. 

 

𝐻𝑙 = 𝑅𝑟𝑥
1/2
 𝐻𝑅𝑖𝑐𝑖𝑎𝑛 𝑅𝑡𝑥

1/2
 ,                                           (3) 

 

Where 𝑅𝑡𝑥 and 𝑅𝑟𝑥 are the transmitter and receiver 

correlation matrices, respectively, 𝐻𝑅𝑖𝑐𝑖𝑎𝑛 is a matrix of 

elements with a small-scale Rician distribution with        

𝐾 = 10 dB, [17].   

     Also, from [18], the correlation matrix 𝑅𝑡𝑥 and 𝑅𝑟𝑥  

can be computed as follow: 

 

𝑅𝑢,𝜈 = 𝑒
−𝑗𝜃(0.9𝑒−|𝑢−𝜈|𝑑 + 0.1).                              (4) 

r 
 

n2 

n1 

 
 

 

s 𝑡𝑥  

 

𝑟2 

𝑠1 

 

 
𝑟𝑥  

𝑟1 

𝑠2 
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The parameters 𝑢 and 𝑣 represent the row and 

column elements of the correlation matrix elements 

calculated from (4). The parameter 𝑑 is the distance 

between the transmitter and receiver antennas. 𝜃 is the 

angle whose uniform distribution is between [− 𝜋, 𝜋). 
 

3.  CHANNEL PARAMETER ESTIMATION 

     The Millimeter-Wave MIMO channel parameters 

were generated using the PDF of the received signals, as 

specified by the PDF-based concept. Estimates of the 

signals PDF must be created using analytical and 

empirical methods. Before the analytic methods can 

produce the PDF of the received signal, the path gains 

between the transmitter and receiver antennas or the 

channel matrix elements must be identified. This section 

will look at the process used to calculate it. 

     To compute the path gains  ℎ11, . . . , ℎ22, in a 2 × 2  

MIMO system, we must write (3) as a matrix: 

 

[
ℎ11 ℎ12
ℎ21 ℎ22

] =  [
𝑅11
𝑟 𝑅12

𝑟

𝑅21
𝑟 𝑅22

𝑟 ] [
𝑥11 𝑥12
𝑥21 𝑥22

] [
𝑅11
𝑡 𝑅12

𝑡

𝑅21
𝑡 𝑅22

𝑡 ]. 

(5) 

        All random variables 𝑥11,…, 𝑥22 have a Rician 

distribution and are independent of one another due to 

channel fading. After multiplying these matrices, we 

will get the path gains between the transmitter and 

receiver antennas according to Fig. 1, in which ℎ11 is one 

of these path gains and can be seen below: 

 

ℎ11 = (𝑅11
𝑡  𝑅11

𝑟 ) 𝑥11 + (𝑅11
𝑡  𝑅12

𝑟 ) 𝑥12 +
                       (𝑅21

𝑡  𝑅11
𝑟 ) 𝑥21 + (𝑅21

𝑡  𝑅12
𝑟 ) 𝑥22.              (6) 

 

For simplicity, we can write (6) as: 

 

   ℎ11 = 𝑎11𝑥11 + 𝑏11𝑥12 + 𝑐11𝑥21 + 𝑑11𝑥22.        (7) 

 

The random variables that determine the path gains 

in (7) have a Rician distribution multiplied by the 

correlation coefficients. Furthermore, all these 

coefficients, 𝑎11, 𝑏11, 𝑐11, 𝑑11, are considered positive 

and real in this paper. The coefficients multiplied by the 

random variables and can be derived in the same manner 

are the only differences between the rest of the channel 

matrix elements  ℎ12, . . . , ℎ22, which have the same 

form. To obtain the PDF of each element, we must 

modify the random variables from [19] in the method 

described below: 

 

𝑃(𝑌 ≈ 𝑦)  =  𝑝(𝑦) |𝛥𝑦|  =  ∑ 𝑝(𝑥𝑖)
𝑘

𝑖=1
 |𝛥𝑥𝑖|,         (8) 

 

And then, we can compute 𝑝(𝑦) as the following. 

 𝑝(𝑦) =∑
𝑝(𝑥𝑖)

|
𝛥𝑦

𝛥𝑥𝑖
|

𝑘

𝑖=1

=∑
𝑝(𝑥)

|𝑔′(𝑥)|

𝑘

𝑖=1
|
𝑥=𝑥𝑖

,                (9) 

 

Where 𝑝(𝑦) is a modified PDF of 𝑝(𝑥) when 𝑥 

multiply by a constant coefficient. Since all random 

variables have a Rician distribution, from [19], its PDF 

writes as follows: 
 

𝑝(𝑥) =  
𝑥

𝜎2
 𝑒
− 
(𝑥2+ 𝑣2)

2𝜎2  𝐼0 (
𝑥 𝑣

𝜎2
),                                     (10) 

 

Where 𝑥 is the random variable, 𝑣 is the mean, and 

𝜎 is the standard deviation parameter or the same scale 

parameter, both parameters have a positive value.        

