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ABSTRACT: 

The hybrid electric train which operates without overhead wires or traditional power sources relies on hydrogen fuel 

cells and batteries for power. These fuel cell-based hybrid electric trains (FCHETs) are more efficient than those 

powered by diesel or electricity because they do not produce any tailpipe emissions making them an eco-friendly mode 

of transport. The target of this paper is to propose low-budget FCHETs that prioritize energy efficiency to reduce 

operating costs and minimize their impact on the environment. To this end, an energy management strategy [EMS] has 

been developed that optimizes the distribution of energy to reduce the amount of hydrogen required to power the train. 

The EMS achieves this by balancing battery charging and discharging. To enhance the performance of the EMS, 

proposes to use of a deep reinforcement learning (DRL) algorithm specifically the deep deterministic policy gradient 

(DDPG) combined with transfer learning (TL) which can improve the system's efficiency when driving cycles are 

changed. DRL-based strategies are commonly used in energy management and they suffer from unstable convergence, 

slow learning speed, and insufficient constraint capability. To address these limitations, an action masking technique to 

stop the DDPG-based approach from producing incorrect actions that go against the system's physical limits and prevent 

them from being generated is proposed.  The DDPG+TL agent consumes up to 3.9% less energy than conventional rule-

based EMS while maintaining the battery's charge level within a predetermined range. The results show that DDPG+TL 

can sustain battery charge at minimal hydrogen consumption with minimal training time for the agent. 

 

KEYWORDS: Fuel Cell, State of Charge, Energy Management Strategy, Deep Reinforcement Learning, Deep 

Deterministic Policy Gradient, Transfer Learning.  
 

1. INTRODUCTION 
Exhaust emissions and their consequences on 

climate change and health need rethinking transport 

modalities. The increasing demand for energy-efficient 

and environmentally friendly transportation has led to the 

development of innovative solutions such as fuel-cell 

hybrid electric trains. Several countries including Japan, 

Germany, and the United States have already started 

using fuel cell technology to power trains. In India, the 

Ministry of Railways has also shown interest in this 

technology and several pilot projects are currently 

underway as the Indian Railways is one of the largest 

railway systems in the world and is responsible for a 

significant portion of the country's transportation 

emissions. Fuel cell technology has been around for 

several decades and is a well-established technology for 

generating electricity. The technology works by 

converting hydrogen and oxygen into electricity and 

water with only water and heat being emitted as 

byproducts. FCHETs are hybrid electric trains that use 

both a fuel cell and a battery to power the train. The 

battery is used to store excess energy and regenerative 

energy and provide additional power during acceleration 

and other high-power demand scenarios.   

The EMS is responsible for the equitable distribution 

of power from more than one energy source. In this 

regard, upcoming technologies like fuel cells and 

auxiliary energy source batteries give the ability to create 

and achieve railway transportation scenarios that are less 

carbon-intensive and friendlier to the environment. 

Therefore, the EMS should refine, design, and control to 

optimize performance across a variety of use cases. For 

hybrid electric vehicles and trains, several researchers 

have examined various optimization targets for EMS. 

Some research takes a more narrow approach to find a 

solution by focusing just on reducing fuel use. However, 
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fuel cells now have a high production cost and a limited 

lifespan. Consequently, numerous researchers have 

considered power system longevity to be an additional 

optimization target. Given that there are often trade-offs 

to be made between competing optimization goals, it can 

be difficult to choose which path to take. 

 

1.1.  Rules-based EMS and Optimization-based 

EMS  

Various EMS has been developed in the field of 

automotive like fuzzy logic control gives improved 

performance as compared to logic threshold strategy but 

it is observed that the quality of fuzzy control is affected 

by various control rules and also developer requires 

skillful knowledge regarding problem, issue of rules 

comprehensiveness and their persistency [1] . The energy 

management [EM] algorithm for an FC-battery system 

uses linear control techniques but the proposed scheme 

does not handle the load transients effectively, during load 

transients it disturbs the DC link. The performance of 

linear controllers strongly depends on system parameters 

and remains optimal around a specific operation point [2]. 

Genetic Algorithm (GA) has been applied to FC hybrid 

systems for electric ships. Depending on collected data 

from the electric ship driveline model. GA has some 

drawbacks such as the time for convergence is high there 

is no guarantee of finding global maxima[3]. The Power 

management strategy for FC-battery-SC has been 

investigated through a dynamic programming technique 

that slows down the system performance and needs more 

memory [4]. The adaptive control strategy is 

demonstrated for an FC-battery hybrid system consisting 

of a single unidirectional boost converter therefore battery 

operation is not controlled [5]. According to research, the 

effectiveness of a linear controller is influenced by the 

system parameter. To address this limitation many 

researchers have explored the application of nonlinear 

theory in hybrid systems. One proposed solution is an 

energy management system that uses an extreme seeking 

process, which has been tested on a test bench consisting 

of a fuel cell and a battery. The system's performance can 

be compared with semi-empirical models using an 

adaptive recursive least square algorithm with a three-step 

process [6]. The hybrid model lacks control over battery 

charging and discharging. To address this issue PBC-IDA 

approach has been proposed for the interconnection of the 

ultracapacitor system and the fuel cell in [7,8]. In this 

study, the outer side loop has a closed-loop port 

Hamiltonian structure. Sliding mode control and 

passivity-based control are used to address the DC link 

voltage control problem. The authors proposed a control 

strategy that uses sliding mode control principles and 

linear controllers based on the passivity approach [9]. 

