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ABSTRACT: 

In this work, we study the generation of ultrashort femtosecond laser pulses in photonic crystal fibers through the 

widely used symmetric split-step Fourier method (S-SSFM). The results are compared with the method of fourth-order 

Runge-Kutta method (RK4) as the most recognized and powerful method in the analysis of the evolution of ultrashort 

femtosecond laser pulses. The results show that although S-SSFM is a widely used method, its accuracy decreases for 

the selected relatively large step sizes of ∆𝑧 in comparison with RK4. In contrast, the accuracy of the mentioned 

methods becomes closer to each other by selecting relatively small step sizes of ∆𝑧. 
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1.  INTRODUCTION 

Theoretical and experimental investigations on the 

propagation process of femtosecond ultrashort laser 

pulses through photonic crystal fibers (PCFs) have 

been the target of intensive research groups in recent 

years [1-5]. As previously stated in Ref [6] and [7], 

because of the special properties of the above-

mentioned fibers, they are special candidates for the 

generation of highly qualified ultrashort laser pulses 

which can be extensively used in several aspects of 

industries such as military, telecommunications, 

medical health systems and several applications such as 

optical sensors, optical coherent tomography (OCT), 

WDM, lasers generation and so on [5],[ 6-9]. 

Because of the importance of these kinds of optical 

pulses, the accurate analysis of the evolution of the 

propagated pulses along the relevant optical fibers 

seems to be necessary. The evolution of optical pulses 

along the waveguides can be presented by simulating 

the nonlinear Schrödinger equation (NLSE) which is a 

reduction of nonlinear coupled-mode equations 

(NLCME) and is derived by solving Maxwell’s 

equations [7-10]. For solving such equations, numerical 

techniques must be added to the accounts [6-8]. Several 

methods such as the finite element method (FEM), 

inverse scattering method (ISM), second and fourth-

order Runge-Kutta method (RK2,4), split-step Fourier 

method (SSFM), and so on [4-8] have been 

investigated in many kinds of researches for simulating 

the Schrödinger equations so far. For instance, Chi et 

al. investigated the accuracies of both normalized and 

general SSFM in a conventional optical fiber in 2002 

[10]. Raja et al. reported in 2008 the investigation 

results on soliton propagation in conventional PCFs by 

using SSFM [11]. Moreover, a comprehensive study 

was done by Long et al. in 2008 on numerical solutions 

for solving NLSE including RK4 and SSFM [12]. Also, 

recently, Safaei et al. presented a novel fast optimized 

SSFM for solving NLSE by implementing some 

changes in the relevant algorithm [13]. Furthermore, in 

2021, Bourdine et al. published a novel algorithm for 

solving a system of coupled nonlinear Schrödinger 

equations [14]. 

As a complementary example, Jiang et al. proposed 

a novel method for solving NLSE which was faster 

than SSFM [15].  

Among all of the above-mentioned examples, we 

can clearly see that SSFM is the basis. It means that 

most of the mentioned examples have been done based 

on the SSFM initial algorithm or in comparison with it. 
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Totally, SSFM is known as a widely used and common 

technique to integrate several types of nonlinear partial 

differential equations [3], [4], [12]. Although SSFM is 

now a widely used technique, however, its accuracy 

must be analyzed and estimated in comparison with the 

other recognized and proven methods such as RK4 as 

the most popular and accurate technique, especially 

when the ultrashort femtosecond laser pulse generation 

is under consideration. So to speak, in order to achieve 

reliable results by using SSFM, it is necessary to 

determine the convergence range of SSFM to a very 

accurate method such as RK4. This is exactly the 

missing point between the published results so far. In 

the following study, to define the range of the 

deviations relevant to the different mathematical 

calculations of the wave equations, we resolve the 

NLSE by using the two methods of SSFM and RK4, 

define the convergence region exactly, and also 

compare the results in the term of the propagation of 

femtosecond optical pulses along an optimized 

designed highly nonlinear photonic crystal fiber (HNL-

PCF). 