       Firstly, take new random variables from (7) as 

follow: 

ℎ11 = 𝑧1 + 𝑧2 + 𝑧3 + 𝑧4.                                           (11) 
 

Then derive a PDF of each of these elements 

 𝑧1, . . . , 𝑧2 using (14) and (17) will be as follows: 

 

 𝑧1 = 𝑎11𝑥11, → 𝑔(𝑥) = 𝑎11 𝑥11, → 𝑔
′(𝑥) = 𝑎11. (12) 

 

From (9) and (12), we can compute the PDF of each 

element, which is: 

 

𝑝(𝑧1) =  
𝑝(

𝑧1
𝑎11

)

𝑎11
=

 
1

𝑎11
 

(

 
 
 
 

𝑧1

𝑎11𝜎
2  𝑒(

 
 
−(

(
𝑧1
𝑎11

)
2
+𝑣2

2𝜎2
)

)

 
 

 𝐼0 (
𝑧1 𝑣

𝑎11𝜎
2)

)

 
 
 
 

.              (13) 

 

To determine the remaining elements, we can use the 

same equations. The new random variables 𝑧1,…, 𝑧4 are 

also independent because of the independence of the 

random variables 𝑥11,…, 𝑥22, so by convolving them, 

we can obtain the PDF of the matrix elements. 

 

𝑝(ℎ11) = 𝑝𝑧1(ℎ11) ∗ 𝑝𝑧2(ℎ11) ∗ 𝑝𝑧3(ℎ11) ∗ 𝑝𝑧4(ℎ11).  

(14)  

To solve the convolution in (14) we can reach to 

desire answer by the following equations: 

 
𝑝1(ℎ11) =  𝑝𝑧1(ℎ11)  ∗  𝑝𝑧2(ℎ11)  

=  ∫𝑝𝑧1(𝛼) 𝑝𝑧2(ℎ11 −  𝛼) 𝑑𝛼,  

(15) 

𝑝2(ℎ11)  =  𝑝1(ℎ11)  ∗  𝑝𝑧3(ℎ11)  

=  ∫𝑝1(𝛽) 𝑝𝑧3(ℎ11 −  𝛽) 𝑑𝛽,  

(16) 

𝑝(ℎ11)  =  𝑝2(ℎ11)  ∗  𝑝𝑧4(ℎ11)  

=  ∫𝑝1(𝜏) 𝑝𝑧4(ℎ11 −  𝜏) 𝑑𝜏. 

(17) 
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By solving these three equations, 𝑃(ℎ11), the PDF of 

the channel matrix element between the transmitter and 

receiver antennas, is obtained. 

       Fig. 1 shows the model of the signal that receives at 

the first receiving antenna: 

 

                    𝑟1  =  ℎ11𝑠1  +  ℎ21𝑠2  + 𝑛1.               (18) 
 

And a received signal in the second receiving is: 

 

𝑟2  =  ℎ12𝑠1  +  ℎ22𝑠2  + 𝑛2 ,                                    (19) 
 

Where 𝑟1 and 𝑟2 represent the signals in the first and 

second receiving antennas, respectively, 𝑛1 and 𝑛2 are 

independent, identically distributed additive white 

gaussian noise with zero mean and variance N, and 𝑠1 

and 𝑠2 are transmitter antenna constant coefficients. In 

addition, ℎ11, . . . , ℎ22 are the path gains between the 

transmitter and receiver antennas. The first receiver 

antennas received signal finishes ℎ11 and ℎ21, and the 

methods for determining the path gain ℎ11, as indicated 

in (18). If these signals were independent, we could 

convolve their PDFs by 𝑝(ℎ11) and 𝑝(ℎ21) into each 

other to obtain the PDF of the received signal 𝑅1 because 

we considered the antennas adjacent to each other, 

which is a more realistic assumption to make. As a 

result, the signals are correlated, and convolution cannot 

be used to achieve the remaining path gains. A valuable 

tool in this situation is the copula. 