Additionally, the authors proposed a differential flatness-

based controller, which was experimentally validated. 

The proposed controller works without algorithm 

computations by projecting the desired trajectory of 

electrostatic energy stored in the capacitors and 

considering it as an output component [10]. EMS based 

on a frequency separation was proposed and validated 

through a predefined driving cycle and in this research 

proposes the fixed separation of frequency for different 

driving conditions is presented, Where a sliding mode 

controller used to regulate the state of charge of 

ultracapacitor with the help of fuel cell [11]. Backstepping 

sliding mode control was implemented for power sharing 

of fuel cells and ultracapacitor hybrid power systems for 

the EV's applications. They simulated and verified first 

the backstepping algorithm and then implemented the 

same using National Instrument hardware[12]. More 

aspects are yet to be studied for hybrid energy structure in 

the areas of absolute stability, robustness, and efficiency.  

 

1.2.   Learning-based EMS 

       Several approaches have been proposed to improve 

the EM of hybrid electric vehicles [HEV], including the 

use of past data for online learning [13]. To enhance HEV 

EM, researchers suggest leveraging instantaneous data 

obtained from intelligent infrastructures, which can be 

combined with cloud computing. However, these energy 

management systems require complex control models 

and expert knowledge in addition to learning from 

previous or expected data [14]. Reinforcement learning-

based techniques have also been applied to HEV EM, but 

they require addressing challenges related to sparse, 

noisy and delayed scalar reward signals and highly 

correlated states [15]. Learning-based energy 

management systems offer promising results as they can 

adapt to diverse driving conditions but with certain 

drawbacks. Recent studies have proposed online learning 

control techniques such as neural dynamic programming 

[16] and fuzzy Q-learning [17] which do not depend on 

past driving conditions and can self-tune algorithm 

settings. Deep reinforcement learning has been used to 

solve complicated control issues and handle vast state 

spaces as demonstrated by its successful application in 

games such as Atari and Go [18]. Several studies have 

proposed DRL-based EM strategies for train traction 

systems [18], energy-efficient train control systems [19], 

and high-speed train systems [20]. In these studies, a 

deep Q-network is used to learn the policy that minimizes 

fuel use while ensuring a safe and comfortable ride for 

the passengers. Another study proposed a DRL-based 

EM system for FC hybrid railway vehicles considering 

fuel cell aging [21]. In this study, a deep Q-network is 

used to learn the optimal control policy that minimizes 

energy consumption while ensuring that the fuel cell 

operates within safe limits and mitigating the effects of 

aging. 

 The research gap is the lack of research on the impact 

of uncertainties on the performance of DRL-based EMS 

for FC-based hybrid vehicles. For instance, the battery 
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capacity, fuel cell efficiency, and driving conditions may 

vary which can affect the performance of DRL-based EM 

strategy. Therefore, there is a need for further research to 

investigate the robustness of DRL-based EMS to 

uncertainties in the fuel cell-based hybrid train system. 

Also, there is a need for research on the comparison of 

the performance of DRL-based EMS with other control 

strategies. Another research gap is retraining the network 

after having the driving cycles changed is a time-

consuming and tedious process.       

This research introduces a DRL-based EMS to address 

the above-mentioned challenges. The key contributions 

of this study include:  

• Conducting a comparative analysis of DQN, DDPG, 

and DDPG with transfer learning.  

• Developing an intelligent EM strategy for an FC and 

battery train using modern DRL technology such as 

DDPG+TL approach. A new reward function is 

designed to stabilize the training process, which 

involves battery charge sustaining.  

• Proposes action masking technique used to restrict 

the set of actions that an agent can take in a particular 

state to prevent the agent from taking actions that are 

not valid or allowed in a given state 

• Creating a stochastic training environment for the 

railway that simulates real driving scenarios using 

driving data from Jind to Sonipat (Indian Railway).  

• Transferring training to a new domain. 

     This paper is structured as follows: Section 2 provides 

a comprehensive modeling of the vehicle, along with the 

hybrid power system that includes both fuel cell and 

batteries. Section 3 outlines the framework of the DRL-

based EM challenge, while Section 4 analyzes and 

discusses the results obtained from training and 

simulation. Finally, Section 5 presents concluding 

remarks. 
 

2.  MODELLING OF ENERGY SOURCES 

2.1.  FC model  

      The proposed  Dick-larminie electric circuit model is 

used to model concentration, activation, Ohmic 

polarization, and Nernst voltage of FC. An electrical 

equivalent model [22] of FC is introduced in Fig. 1. 

 

 
Fig. 1. Fuel-cell model. 

 

                                         (1) 

 

      The equation describes the various components and 

parameters involved in the output voltage of a fuel cell. 

The activation and concentration losses associated with 

the double-layer capacitance are represented by Rfc1, 

while Rfc2 is associated with the movement of hydrogen 

and electrons. Cfc is the capacitor linked to the 

dissipation of electronic charges. Efc represents OC 

voltage, while Vfc represents the voltage supplied by the 

fuel cell to the motor and auxiliaries. The output voltage 

of the fuel cell can be expressed using the given 

equation. 

 

                               (2) 

 

     Where, ncell no of single FC, Enst nernst 

electromotive force, Vac+Vcon=Vrf1   referred to as a vtg 

reduction due to phenomenon of activation and 

concentration polarization, Vohm=Rfc2Ifc ohmic vtg loss. 

The following is a detailed description of the design for 

each FC component. 