 

2.  GENERALIZED NONLINEAR 

SCHRODINGER EQUATION (GNLSE) 

As stated before, the general equations forms that 

can define all the electromagnetic phenomena are 

Maxwell’s equations whose integral and differential 

formats can be used from [3-6]. After passing long 

complicated mathematical procedures [3, 4-8], the 

generalized nonlinear form of the wave equation which 

is named GNLSE can be extracted as: 

 

∂E(𝑧,𝑡)

∂𝑧
=  −

𝛼

2
 E − [∑

i𝑚−1

𝑚!

𝑁

𝑚=2
β𝑚

𝜕𝑚

𝜕𝑇𝑚 ] E 

+i𝛾 [ |E2|E + i
1

𝜔0

𝜕

𝜕𝑇
 (|E2|E) − T𝑅  E

𝜕|E2|

𝜕𝑇
 ]             (1) 

 

Where, E is the envelope of the pulse, 𝛽 is the 

propagation constant, z presents the length of the fiber, 

𝛼  is the loss of the fiber, and T𝑅 is the Raman 

coefficient. It is noteworthy that, the last parameter, T𝑅, 

can be calculated as: 

 

T𝑅 = 𝑓R  ∫ 𝑡ℎR
∞

0
 (𝑡)𝑑𝑡                (2) 

 

Where, 𝑓R  is the Raman response Function and can 

be calculated by using the related information in Ref. 

[6] for different materials.  

 

3.  NUMERICAL SOLUTIONS FOR SOLVING 

GNLSE 

3.1.  Generalized Split-Step Fourier Method (S-

SSFM) 

In simulating nonlinear Schrödinger systems, the 

SSF method is strongly used rather than the other 

existing methods because is often a more user-friendly 

and time-saving method [2, 12-16]. Considering one of 

the easiest NLS-type systems, the equation contains the 

terms of higher order dispersions (HODs), loss, and 

nonlinearity (See Eq. (1)). To solve Eq. (1) by using 

SSFM, we re-wrote the above-mentioned equation in 

the following applicable format [3], [7], [12], 

 
𝜕A(𝑧,𝑡)

𝜕𝑧
= [L + N]A(𝑧, 𝑡)                                        (3) 

 

      Where, N and L are the nonlinear and linear parts 

of Eq. (1), respectively, and can be described as 

follows: 

L =  −
𝛼

2
 E − [∑

i𝑚−1

𝑚!

𝑁

𝑚=2

β𝑚

𝜕𝑚

𝜕𝑇𝑚
 ]            

N =  i𝛾 [ |E2|E + i
1

𝜔0

𝜕

𝜕𝑇
 (|E2|E) − T𝑅  E
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𝜕𝑇
 ]         (4) 

 

The following form of the solution has been 

proposed extensively as the final solution of SSFM [3, 

12]. So, by applying Eq. (4) in the following solution 

format and by using a small space interval of ∆𝑧, the 

evolution of the propagated pulses along the z-direction 

of the fibers can be presented in the both time and 

frequency domain [12]. 

 

E (z+∆𝑧, T) = exp [
∆𝑧

2
 L] exp [

∆𝑧

2
 (𝑁(𝑧) + 𝑁(𝑧 +

∆𝑧))]exp (
∆𝑧

2
 L) E (z,T)                                               (5) 

 

It is noteworthy that the aforementioned solution is 

called a symmetrized SSFM and has an accuracy of 

second-order in comparison with the first-order 

common solution of SSFM [3-7]. 

 

3.2.  Forth Order Runge-Kutta Method (RK4) 

Eq. (1) can be computed by using the Runge-Kutta 

algorithm. From the theory [17-21], in this method, the 

time discretization and computations of time partial 

derivatives are similar to the SSFM method [12, 21-

24], but the spatial derivatives must be calculated by 

the Runge-Kutta algorithm. In this stage, we can use 

both second and fourth-order Runge-Kutta methods, 

however, for achieving the most accurate result, we 

selected to continue with RK4. Denoting, 

 

V = exp[(
𝑖𝜔2

2
− 𝑖𝜔3

𝛽3

6|𝛽2|𝑇0

)𝑧]F[E] 

                               (6) 

We can re-write Eq. (1) in the following form: 
𝜕V

𝜕𝑧
= f(𝑧, 𝐸)                                                                 (7) 