 

3.1.  Copula 

       The copula theory is one of the most commonly 

used statistical methods for modeling parameter 

relationships. Sklar developed and applied this approach 

to mathematical problems [13]. The copula is a function 

that combines univariate PDFs to create a joint PDF with 

a particular dependency structure. Given that the signals 

received from the channel output in a MIMO system 

described in this paper include the sum of multiple 

correlated signals from transmitting antennas, we can 

use a copula to solve our problem. The PDF of the 

received signal is being used to estimate the Millimeter-

Wave channel parameters. Because of the correlation of 

the received signal, we must determine the PDF of the 

signal, which is made up of numerous dependent 

components. As a result, the copula concept is the best 

approach for resolving our problem because it simplifies 

the PDF computation process and produces superior 

results. According to the Sklar theorem, a copula 

function connects any joint multivariate PDF and the 

corresponding marginal PDFs [6]. 

     From [13], if 𝐹 be an n-dimensional cumulative 

distribution function (CDF) with margins 𝑃1, . . . , 𝑃𝑛 , 

Then there is a function like 𝐶 : 
 

𝐶 ∶  [0,1]𝑛 → [0,1] 

𝑃(x1, … , x𝑛) =  𝐶 (𝑃1(x1),… , 𝑃𝑛(x𝑛)),            (20) 

Where 𝐶 is a copula CDF and 𝑃1, . . . , 𝑃𝑛 is marginal 

CDFs, so the function 𝑃, which is defined in (20), is an 

n-dimensional CDF with margins 𝑃1, . . . , 𝑃𝑛. Function C 

has some intrinsic properties that has been fully 

described in [20].  

      Finally, according to the copula's characteristics, a 

copula is a CDF defined in the range [0,1]n with 

uniformly distributed margins. The copula function-

calculated multivariate CDF offers remarkable 

adaptability because we can choose the dependency 

relationship between them and the margins separately. 

     In [21], to reach the copula distribution function, we 

first calculate the joint PDF by taking the nth derivative 

of the function in (16) as follows: 

 

𝑃(𝑥1, ⋯ , 𝑥𝑛) =
𝜕𝑛𝐶(𝑃1(𝑥1),…,𝑃𝑛(𝑥𝑛))

𝜕𝑥1…𝜕𝑥𝑛
.                      (21) 

 

Then by applying the chain law in (21) the joint PDF 

is derived: 

 

𝑃(𝑥1, … , 𝑥𝑛) =  
𝜕𝑛𝐶(𝑃1(𝑥1), … , 𝑃𝑛(𝑥𝑛))

𝜕𝑥1…𝜕𝑥𝑛

×∏
𝑑𝑃𝑖(𝑥𝑖)

𝑑𝑥𝑖

𝑛

𝑖=1

= 𝑐(𝑃1(𝑥1), … , 𝑃𝑛(𝑥𝑛))∏𝑝𝑖(𝑥𝑖),

𝑛

𝑖=1

 

(22) 

Where 𝑐 is the copula density function and  

𝑝1(𝑥1), . . . , 𝑝𝑛(𝑥𝑛) are the marginal PDFs. From (22), a 

multivariate PDF is created by multiplying a copula 

density function in a set of marginal PDF files in which 

the copula density function can be chosen independently 

of the margins.  

      There are two types of copulas: the first type is the 

family of elliptical copulas, which includes the Gaussian 

(Normal) and Student's t. The Archimedean copula is a 

second type of copula. Due to Rician fading and the fact 

that the Gaussian copula's distribution follows a normal 

distribution, it is mainly employed in this paper. The 

additional copulas used to assess estimating accuracy 

differences include Clayton, Student's t, and Gumbel. It 

is important to note that each copula function has a 

corresponding density function. Due to this, the normal 

copula density function is provided in the next section, 

and [13] contains information on the other three types of 

copulas and many other types, each of which has a 

variety of uses and characteristics. 

 

3.2.  Normal Copula 

       Due to its resemblance to a normal distribution, it is 

referred to as the Normal copula. The correlation 

between the variables is being used to calculate its 
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dependence. However, the marginal distributions in the 

typical copula are arbitrary. After describing the copula 

idea and correlation modeling, the following section 

presents a correlated channel and estimates its 

parameters using the copula function. The Normal 

copula distribution function with the correlation matrix 

𝜌, from [13], is expressed as follows: 
 

𝜌 𝜖 [−1,1]𝑛×𝑛 

 

𝐶𝜌
𝐺𝑎𝑢𝑠𝑠(𝑥1, ⋯ , 𝑥𝑛)  =  P𝜌 ( 𝑝

−1(𝑥1), . . . , 𝑝
−1(𝑥𝑛)),                                  

(23) 
 

Where, 𝐶𝜌
𝐺𝑎𝑢𝑠𝑠 is Gaussian copula and P𝜌 is the 

standard univariate standard normal distribution 

function, and 𝑝 is the PDF of random variables with 

linear correlation coefficient 𝜌 between the variables. 