 

    (3) 

 

      Where, Efc is 0.9 V OC vtg per cell of FC reaction 

at normal atmospheric force, Rfc1 is 8.2316 gas 

constant, 𝑇 is 333.15𝐾 is the FC temp., Cfc 87576 is 

faraday constant, 𝛼 = 1 x’fer coefficient at atmospheric 

pressure, P is the pressure exerted by the reactants, ifc is 

the c/n density.  iloss = 2.6 𝑚𝐴/𝑐𝑚2 is the c\n loss, i0 is 

0.0043𝑚𝐴/𝑐𝑚2 is the exchange c\n density. ilim is 1.7 

𝐴/𝑐𝑚2 is the limiting c\n density. Rfc2 is the FC 

resistance. 

                          (4) 

      Where,  - consumption rate of hydrogen, 

- Hydrogen's molar weight, Pfc- o/p power of  the FC.  

As shown in Fig. 4 unidirectional DC-DC boost 

converter is responsible for energy transfer from the 

fuel cell to the inverter also it’s responsible for to adjust 
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boost converter voltage level as per the common dc link 

voltage. The DC-DC converter model for FC is 

 
 

                                      (5) 

 

     Where, is o/p power of the FC.  Assume this 

power is requested by control strategy, ndc DC-DC 

converter efficiency for FC, Paux auxiliary system 

assumes as a constant c\n  load Iaux= 2 amp. The FC 

parameter is ncell = 200, FC effective electrode area is 

Afc=324cm2, the force of anode hydrogen is 4 kPa, and 

oxygen used at the anode comes from the atmosphere. 

Fuel cells like many other forms of energy sources, have 

varying degrees of efficiency depending on the load. 

Since PEM fuel cells operate most inefficiently in low-

power conditions, they are rarely used in such situations. 

After a certain point, where power consumption has 

reached its peak efficiency begins to drop. A diagram 

depicting fuel cell performance in relation to power 

demand is presented in Fig. 2. 

 
Fig. 2. Fuel cell efficiency and power 

characteristics. 

 

2.2.  Battery Model  

 To obtain accurate state-of-charge estimates, it is 

crucial to have precise battery models. There are three 

types of battery models - mathematical, 

electrochemical, and electrical equivalent circuit 

models. While mathematical models are relatively easy 

to calculate, modelling the external properties of the 

battery mathematically can be challenging. On the 

other hand, electrochemical models are  
highly accurate but their complex structure makes them 

unsuitable for modelling real-world operating 

conditions. In this paper 2-stage RC circuit which is 

equivalent to the battery model is considered [25]. 

 
Fig. 3. Two-stage RC equivalent circuit. 

 

                                            (6) 

                                        (7) 

                                                   (8)                

    (Q is the rated-capacity of the battery,   - coulombic  

efficiency)  By applying Kirchoff’s voltage law to the 

Fig. 3. 
 

                 (9) 

 

      Eq. (6), (7), and (8) represent linear state equations 

and because of   term in eq. (9), eq. (9) is 

nonlinear o/p eq.  The nonlinear system is linearized at 

each time step by utilizing Taylor's series expansion 

around the SOC operating point SOC0. 

 

Battery o/p power 

 

        (10) 

 

      Where, Voc - battery open circuit vtg, Ibat  - battery o/p 

current, Rbat - battery internal resistance and battery 

efficiency  is 

 

                                            

          

      (11)

 

 

     Voc and are two empirical functions of SOC and 

battery output power is expressed as 
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Where, is the o/p converter power with 

efficiency is nbdc, 

  

2.3.  The Train Performance Model 

 Consider a FCHETs driving at v on a track with 

gradient   and consider basic sources of resistant force, 

aerodynamic drag, rolling resistance, gravitational 

force, transient force.  

 

                                      (13)
                   

              (14) 

 

    Where, Fm- driving force delivered by motor, Fair - air 

resistance(1.2), Ff rolling resistance (R1= 0.0018, 

R2=0.000016), Fs- slop resistance, Fa - acceleration 

resistance, 𝜌 - air density coefficient(1.184 kg/m3), CD 

air resistance coefficient(0.26),  - windward surface 

volume of the vehicle(15.33 m2), - vehicle velocity, 

 -  vehicle mass(170551 kg) 3300 passenger have an 

average weight of 50 kg including luggage weight, G- 

gravity of the vehicle(9.8m/s2), -  vehicle slideing 

resistance coefficient (0.4), track grade 

where, k represents altitude and n 

represents distance for the drive cycle route. The 

requested power for the FCHETs 

 

                                                                  (15) 

                                                                      

     Where, Ptrain is the required power of the FCHETs 

motor, 
m - x’mission efficiency of the electric machine 

(90%) FC and battery provide the motor's power, 

according to the power balance
   

                                                                                                

                                                             (16) 
 

      Table 1 shows the specification of the modified 

DEMU train (modified in the term of existing DEMU 

train without conventional fuel weight but assuming 

hydrogen tank, fuel cell, and battery pack weight) and 

The requirements for the design of a hybrid power train 

system that operates between and Jind and Sonipat 

(India) using hydrogen fuel cells. Drive Details: 1) The 

overall distance traveled by the Sonepat-Jind section of 

Northern Railways is 89 kilometers. This stretch features 

12 stations. Approx. 300 m above sea level 2) Indicative 

power train component rating based on genuine drive 

cycle between Sonepat and Jind, including operational 

margins for driving cycle changes that are part of normal 

train operation: 

a. 800 KW fuel cell-based power stacks, especially in 

50-kW increments (KW). 

 b. Secondary energy source, such as a 400 KW, 330–

380 KWH battery bank. The drive cycle of the Modified 

DEMU (Diesel Electric Multiple Unit) that operates 

between Jind to Sonipat based on some assumption is 

shown in the result section.         