Where, 𝑓(𝑧, 𝐸) can be calculated from [8,9]. Using 

the fourth-order Runge-Kutta algorithm for Eq. (7), the 
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function of V can be calculated in the distance of z+Δz 

as: 

 

V(𝑧 + ∆𝑧) = 𝑉(𝑧) + 0.16666 [K1 + 2(K2 + K3) +
+K4]   

                                                                                    (8) 

Where, the variables of 𝐾i (i=1-4) can be computed 

theoretically as follows: 

 

-------Second-order RK (RK2) ------- 

 

𝐾1 = Δ𝑧. f(𝑧, 𝐸(𝑧, 𝑇))                                               (9a) 

𝐾2 = Δ𝑧. F (𝑧 +
Δ𝑧

2
, 𝐸(𝑧, 𝑇) + 0.5𝐾1) 

 

-------fourth-order RK (RK4) ------- 

 

𝐾3 = Δ𝑧. F (𝑧 +
Δ𝑧

2
, 𝑈(𝑧, 𝑇) + 0.5𝐾2)           (9b)

       

𝐾4 = Δ𝑧. F(𝑧 + Δ𝑧, 𝐸(𝑧, 𝑇) + 𝐾3) 

 

By referring to and applying the vital mentioned 

variables and the relevant coefficients and also 

following the stated process, the final solution can be 

presented in the below form along the z-direction of the 

fiber: 

 

E (𝑧 + ∆𝑧) = 

F−1 [V(𝑧 + ∆𝑧) exp [(
−𝑖𝜔2

2
+ 𝑖𝜔3 𝛽3

6|𝛽2|𝑇0
) (𝑧 + ∆𝑧))]           

(10) 

 

It is noteworthy that, Eq. (1) and consequently Eq. 

(10) can be also changed to their normalized forms, by 

using the relevant variables as follows [2, 3, 12-18]: 

 

𝜁 =
𝑧

𝐿D
 ,  𝐿𝑁𝐿 =

1

𝛾𝑃0
 ,    𝑁2=

𝐿D

𝐿N
 ,    𝑆 =

1

𝜔0𝑇0
 ,             (11) 

 𝑇R =
𝜏R

𝑇0
 , U (z, 𝜏) =

1

√𝑃0
𝐴(𝑧, 𝜏), 𝜏 =

𝑇

𝑇0
,𝐿𝐷 =

𝑇0
2

𝛽2
     

 

      Where, 𝜁 =
𝑧

𝐿D
 is the normalized distance, 𝑧 

displays the length of the fiber, dispersion length is 

shown by 𝐿D. 𝐿𝑁𝐿  depicts the nonlinear length of the 

fiber, N represents the soliton order which corresponds 

to the input power. S shows the parameter of the self-

steepening, 𝛽2 is the second-order dispersion (GVD), 

||U (𝑧, 𝜏)||
2
 is the normalized intensity, 𝑇0  is the initial 

pulse width, and 𝜏R is the normalized Raman parameter 

to  𝑇0. The value of 𝜏R is estimated to be 3fs for silica 

material [2], [3], [8-18]. As stated before, the 

normalized forms of Eq. (1) and also the normalized 

solutions forms of Eq.(5) and Eq.(10) can be derived as 

bellow, respectively [12, 18-24], 

 

---- Normalized GNLSE model---- 

 
𝜕𝑈

𝜕𝜁
= −

𝑖

2
𝑠𝑔𝑛(𝛽2)

𝜕2𝑈

𝜕𝜏2 +
𝛽3

6|𝛽2|𝑇0

𝜕3𝑈

𝜕𝜏3 + ⋯ + 𝑖𝑁2(|𝑈2|𝑈 +. 