The density function of this copula type can be written 

as the following: 

 

𝐶𝜌
𝐺𝑎𝑢𝑠𝑠(𝑥1, ⋯ , 𝑥𝑛)  =

 
1

√𝑑𝑒𝑡 𝜌
 𝑒(

 
 
−
1

2
(

𝑃−1(𝑥1)...
𝑃−1(𝑥𝑛)

)

𝑇

⋅(𝜌−1−𝐼)⋅(

𝑃−1(𝑥1)...
𝑃−1(𝑥𝑛)

)

)

 
 

.                  (24) 

 

More complete information on copulas is available 

at [13],[21]. Using the copula model to estimate the Joint 

PDF of elements which is 𝑝(ℎ11, ℎ21), because when 

this joint PDF is computed, we can access the PDF of 

the received signal 𝑅1 by integral from the Joint PDF as 

follow: 

 

𝑝(𝑅1) =  ∫ 𝑝(ℎ11 , 𝑅1  −  ℎ11) 𝑑ℎ11
+∞

−∞
.                 (25) 

 

By (25), we can analytically obtain the PDF of  𝑅1. 

If the PDFs of the signals 𝑃(ℎ11) and 𝑃(ℎ21) are 

considered as the marginal density functions in the 

copula theory, the joint PDF 𝑝(ℎ11, ℎ21) is obtained 

from (22): 

 
𝑝(ℎ11, ℎ21) = 𝑝(ℎ11)𝑝(ℎ21)𝑐(𝑃(ℎ11), 𝑃(ℎ21); 𝜌𝑘),        
                                                                                            (26) 
 

The dependency criterion considered in this paper is 

Pearson's correlation or the linear correlation. In (26), 

𝑃(ℎ11) and 𝑃(ℎ21) are the marginal CDFs of signals 

ℎ11(𝑡) and ℎ21(𝑡), respectively, and 𝑘 represents the 

number of routes, and 𝜌𝑘 is the linear correlation 

parameter among these signals. The linear correlation 

between ℎ11 and ℎ21 is the same as the linear correlation 

of the channel since the signals in the transmitter 

antennas are separately created, so estimating this 

parameter yields the channel correlation parameter. 
     This paper uses four kinds of copula for estimation: 

Normal, Clayton, Gumbel, and 𝑡-copula. For each 

copula, we have to calculate the linear correlation 

parameter 𝜌𝑘 based on that related copula, and the linear 

correlation parameter 𝜌𝑘 in (28) is not precisely the 

copula parameter. 

      One of the Gaussian copula's inputs is the 𝜌 

correlation matrix, which is mentioned in (23). These 

parameters are almost similar to the linear correlation 

parameters, which offer paired correlations between 

variables. However, the t-copula has two parameters, 

one of which is degrees of freedom, which in this 

simulation is equal to 5, and the other is similar to the 

parameter of the normal copula and is thus the same as 

the parameter of linear correlation [7].  

      From [6], In the Clayton copula, there is an α 

parameter, which is different from the linear correlation 

parameter, and the relationship between them for the 

bivariate case is given by: 

 

𝛼 =  
𝑠𝑖𝑛−1(𝜌𝑘)

𝜋 − 2 𝑠𝑖𝑛−1(𝜌𝑘)
                                                    (27) 

 

In a multivariate case, we can calculate 𝛼 for each of 

them separately and consider the average of all obtained 

𝛼 values as the main Clayton copula parameter.  

      Thus far, the analytical approach has produced the 

PDF of the received signal 𝑝(𝑅1). Based on the obtained 

analytical PDF of the received signal in the 𝑘th receiver, 

the parameters mean 𝑣 and standard deviation 𝜎, along 

with other desirable parameters between the transmitters 

and the receiver, can be calculated as follows: 

     The computed parameters are based on the Nonlinear 

Minimum Mean Square Error (NMMSE) estimator. 