 

Table 1. Modified DEMU train specification. 

Parameter Range 

Train Length 195 m (12 coach) 

Track gauge 1676 mm 

Train Height 1434.7 mm 

Train Weight 170551 kg 

Seating capacity 790 seating, 2510 standing 

Maximum 

Acceleration 

0-60 km/h -0.9 m/s^2 

60-120 km/h – 0.08 m/s2 

Maximum 

Deceleration 

120 – 60 km/h – 0.9 m/s2 

60 – 0 km/h – 1.0 m/s^s 

Maximum Speed 120 km/h 

Power output 1200 KW 

 

     Fig. 4 shows the configuration of FCHETs and in this 

configuration main power source is the fuel cell and an 

assisting power source battery is used. By implementing 

a unidirectional power converter, the fuel-cell was linked 

to the common DC link whereas a bidirectional power 

converter was utilized to connect the battery to the same 

common DC link.  
 

 
Fig. 4. FC-battery configuration for train. 

 

3.  DRL ALGORITHMS BASED 

TRANSFERABLE EMS FOR FCHET’S 

3.1.  Implementation of DRL-based Energy 

Management Strategy 

      Reinforcement learning [RL] maps states to actions 

to maximize future cumulative rewards. as shown in 

Equation 17. The hybrid drivetrain is the controllable 

object in FC-HETs. Powertrain condition, driving 

conditions, driver needs, etc., might all stand in for the 

state (s) at time t. At time t action (a) is the energy 

distribution system. Metrics like instantaneous fuel 

consumption, SOC variations, etc. may be monitored in 

real time and used to calculate the reward r for an energy 
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distribution system. The EMS is the name of this method 

of regulation: 

   (17)    

 

     Where, pi represents optimal EM strategy, A 

represents action space, Ts represents sampling time, s0 

represents the starting state and N represents the time 

sequence length of Markov decision process problem. 

The proposed EMS which is based on reinforcement 

learning explores the train and its driving environment 

and receives feedback to learn the most efficient way to 

distribute energy. The essential components of this 

interactive learning process are discussed below.  

i) The Agent and EMS Pi - Within reinforcement 

learning, the agent makes all of the calls. Its function in 

energy management is analogous to that of a train 

controller, which regulates power flow in real-time. The 

EMS is the controller's energy management control 

software utilized to translate between status s(t) and 

action a(t). 

ii) The environment - In the context of FCHETs EM, the 

regulated system is analogous to the hybrid powertrain 

and the environment is the representation of this 

environment. As soon as the controller (agent) issues an 

action signal, the powertrain will react accordingly. This 

reaction may manifest itself in the form of immediate fuel 

usage, a shift in SOC, etc. 

iii) State space - Agent's state is a description of its 

current surroundings. Train features, track and traffic 

signal circumstances, driving demand, etc. are all 

represented by a set of state vectors s(t), s(t) belongs to s 

at t equals to 1,2....upto N.  It's important that the 

s(t) accurately reflects the condition of the train and the 

driving conditions and that it's straightforward to inspect. 

In most cases, we may use the train current velocity v, the 

percentage of battery life, notch state (6 Notch used in 

DEMU), etc. to represent the motor force, which is 

primarily influenced by the longitudinal dynamics of the 

train. The motor power demand may be represented by 

several signals such as the notch signal representing the 

(a) acceleration, the estimated driving torque or power 

requirement etc. It is possible to learn about the driving 

cycle from prior velocities, such as the speed in the 

preceding in second: v-01, v-02, upto v-k. States that 

included in the state space as   

 

 
 

iv) The action space A - A control action by an agent is 

meant here. All conceivable a(t) (action vector)  that 

define the energy distribution on the drive cycle are 

included in action space A for all actions. 

 

v) State transition 
's s→  - The current reaction of the 

controlled object following the execution of action 

triggers a transition in the environment from its present 

state to the subsequent states. Markovian features may be 

seen in this process as the state transfer. 

vi) The reward R - When a state changes a reward signal 

is sent to indicate how successful the new approach  

reward will be 

 

                        (18) 

      Here,  and  represent the fuel utilization rate and 

SOC deviation. A high beta means that a higher indicates 

a greater reward for carefully following the SOC's 

recommendations. Larger alpha shows decreasing fuel 

consumption can yield significant rewards. The primary 

goal of fine-tuning alpha and beta is to maximize fuel 

efficiency while guaranteeing that the trained strategy 

can always satisfy SOC prerequisites. After repeated 

tuning the value of beta was set to 50 and values of alpha 

was set to 150 and SOCref was 0.65 as affixed initial SOC. 

Equation 18 demonstrates that the secret to identifying 

the best course of action is learning to choose a course of 

action that has a high anticipated reward return. 

vii) Q value - As shown by Equation 19, the action-value 

function in markov decision process issues is designed to 

express the anticipated reward return over time after 

acting on action a: 

           (19) 

       Here, sT represents state, and aT represents action at 

time T, 𝛾 discount rate represents calculating the current 

value of future reward ( =0.92 to estimation efficiency 

for balance) The best strategy 𝜋∗has the largest action 

value Q*=(s,a) is  

 

  (20) 

      

     If Q*=(s,a) has been gained, the best strategy as shown 

in eq. 17 reformulated as  

 

         (21) 

 

      As per bellman equation, To resolve the optimal 

decision process described in equation 22, equations 20 

and 21 need to be broken down into a series of single-

step decisions.  
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      Reinforcement learning strategies are developed 

keeping the Bellman Equation in mind. Consider the 

value-based RL method in which the action-value 

function is modified repeatedly in combination with 

agent-environment interaction. Based on the probability 

of an actual action value as indicated in Equation 23, in 

order to estimate error target estimate to become 0 the 

future action value Estimate is updated repeatedly by a 

set step Step Size. 