 

. . +𝑖𝑆
𝜕

𝜕𝜏
(|𝑈2|𝑈) −

𝜏R

𝑇0
𝑈

𝜕|𝑈2|

𝜕𝜏
 )                               (12a) 

 

-----Normalized Solution Format for SSFM---- 

 

U (𝜁 + ∆𝜁,𝜏) = exp[
∆𝜁

2
 L] exp [

∆𝜁

2
 (𝑁(𝜁) +

𝑁(𝜁 + ∆𝜁))]exp (
∆𝜁

2
 L) U (𝜁, 𝜏)                              (12b) 

  

 

----Normalized Solution Format for RK4M----            

                       

 U (𝜁 + ∆𝜁) = 

F−1[V(𝜁 + ∆𝜁) exp [(
−𝑖𝜔2

2
+ 𝑖𝜔3 𝛽3

6|𝛽2|𝑇0
) (𝜁 + ∆𝜁))] 

(12c) 
 

4.  RESULTS AND DISCUSSIONS 

To deeply investigate the evolution of ultrashort 

femtosecond laser optical pulses in both SSFM and 

RK4M, first, we considered the parameters of a highly 

nonlinear PCF as listed in Table 1.  

 
Table 1. Parameters of the PCF [16]. 

Parameters Values 

𝛽2(
𝑝𝑠2

𝑘𝑚
⁄ ) 

-1500 

𝛽3(
𝑝𝑠3

𝑘𝑚
⁄ ) 

0 

𝑃0(𝑤) 396 

N(soliton-order) 6.5 

𝑇0(fs) 

𝜆(𝑛𝑚) 

100 

2500 

 

Then, we divided the simulation process based on 

the following steps, 

A. Performing the relevant simulations based on 

a fixed step size of 100 (∆𝑧 =100) and the 

input optical pulse of 100fs using both 

methods. 

B. Performing the relevant simulations based on 

a fixed step size of 10000 (∆𝑧 =10000) for S-

SSFM and (∆𝑧 =10000) for RK4M. Both for 

the input pumped pulses width of 100fs. 

First of all, in Fig. 1(a), we can see the schematic of 

the input pulse of 𝑇0 =100 fs as a function of 

normalized time (𝜏 =
𝑇

𝑇0
). In the following, we can see 

that by applying a fixed step size of 100 (∆𝑧 =100)  in 

the simulation process and by using the relevant 

parameters of the fiber through Table 1, the superficial 
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deviations of the generated laser pulses in both methods 

become more critical (Fig. 1b and 1c). As we can 

observe, by using RK4M, and using the soliton order of 

6.5 (corresponds to the peak power of 396 W), a laser 

pulse of 8 fs can be generated at the normalized 

distance of 𝜁 =
𝑧

𝐿D
 = 0.12. While, by using the same 

parameters in the S- SSFM, a 13fs laser pulse can be 

generated at the same normalized distance of 0.12.  

The mentioned differences arise from the higher 

effects of nonlinear terms along the simulation process 

and the applied approximations during the derivation of 

NLSE from Maxwell equations. We repeated the 

simulation for two fixed step sizes of 10000 for S-

SSFM and 10000 for RK4M, respectively. In both 

cases, the simulation parameters were considered to be 

N=6.5 (corresponds to the peak power of 396 W) and 

an input pumped pulse width of 100 fs. The results are 

shown in Fig. 2. As we can see, the accuracies of the 

propagated laser pulses become closer to each other. 

Actually, two laser pulses of 8 fs and 8.5 fs are 

generated at the normalized distance of 0.12 using 

RK4M and SSFM, respectively.  

The convergence of the two methods is because of 

the fact that by the selection of more steps with small 

sizes during the process of simulations, high 

oversampling rates of signal occur. Particularly, 

Symmetric SSFM needs high rates of oversampling and 

small step sizes (∆𝑧) to be converged to the real results 

of the GNLSE. On the other hand, by comparing Fig. 

2a with Fig. 1c, it is clear that SSFM, itself depicts two 

different results when two step sizes of 100 and 10000 

are considered in the account. These discrepancies 

show the unreliability of SSFM when using step sizes 

lower than 10000. Therefore, although the 

implementation of more steps with small sizes is more 

time-consuming, however, for using SSFM, it seems to 

be a necessary action to achieve exact and reliable 

results. In contrast, we can also recognize that the 

RK4M is more accurate than S-SSFM and more 

effective even in the case of the selection of lower steps 

with bigger sizes. Because, based on the simulation 

results, its accuracy does not show any sensible 

changes to the selection of lower steps with bigger 

sizes. 