Analytical and empirical PDFs of the signals received 

are necessary for this estimator. As shown in (26), 

empirical PDF is calculated using samples of the signal 

that was received and had the following structure [6]: 

 

�̂�(𝑅𝑘) =
1

𝑁𝑘𝐵
∑ 𝜓 (

𝑝𝑘−𝑝𝑘𝑖

𝐵

𝑁𝑘−1

𝑖=0
),    𝑘 =  1,2        (28) 

 

Where, (28) represents the kernel estimator's 

performance, a method for statistically estimating the 

PDF of the arbitrary signal. 𝜓 is the kernel function that 

must integrate to 1, and 𝐵 is the window width or 

bandwidth of the kernel. 𝑁𝑘 is the number of the 

received samples in the 𝑘th receiver, and 𝑅𝑘𝑖  is the value 

of the 𝑖th sample [6]. Using both analytical and 

Empirical obtained PDFs, NMMSE estimates the 

desired parameters of the channel as follows: 
 

(�̂�𝑘, �̂�𝑘)  =  𝑎𝑟𝑔𝑚𝑖𝑛
𝜈𝑘,𝜎𝑘

 ∫|𝑝(𝑅𝑘)  −  �̂�(𝑅𝑘)|
2𝑑𝑅𝑘,   (29) 

 

Where, 𝑝(𝑅𝑘) is a function of the PDF of the 

received signal through the analytical method obtained 

from (25) and �̂�(𝑅𝑘) is the empirical PDF of the received 

signal, which results from the kernel estimator and is 

derived from (28), parameters 𝑣 and 𝜎, are the main 

characteristics of the Millimeter-Wave MIMO channel, 
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the accurate estimation of these parameters has 

particular importance for the implementation of this 

channel. Nevertheless, this method can be used to 

estimate the correlation coefficients that exist in the 

channel matrix (5).  

      It should be noticed, however, that the estimation of 

correlation coefficient parameters should not be 

expected to be very precise. Because changing the 

coefficient's locations might not change the PDF matrix 

element or path gains, which might make the estimator 

very sensitive to these parameters. Hence, we shall 

examine the findings from the suggested method to 

estimate channel parameters in the following section. 

We previously discussed the analytical and experimental 

methods for estimating Millimeter-Wave channel 

parameters and calculating the PDF of the received 

signal in the first receiver 𝑅1 antenna. Therefore, some 

simulations are required to assess the proposed method 

for calculating channel parameters. We will discuss the 

simulation and the outcomes in the following section. 

 

4.  SIMULATIONS AND RESULTS 

     Determining the PDF of the matrix channel elements, 

which are the path gains between the transmitter and 

receiver antennas, is crucial to estimate the desired 

parameters of a Millimeter-Wave MIMO channel. As 

was already explained, the MIMO system in this paper 

has four random variables with a Rician distribution as 

part of its Millimeter-Wave channel matrices (6).   

 
Fig. 2. PDF of ℎ11from Analytical and Empirical 

methods. 

 
Fig. 3. Joint PDF of ℎ11 and ℎ21 from Copula. 

Due to their independence, we may produce the 

desired PDF by convolution the random variables 

together. Due to the presence of correlation coefficients, 

we must acquire their modified form, described in (13), 

and then use those forms as the PDF of the path gains, 

whose calculations are expressed in (17). To do this, we 

convolve them two by two first, and then their results. 

      It should be emphasized that the correlation 

coefficients are assumed constant for the two path gains, 

ℎ11and ℎ21, according to Table 1. in this paper, the mean 

and standard deviation parameters from the Rician 

distribution are considered 2 and 0.7, respectively. 

 

Table 1.  Amounts of correlation coefficients in 𝑅1. 
ℎ11 Amount ℎ21 Amount 

𝑎11 0.96 𝑎21 0.54 

𝑏11 0.56 𝑏21 0.12 

𝑐11 0.21 𝑐21 0.88 

𝑑11 0.12 𝑑21 0.44 

 

      In Table 1, According to (7), 𝑎11,…,𝑑11 are 

correlation coefficients of  ℎ11 and 𝑎21,…,𝑑21 are 

correlation coefficients of  ℎ21.   
      Fig. 2 shows the PDF of ℎ11 obtained from two 

analytical and empirical methods. The kernel estimator 

was employed in this figure to ensure the desired result 

was attained. The results show that the proper steps have 

been taken because the results of the two methods are 

comparable. As shown in (18), the received signal in the 

receiver antenna 𝑅1 is composed of two path gains or 

signals, ℎ11, and ℎ21. To acquire the PDF of ℎ21, we will 

repeat the described method for the PDF of ℎ11. Because 

we considered both signals correlated in this paper, it is 

impossible to estimate the PDF of the received signal via 

convolution. Instead, we use the Gaussian copula model 

proposed in (24). Fig. 3 depicts the copula result, which 

reveals the type of Rician distribution of random 

variables. 

 
Fig. 4. Contour of Joint PDF ℎ11 and ℎ21. 
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The Gaussian copula is used to calculate the 

correlation between these signals, and because of the 

existing correlation, the joint PDF is calculated. 