 

 (23) 

 

      If the action value is updated immediately by 

Equation 19, however, the solution procedure becomes 

very inefficient since it must retrace the full control 

sequence. Therefore, the concept of Temporal Difference 

(TD) update is widely used in reinforcement learning to 

speed up the learning procedure of Q(s,a)  estimate, as 

illustrated in Equation 24. 

 

     (24) 

 

     Where,  is TD error (Temporal 

Difference  ), Qold(s,a) represents the Estimatedold, 

 represents target, (s,a) represents, 

s(t),a(t), (s’, a’) represents s(t+1),a(t+1), r represents 

r(s(t),a(t)). Iteratively solve the Bellman eq. to get the 

optimum EMS eq. 21. 

Viii) FC-HETs Energy Management -  FC-HETs energy 

management strategy is developed to obtain an optimal 

distribution between sources and lood. FCHETs EM 

represents the control signal level given to DC/DC 

converter which is the turn control motor. 

 

o It simply imposes a maximum and minimum limit to 

the storage elements' energy or SOC 

o As shown in Fig. 5. SOC_MIN and SOC_MAX are 

two limits for battery and FC_eff_MIN and 

FC_eff_MAX are two limits for FC 

o The general idea behind choosing limits for storage 

element energy is to make its SOC in an acceptable 

functioning area. 

o For FC system its power limits offer a 

supplementary degree of freedom serving to optimal 

the FC functioning that is fuel consumption 

minimization. 
 

     In these three train operational modes are possible 

1) Stop mode and start mode – The train is powered by a 

battery 

2) Traction motor mode – Balancing FC and battery as 

per SOC  

3) Braking mode – Generate regenerative energy.   

       

      The goal of EMS is to maintain the SOC at the 

optimal interval while minimizing fuel use. All that has 

to be constructed are the cost function, state variable, and 

suitable action variable. In this work, we choose to have 

the constant power from the FC be the only action 

variable, while the state variables include the speed, 

acceleration, and state of charge of the battery. In this 

paper we assume the regenerative energy store in the 

battery. The following inequalities must be met to ensure 

the components work safely and dependably. 

 
Fig. 5. FC-battery optimal function area. 

 

       (25) 

 
3.1.1. Deep Q Learning (DQN) Algorithm Based EMS 

      In Q learning Q-value is remembered by a Q-table, 

where state and action are the dimensions. The Bellman 

equation includes the temporal difference approach. The 

eq. is the fundamental building block of the learning 

process and its parameters were modified for this 

research. Here is how to determine the Q value by taking 

into account the time difference.  

                                

  (26) 

                                                                                                                                                                                          

      When the Q-value can no longer increase because the 

optimal set of actions for each state has been discovered 

and the table is stopped being updated with the learning 

rate multiplier marked by α. It's possible that greedy 

goals are permanently stuck in some actions. The most 

typical issue is the trade-off between discovery and 

development that is outlined by ϵ. The exploration rate 

increases as ϵ defined between 0 and 1, leading to more 

random action selection and a greater emphasis on future 

rewards. Algorithms tend to be more acquisitive and 

prioritize reward when the value is close to zero. The 

major drawback of the method is that it necessitates a Q-

table with a size equal to the product of the no. of states 

and the no. of actions. Instead of using a Q table, DQN 

employs a deep neural network (DNN) to handle issues 

with a large state-action space quickly or at all. DNN can 
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benefit from a number of hidden layers to allow for the 

discovery of more complicated associations. All of the 

nodes in each of those levels are interconnected. Fig. 6 

depicts the network in its simplest form, however, the 

connections might vary depending on the application. 

The activation function's parameters are adjusted at each 

node to provide an accurate mapping between input and 

output. The no. of nodes and the no. of layers both 

influence the precision with which mapping or fitting 

may be accomplished. Even though there is no foolproof 

method for determining which values will get the greatest 

outcomes, the computing time grows dramatically with 

the number of layers and nodes which may be deceptive 

in terms of convergence. In such a scenario it may take a 

long time. Although defining complexity is not easy. 

Algorithm 1 shows the DQN algorithm for EM in 

FCHETs. 

 

 
 

Fig. 6. Neural network and Deep learning neural 

network. 

 

     DQN utilized the targeted value function, in that the 

total of just the current and future rewards is taken into 

consideration as opposed to the temporal difference 

technique in the value function and the subsequent 

storage of this Q value in a table. After that, the network 

is refreshed using gradient descent on the loss function. 

DQN yields a form of action that specifies what 

percentage of requested energy will be met by the battery. 

The converter's switches manage the flow of electricity. 

The gain of the converter model chosen for action Fbat, 

FFC. In this research, one of FFC and Fbat shall be used as 

an action variable. One is dependent and the other an 

independent variable, and their total is constant. Gains 

and battery current [23] are related as shown in the 

following equation. 

                                    (27) 

 

     The system is resilient if and only if the total of Fbat 

and FFC is bigger than one. As per Table 3 Computational 

investigations show that adjusting this sum enhances 

system responsiveness, hence the value of 5 is chosen. 
 