 

 

 

 

 

 

 
(a) 

 

 

 
(b) 

 

 
(c) 

 
Fig. 1. Schematics of (a) 100 fs optical input pulse with 

the peak power of 396 W, (b) generated laser pulse of 8 fs 

at the normalized distance of 0.12 using RK4 method and 

step sizes of 100, and (c) generated laser pulse of 13 fs at 

the normalized distance of 0.12 using S-SSF method and 

step sizes of 100. 
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                                    (a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 
Fig. 2. Schematics of (a) a generated 8.5 fs optical laser 

pulse using S-SSFM and step-sizes of 10000 and (b) a 

generated 8 fs optical laser pulse using RK4 and step-sizes 

of 10000; both at the normalized distance of 0.12. 

 
Fig. 3. Evolution of the propagated optical pulses along 

the fiber based on RK4M. 

 

The form of the response time characteristic 

obtained due to modeling, according to the proposed 

algorithm of RK4 has been shown in Fig. 3. This figure 

shows the evolution of the propagated pulses along the 

fiber in a 3-D schematic. The relevant information of 

the mentioned figure has been summarized in the form 

of Table 2. 

 
Table 2. Optical characteristics of Fig. 3. 

Parameters Values 

Input power (W) 

Input Normalized Intensity 

Soliton Order 

396 

1 

6.5 

Input Pulse Width (fs)  100 

Output Compressed Pulse (fs) 

Output Peak Power (kW) 

Output normalized Intensity                           

8 

≈168 

10 

Output normalized Distance              

Output Distance (mm) 

Number of Plots 

Normalized Time Duration (𝜏) 

0.12 

0.8 

10 

-6< (𝜏 =
𝑇

𝑇0
) <6 

 

The above-obtained results can be compared with 

the results obtained from SSFM. For this reason, NLSE 

with selected step sizes of 10000 was resolved by using 

SSFM and new software with the commercial name of 

NLSE.S which solves the GNLSE (Fig. 4). As 

expected, the results were in very good agreement with 

the mentioned results in Table 2.  

From another point of view, we listed a comparison 

between the wasted times in applying both methods in 

the simulations in the form of Tab.3. We can see that 

by the selection of step size of 1000 for SSFM and 100 

for RK4M, the needed time for completing the 

simulations in RK4M is less than the S-SSFM. The 

computational intricacy of the S-SSFM mostly arises 

from a large number of times of conversions between 

time and frequency domains using the FFT (fast 

Fourier transform) and its inverse (𝐹−1), and also the 

exponential calculations in the nonlinear operator. 

 

Table 3. Needed time for completing the simulations. 
Methods Selected Step 

Sizes (∆𝑧) 

Needed Time (s) 

S-SSFM 10000 37.5 

S-SSFM 100 7.2 

RK4M 100 5.5 

RK4M 10000 32.3 

SSFM-NLSE 

software 

10000 38.6 
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Fig. 4. 8.5 fs laser pulse generation process using NLSE 

simulator software along the 0.12 length of the fiber and 

using 10000 step sizes in the simulation algorithm. 

 

5.  CONCLUSIONS 

In this study, a comprehensive investigation of the 

methods of normalized symmetric split-step Fourier 

method and fourth-order Runge-Kutta method (RK4M) 

in the generation of ultrashort femtosecond optical 

pulses has been done. We showed that applying smaller 

step sizes was needed in the case of using the 

normalized split-step Fourier method to achieve 

accurate results. Applying smaller step sizes in the 

process of the computations increases the time-

consuming factor. So, the results of using S-SSFM with 

selected larger step sizes cannot be reliable especially 

when the femtosecond optical pulse propagation was 

under consideration. On the other side, RK4M shows 

reliable results in both cases of selected larger and 

smaller step sizes in comparison with S-SSFM. The 

results showed that the needed time for completing 

RK4M in spite of involving smaller step sizes is less 

than using S-SSFM in a similar condition. Totally, 

since the SSFM is now a widely used method for 

solving the NLSE, the relevant steps must be chosen 

more than (∆𝑧 ≫ 10000)  to achieve more accurate 

and referable results. 
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