       In this paper, three other copula models will be 

mentioned to demonstrate the effect of different copulas 

on the accuracy of estimating Millimeter-Wave MIMO 

channel parameters. The counter of acquired joint PDF 

from the Gaussian copula of the ℎ11 and ℎ21 signals 

between the transmitter and receiver antennas is also 

shown in Fig. 4. Furthermore, this figure shows how the 

PDF layers are placed in the Gaussian model.  

      So far, we have shown how to use the copula model 

to obtain the joint PDF of these signals at the first 

receiver antenna and estimate the channel parameters 

using the method described in this paper. Nevertheless, 

first, we need to calculate the PDF of the received signal 

from the joint PDF. We use (25) to achieve this PDF, 

which leads to 𝑃(𝑅1). Fig. 5 depicts the result of this 

integration. Two PDFs are required from this received 

signal to estimate channel parameters according to (29). 

The PDF created in this manner is employed as a tool for 

an analytical approach. Fig. 5 also shows the kernel 

estimator's outcome to calculate the PDF from the 

empirical approach. A precise estimate of the channel 

parameters could be expected because, as shown from 

the result, these two PDFs generated by the analytical 

and empirical approaches are somewhat similar. 

 
Fig. 5. PDF of 𝑅1 with using Gaussian Copula. 

 

Table 2. Estimation of 𝑆 in first received antenna 𝑅1. 
 

𝑆 = 2 

σ = 0.7 

100 random variables 1000 random variables 

�̂� var �̂� var 

 

𝑠0 = 1 

 

2.0019 

 

0.0592 

 

2.0001 

 
1.02× 10−4 

 

𝑠0 = 2.5 

 

1.9997 

 

0.0030 

 

2.0004 

 

1.2× 10−4 

 

These PDFs allow us to predict the Millimeter-Wave 

MIMO channel's desired parameters accurately. We 

attempt to reduce the error between these two PDFs by 

setting the target parameter or parameters as unknown in 

the empirical approach. It should be emphasized that the 

computational space is two-dimensional due to the usage 

of the copula model, and extensive calculations are 

conducted, necessitating the employment of a robust 

system to accomplish the results of these calculations. In 

this paper, calculations are done one hundred times and 

averaged to obtain reliable results with excellent 

analytical and empirical precision methods for 

estimating channel parameters.  

      In Table 2, the mean parameter 𝑆 is estimated alone, 

and the column var represents the error variance of the 

parameter estimation. Also, the results obtained in this 

table are present for different initial guesses 𝑠0, and the 

effect of the number of samples on their accuracy of 

parameter estimation and error variance will be 

reviewed. The results of Table 2 show that we have a 

highly accurate estimate even though our initial 

estimations were all significantly off-base. Additionally, 

as the number of random variables increases, so does the 

estimation accuracy of this parameter, and the error 

variance is noticeably reduced. Table 3 estimates the 

parameter 𝜎 for 100 random variables using various 

initial hypotheses. Further suggests that we will have 

accurate estimations of this parameter for the number of 

samples considered. 

 

Table 3. Estimation of 𝜎 in 𝑅1 . 
 

𝑆 = 2 

σ = 0.7 

 

100 random variables 

 

�̂� 
 

var 

 

𝜎0 = 1 

 

0.6987 

 

0.0016 
 

𝜎0 = 0.5 

 

0.7259 
 

0.0029 

 

Table 4. Simultaneously estimation of 𝑆 and 𝜎 in 𝑅1 . 
 

𝑆 = 2 

σ = 0.7 

 

100 random variables 
 

 

�̂� 

 

var �̂� 

 

�̂� 

 

var �̂� 

 

[𝑠0, 𝜎0] = [1.5, 0.5] 
 

2.0063 

 

0.0013 

 

0.7153 

 

0.0033 

 

[𝑠0, 𝜎0] = [3, 1.5] 

 

 

2.0281 

 

0.0038 

 

0.7151 

 

0.0036 

 

Moreover, the suggested estimator can estimate the 

channel parameters simultaneously. The outcomes of the 

simultaneous estimation of 𝑆 and 𝜎 parameters for the 

various initial guesses 𝑠0, 𝜎0 are shown in Table 4. From 

the results of this table, it is clear that we will have 

precise estimates given the number of random samples. 

Table 5 shows the results of the simultaneous estimation 

of correlation coefficients 𝑎11 and 𝑏11 for the various 

initial guesses 𝑎0 and 𝑏0 in the ℎ11(𝑡). 
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Table 5. Estimate Simultaneous 𝑎11 and 𝑏11 in 𝑅1 . 
 