                   (28) 

        After some trial and error, the following was 

determined to be the optimal range for the action. The 

optimal range is divided into steps (step size = 0.5). 
 

                                                 (29) 

 

Table 2. Modes for power utilization. 

Mode Operation FFC Fbat 

Mode 1 FC charges the battery and 

also provides power to the 

motor and auxiliaries  

7 -3 

Mode 2 Only FC provide power to the 

motor and auxiliaries. 

5 3 

Mode 3 FC and battery supplies equal 

current to the motor 

3 3 

Mode 4 Only Battery supplies power 

to the motor 

0 5 

 

       Requested energy Pdemand, battery derived energy 

Pbat and FC energy Pfc , FC efficiency FCeff, SOC of the 

battery, and deviation of remaining charge available in 

the battery is SOCdesired are all possible states in the 

problem. They are the most likely possibilities for the 

variables, however, they can be specified in other ways. 

Many combinations are tested out during training before 

the reward maximization is achieved. For DQN, the 

following are the states that can be in :
 
 

 

                          (30)
 

 

     The system has no bounds because the state Pdemand is 

the input. However, there are constraints on the initial 

state if SOC is less than SOCdesired, as shown by the 

following equation . 
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bat in
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Algorithm 1 Deep Q Learning  
perform an initialization of replay memory D with capacity N. 

perform some random weighting at the beginning Q   

(action-value function). 
for (loop)  epi = 1, M do 
     perform an initialization and preprocessed sequenced as      
      resp.  

      for (loop) t = 1, T- do 

           along with probability ϵ perform the selection of  a    

           random-action and else select  

           perform action and notice reward  and image  

           set  and execute  

           Store the transition (ϕt, at, rt, ϕt+1) in memory D 
           Take sample random minibatch (transitions) 

            from memory D 

             set  for terminal and set    

              for non-terminal    

             Execute a gradient descent step on (zj Q (ϕj , aj ; θ)) 
        end for (loop) 

end for (loop) 
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(31)                                            

       One version of the objective function is represented 

by the reward function.  
 

              (32) 

 

        If the state goes over the limit depicted by equation 

22, the simulation is terminated and the agent is punished 

in the form of a penalty so that it will learn to avoid this 

behavior in the future. The network loss function is 

described as: 

                              

 (33)       

                  

3.1.2. Deep Deterministic Policy Gradient-

based EMS 
      Since DDPG consists of an actor-critic network 

both the actor and the critic have their own 

independent networks which are used to evaluate and 

critique the other. The assessment network takes states 

as input and produces an action as output. By using a 

deterministic policy gradient, the approach produces a 

deterministic action from the actor network rather than 

a probability of actions. Since this is a problem with 

continuous actions and states, the DDPG algorithm 

can solve it. The critic network takes in states and their 

associated behaviors as inputs and produces a Q-value 

as an output. The noise strategy is adopted to boost 

exploration and the replay experience pool method is 

employed to minimize data correlation during training 

while the utilization of priority experience replay [26] 

further aids in reducing the duration of training unlike 

DQN, DDPG uses a soft update for its parameters. 

There is no clear separation between the DDPG 

algorithm's action space and the action space 

described for DQN. On the other hand state space is a 

little different.  Once again, the state variables are 

selected as follows after multiple training episodes.  

                                                                                                                                           

                                                       (34) 
 

       Similarly to DQN, DDPG has a finite number of 

state variables. These constraints apply to the SOC 

(Battery) and H2,eff  (FC efficiency)  variables as 

follow,   
 

                              (35) 

                                    

      The amount of electricity that a fuel cell can 

produce is proportional to its efficiency. The agent 

receives a reward while in the condition when it is 

observing the efficiency value but is unaware of the 

amount of electricity delivered by the fuel cell. The 

agent's knowledge of fuel cell power is superfluous, all 

they require is the efficiency curve. Therefore, it 

makes little difference whether the power is shifting to 

the left or the right as long as it is being used 

effectively. The other variable of state SOC is used to 

determine the direction of the power differential. The 

definition of the reward function is almost similar with 

one small change defined as follows:    

                                                                                        

         (36) 

                                           

     The simulation will end with the agent receiving a 

penalty if state boundaries are violated. DDPG 

algorithm with action mask as algorithm 2. 

 

Algorithm 2 DDPG 

Assign critic network  and actor 

 with weights  and  

Assign target network  and with weights 

 

Assign buffer R  
for loop for epi = 1, M do 

      set N for action exploration as a random process 

      for t = 1, T do 

              Select the action  for the acc. of the policy and for  

              exploration of the noise     with clip      

              function PFC(t) =  clip [PFC,  Pmin FC (t), Pmax FC    

              (t)] 

               Execute at and observe rt and observe st+1, i.e   

               Action reward for new state resp. 

               Store changes (st, at, rt, st+1) in buffer R 

              Sample N transitions (si, ai, ri, si+1) from buffer R  

              where as N is random minibatch 

               Set   

                

               Update:  at critic using minimizing the  

               loss 

               Update the sampled policy gradient: as a  

               updating of Actor_policy      

                

               Update the target networks:  

                

               end for 

end for 
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Fig. 7. FCHET’s Agent environment interaction. 

 

      Environments having Markov property are met by 

DRL agent. Each time the agent makes a decision on 

what to do next, the environment either rewards or 

punishes. Combining the experience of FCHETs experts 

with the DDPG algorithm, this study can determine the 

best course of action for EMS. Agent environment 

interaction of FCHETs EM as shown in Fig. 7 also is 

known as the interface between the EM system and the 

train. DDPG-based EMS rewards are based on the 

immediate use of fuel cell and battery charge sustaining 

costs are based on this two-point multi-objective reward 

function. 

 

    (37) 

 

Here, alpha represents the weight of hydrogen 

consumption, beta represents battery charge weight, 

SOCref reference value for maintaining battery charge. 

Parameter tweaking between alpha and beta is a 

significant obstacle to the multi-objective reward 

function. Parameter tuning's primary goal is to maximize 

fuel efficiency within the constraints of the battery's 

needs. In consideration of the features of the battery the 

reference state of charge (SOCref) has been set at 0.6 

based on the minimum charge-discharge internal 

resistance and attaining high battery efficiency requires 

the SOC to operate within the predefined upper and lower 

limits. 

 

 
Fig. 8. Architecture of actor-critic network. 

 

      Fig. 8 further demonstrates how the actor-critic 

network architecture was developed specifically for the 

EMS. Pyramidal in shape and the size of a neural network 

reduces as it progresses through its layers. As part of the 

DDPG framework, prioritized experience replay (PER) 

is implemented to make the most efficient use of the 

memory pool for learning and to speed up the 

convergence process. As opposed to randomly replaying 

experiences, PER prioritises re-visiting key observation 

data based on the severity of errors in order to boost RL's 

learning efficiency. Similar to DDPG in that it uses the 

same set of state variables and reward functions for its 

analyses. The ideal efficiency curve of the fuel cell is 

used to determine the increment or decrement in value 

specified as action variables.  

 

3.1.3. Action masking for DDPG 
     As compared to other deep reinforcement learning-

based EMS the DDPG randomly discovers the whole 

action space to learn how to limit the chance of restriction 

into a local optimum, which would result in actions that 

are outside of the fuel cell's practical operating range. 

Hence, action masking must be created in order to filter 

out invalid actions and stop DDPG from engaging in 

pointless learning exploration. Given that the main goal 

of DDPG is to create long-term planning strategies 

through the distribution of states, distribution of actions, 

and transition of states in the learning environment. For 

Action Masking to avoid violating the DDPG algorithm's 

guiding principles, it must adhere to two criteria. The first 

is that AM would not alter the initial action space 

distribution in order to prevent the destruction of the 

environment's potential state transfer probability 

function. The second is that incorrect samples will not be 

used in the training since they will not be gathered into 

the experience replay buffer. The following procedures 

are specifically repeated by DDPG to apply AM at each 

time step t.  

      The following three stages are used to determine the 

appropriate working range at each time step t.: (1) Action 

= {PFC|PFC ∈ [0 KW  power, Max power in KW]} this 

discretized to form a(t); (2) Compute the fuel cell 

maximum and minimum power at time t by traversing 

a(t) as per the dynamics of the driving cycle and (3) 

Obtain new fuel cell  max and min power at time t. 

afterword’s, the FC energy PFC(t) output form actor 

network in the DDPG based algorithm by the clip 

operation PFC(t) = clip [PFC, Pmin FC (t), Pmax FC (t)], due 

to the fact that the clip function does not alter the initial 

action A, there is no impact that it can have on the DDPG. 

      It is crucial to point out that the initial step is 

employed by a broad variety of mathematical model-

based techniques, all of which eliminate erroneous 

actions by traversing the  A-action space and it is also 

necessary to note that this step is extensively used. In 

addition to this, the action masking strategy has to be 

implemented for both the actor, target actor networks. If 

this does not occur, the algorithm's capacity for learning 

will be severely compromised. In addition to this, the 

method of concealing faulty actions via the use of the clip 

2
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function is only relevant to algorithms such as DDPG that 

are founded on the actor critic and deterministic policy. 

 

3.1.4.  Transfer Deep Reinforcement 

Learning 
      In this section, a solution to the issue of EM for a 

FCHET’s  is developed in the form of a bi-level control 

structure and first and foremost, the process of training is 

described. In order to learn the EMS [24] the driving 

cycles are broken up into intervals of three different 

speeds. After that, the deep Q network and DDPG are 

implemented in order to look for the best possible control 

strategy for driving cycle that was examined. In 

conclusion, the use of transfer learning is implemented in 

order to improve the speediness of the convergence of the 

training process. 

 

 
Fig. 9. DRL and TL-based EMS structure. 

 

       Fig. 9  shows a DDPG-based control structure used 

to build an optimum control methodology. The train 

speed dataset comes from a real-world train driving 

cycle. To shorten training time and increase control 

precision, train speed is separated into three speed 

intervals: [Speed Interval 0-39], [Speed Interval 40-79], 

[Speed Interval 80-120] km/hr. The categorized speed 

slots are used to train the DDPG algorithm individually 

until convergence, as shown in Fig. 10. Lower level 

control process applies obtained EMSs and TL method 

applies the already trained network to the new driving 

cycle domain. A unique drive cycle's best control method 

is derived in seconds. 

 

 
Fig. 10. DRL speed categorization for energy policy generation. 

 

 The standard deep learning technique handles testing 

and training data from the same drive cycle. When the 

criterion isn't met, rebuilding the model and retraining the 

data is expensive and time-consuming. TL can help solve 

this issue. As the two study problems are similar the TL 

may reuse most neural network settings. For this, TL 

method has a source domain (Sx) and a learning task 

(Tx), as well as a target domain (Sy) and a corresponding 

task (Ty). Applying what was learned in one setting (Sx) 

to another (Tx), where Sx Sy or Tx Ty is an example of 

transfer learning. This is done so that the goal prediction 

function (f) in Sy may be learned more effectively. The 

EMS issue in FCHETs is investigated in this study by 

employing the DDPG algorithm. Developing a training 

model for a brand-new driving cycle might be a time-

consuming process. The driving cycle's train speeds are 

first divided into three categories based on TL theory. 