𝑎11= 0.96 
𝑏11= 0.56 

 

100 random variables 
 

 

𝑎11 
 

 

var  𝑎11 
 

 

𝑏11 
 

var  𝑏11 
 

 

[𝑎0, 𝑏0] = [0.8, 0.4] 

 

 

0.9336 
 

 

0.0367 

 

0.5818 
 

 

0.0514 

 

[𝑎0, 𝑏0] = [1, 1] 

 

 

0.9142 

 

0.0556 

 

0.6144 

 

0.0621 

 

The results of Table 5 demonstrate that although we 

should not expect the calculation of correlation 

coefficients to be very accurate, the estimations we have 

for these parameters using the provided method are 

nonetheless quite reliable. In many works, the dangerous 

assumption is that path gains are independent when 

estimating channel parameters. In Fig. 6, unlike Fig. 5, 

the path gains are independent, and the two PDFs need 

to fit precisely. 

 
Fig. 6. PDF of 𝑅1 when path gains are independent. 

 

Table 6.  Comparing the accuracy of estimating 𝑆 and 

𝜎 with the assumption of correlation and independence. 
100 R.V. 𝑠0, 𝜎0 = [1,1] 𝑠0, 𝜎0 = [2.5,1] 

 

 

 
Correlated 

 

�̂� 

 

2.0001 

 

2.0004 

 

var �̂� 

 

1.02× 10−4 

 

1.2× 10−4 

 

�̂� 

 

0.7021 

 

0.6948 

 

var 𝜎 

 

1.03× 10−4 

 

1.17× 10−4 

 

 
Independent 

 

�̂� 

 
1.9535 

 
1.9546 

var �̂� 6.05× 10−4 5.65× 10−4 

�̂� 0.9091 0.9075 

 

var �̂� 

 

0.0014 

 

4.76× 10−4 

We compare the simultaneous estimates of 𝑆 and 𝜎 

parameters for these two scenarios in Table 6. 

 

Table 7. Comparing the accuracy of estimating 𝑎11 and 

𝑏11 with the assumption of correlation and 

independence. 
a11= 0.96 

b11= 0.56 
 

100RV 

 

𝑎0, 𝑏0= [0.8,0.4] 

 

 

𝑎0, 𝑏0 = [1,0.5] 

 

 

 
 

 
 

 

Correlated 
 

 

𝑎11 
 

 
0.9336 

 
0.9709 

 

var 𝑎11 
 

 

0.0367 

 

 

0.0566 

 

 

𝑏11 
 

0.5818 
 

0.5596 

 

var 𝑏11 
 

 

0.0514 

 

0.0716 

 

 

 

 

 

 

Independent 

 

𝑎11 
 

 

1.5207 

 

1.5787 

 

var 𝑎11 
 

 
0.0095 

 
0.0239 

 

 

𝑏11 
 

0.1017 

 

0.1055 

 

var 𝑏11 
 

 
0.0056 

 
0.0033 

 

It is evident from the data in this table that the 

correlated assumptions have substantially better 

estimates of the standard deviation parameter than 

independent assumptions, in addition to having less error 

variance. This comparison is made for correlation 

coefficients in Table 7. the results reveal that we will 

have significantly better estimates in the correlated 

condition than in the independent condition considering 

the number of random variables used, even while the 

error variance in the independent mode decreases as the 

number of random variables increases, in another 

simulation, we will investigate the precision of 

estimating the channel's parameters using a few 

commonly used copulas. 

      As was previously indicated, in addition to the 

Gaussian type, we also employ 𝑡-copula, Clayton, and 

Gumbel types, each of which has specific properties and 

constraints.  

       The outcome of the simultaneous estimation of 𝑆 

and 𝜎 parameters for the same starting guess 𝑆0 and 𝜎0  

for different copulas in the first receiver antenna 𝑅1 is 

shown in Table 8. It is evident from the results in this 

table that while we have accurate estimates of these 

parameters in both the Gaussian and 𝑡-copula types, the 

Gumble type's error variance in estimating the 𝑆 
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parameters is very low and precise due to the number of 

random variables. 

      A similar procedure for the parameters of the 

correlation coefficient is visible in Table 9. The 

Gaussian type of copula has a better simultaneous 

estimation of the correlation coefficients than the other 

copulas in this table, but its estimation error is also 

higher. 

 

Table 8. Estimate Simultaneous 𝑆 and 𝜎 in 𝑅1 with 

different Copulas. 
 

𝑆 = 2 

σ = 0.7 
 

[𝑆0, 𝜎0]  
=  

[2,2] 

 

 

100 random variables 

 
 

�̂� 

 

 

var �̂� 

 

 

�̂� 
 

var �̂� 

 

 
Gaussian 

 

 
2.0019 

 

 
0.0028 

 
0.6980 

 

 
0.0031 

 

𝑡-Copula 

 

 

1.9991 

 

 

0.0032 
 

0.6926 

 

 

0.0042 

 

Clayton 

 

 

1.9506 

 

 

0.0043 
 

0.7442 

 

 

0.0081 

 

Gumbel 

 

 

2.0395 

 

 

9.56× 10−4 
 

0.6861 

 

 

0.0042 

 

Table 9. Estimate Simultaneous 𝑎11 and 𝑏11 in 𝑅1 with 

different Copula. 
 

𝑎11= 0.96 

b11= 0.56 
 

[𝐴0, 𝐵0]  
=  

[2,1] 

 

 

100 random variables 

 
 

𝑎11 
 

var  𝑎11 
 

𝑏11 
 

var 𝑏11 

 

 
Gaussian 

 

 
0.9721 

 

 
0.0782 

 
0.5436 

 

 
0.0940 

 

𝑡-Copula 

 

 

1.0656 

 

 

0.0702 
 

0.4981 

 

 

0.0760 

 

Clayton 

 

 

1.1461 

 

 

0.0633 
 

0.3443 

 

 

0.0534 

 

Gumbel 

 

 

0.9541 

 

 

0.0653 
 

0.6322 

 

 

0.0491 

 

     The Millimeter-Wave MIMO channel parameter 

estimations with multiple modes were investigated in 

this section. The proposed model will have significantly 

better estimates of this parameter.  

     The error variance of the estimation of different 

copulas is shown in the following figures to understand 

the accuracy better.  

      Fig. 7 shows the accuracy of the mean parameter 

estimation error for the different numbers of samples for 

random variables N. As it is clear, the Gaussian copula 

has the best performance for parameter estimation. After 

that, Clayton, t-copula, and Gumble, are the other 

copulas that perform better in estimation accuracy and 

error variance. 

 

 
Fig. 7. Error variance of 𝑆 estimation using four types 

of copulas for 𝑆 = 2 and 𝜎 = 0.7. 

 

 
Fig. 8. Error variance of 𝜎 estimation using four types 

of copulas for 𝑆 = 2 and 𝜎 = 0.7. 

 

      Fig. 8 shows the error variance of the estimated 

standard deviation 𝜎 parameter for various random 

variables, demonstrating that the Gaussian copula fared 

better in this field.  

      Increases in the standard deviation parameter limit 

might produce erroneous results and decrease estimation 

accuracy. Fig. 9 shows the error variance of mean 

parameter 𝑆 estimation when 𝑆 is constant and equals 

two and 𝜎 changes in a specific interval. 

       Fig. 10 also shows the error variance of 𝜎 by 

keeping the 𝜎 fixed and changing the mean parameter 𝑆 

within a specific interval. As it is clear from this figure, 
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the estimation error has increased with the increase in 

variance here.  

       According to the figures and tables, the Gaussian 

type copula performs better in estimating the parameters 

of the desired channel for the Rician type of channel 

considered in this paper, as is concluded from the 

Gaussian distribution. 
 

 
Fig. 9. Error variance of 𝑆 estimation using four types 

of copulas with 𝑆 = 2 and different values of 𝜎. 

 

 
Fig. 10. Error variance 𝜎 of estimation using four types 

of copulas with 𝜎 = 1 and different values of 𝑆 

 

5.  CONCLUSION 

      This paper proposes a new method for estimating 

Millimeter-Wave MIMO channel parameters and 

correlation coefficients. This method uses copula theory 

to calculate the PDF of the received signal. When there 

is a correlation between signals, the copula model makes 

it simpler to calculate the PDF. Its significance will 

become apparent once we have a more precise density 

function from this model. Additionally, we compared 

the estimation accuracy of a few copula models. As the 

results show, given the reasonable assumption of 

correlation in the MIMO system, we will have better 

estimations of the channel parameters than the 

uncorrelated or independent condition. However, no 

model has been examined for this correlation, and no 

relationship exists. 

      As a result of the parameter estimate of channels 

using copula, a new model for detecting a MIMO system 

with Rician fading is created. If there is a correlation, 

then this model can be used to estimate the parameters 

of other channel types more accurately. Its findings may 

allow for a more precise calculation of the capacity of 

these channels. The copula selection could be 

reconsidered to gain a better and more precise estimation 

of the channel's numerous features and attain the best 

results. 
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