The EMS is trained for various speed ranges using the 

DDPG method and the corresponding parameters are 

then stored in memory as shown in Fig. 10. Since the 
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FCHETs driving cycles share the same feature space and 

are correlated, it follows that they must all be driven in 

the same way. The learned parameters are then applied to 

the new driving cycle at various speeds. This would allow 

the EMS to be created effectively and its optimality could 

be ensured. The result section examines the simulation 

findings and draws conclusions about the efficiency of 

the DDPG and TL-enabled EMS. 
 

Table 3. H parameters for DDPG training algorithm. 

Name of the parameters  Parameters 

value 

Experience Buffer Length 1e6 

Critic Learning Rate 1e-4 

Simulation Time 15 

Mini Batch Size 256 

Sample Time  0.1 

Actor Learning Rate 1e-4 

Agent Noise Variance 0.1 

Agent Noise Variance Decay  

Rate 

1e-3 

Discount Factor 0.99 
 

4. RESULTS AND DISCUSSION 
     This work discusses RL-based EMS implementation 

and evaluates its optimality, flexibility, and collative 

efficiency for FCHETs. DQN and DDPG based action 

mask optimum control policies are used to evaluate 

DDPG + TL methods. Comparing the DDPG + TL and 

DDPG methods determines Q value table convergence 

rate. DDPG and TL-enabled control methods validate 

adaptability to the new driving cycle domain. In the Q 

framework, the exploration rate is gradually reduced 

from 0.9 to 0.002 to achieve the desired outcomes. A 

learning rate of 0.01 and a decay rate of 0.9 are used in 

this scenario. The state variables and the control variables 

both have a discrete form. Ptrain, SOCbat, and Pfc each have 

a step size of 10 kW, but Pfc only has a step size of 10%. 

Under the conditions, a total of one thousand episodes are 

performed. The DQN and the DDPG are used as baseline 

measures in order to determine whether or not the 

suggested EMS that is based on TL and DDPG is the 

most effective one. The DQN was able to create the 

globally optimum control actions, thus the differences 

that exist between the technique that was described and 

the DQN are utilized to measure the degree to which the 

offered strategy is optimal. The default settings for both 

DDPG+TL and regular DDPG are entirely identical to 

one another. In order to facilitate this comparison a 

standardized train driving cycle known as the Jind to 

Sonipat is being used. Also By restricting the set of 

actions that the agent can take, action masking can help 

focus the learning process and improve the efficiency and 

effectiveness of the EMS 

      Fig. 12 depicts the output power values of FC and 

batteries, along with the power requirements of the 

FCHETs. Additionally, Fig. 13 displays the cumulative 

state-of-charge trajectory of batteries equipped with 

DDPG + TL, DQN, and DDPG under the Jind to Sonipat 

driving cycle, as driving cycle shown in Fig. 11. The 

terminal SOC values, on the other hand, are almost 

identical. The changes in the state of charge further 

indicate that the DDPG+TL method outperforms the 

conventional DDPG with regard to the battery's power 

delivery capacity. Fig. 12 analyzes the power distribution 

between the FC and the battery, demonstrating the 

control-level advantages of the proposed technique. The 

DDPG and DDPG+TL display similar patterns of 

variation. However, the DQN approach differs from the 

other two approaches, and thus fuel efficiency 

performance may vary. With transformed learning 

derived from previously acquired knowledge of energy 

management, the DDPG+TL technique has the potential 

to minimize fuel consumption and ensure optimal 

performance. 

 

 
Fig. 11 Jind to Sonipat driving cycle 
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Fig. 12. Power distribution between FC and battery in 

three EMS models. 

 

 
Fig. 13. SOC trajectories of three EMS models. 

 
       At the time of the training process, the DDPG + TL 

is used to speed up the convergence process by 

repeatedly playing significant samples from the 

experience pool at a higher frequency. As shown in Fig. 

14, a comparison is made between the tendency of the 

Mean reward throughout training for the situations of 

DDPG + TL, DQN, and DDPG. This is done so that the 

efficacy of the DDPG may be verified. It has been 

discovered that the DQN method converges sometime in 

the range of 600, 800, and 1000 rounds, while it requires 

further episodes in order to achieve 0 mean. While the 

DDPG and DDPG + TL start to converge with around 50 

and 70 rounds respectively, the proposed DDPG + TL 

EMS demonstrates superior convergence performance. 

Also, the DDPG plus TL is much better than the regular 

DDPG for the same episodes. Since both methods 

employ the same random seeds, the reward values for 

DDPG and DDPG -TL in the beginning episodes are 

quite similar to one another. This is the effect of the same 

random seeds being used. This finding suggests that AM 

has no effect on the learning performance of DDPG and 

as a result, DDPG does not slow down or affect the 

stability of DDPG learning. This may be explained by 

the fact that AM does not disrupt the distribution of the 

environment and does not go against the mathematical 

concepts outlined in DDPG. 

 

 

 

Fig. 14. Tendency of average reward during training in 

three EMS models. 
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      The DDPG and TL were developed with the goal of 

speeding up the process of finding the best controls by 

making use of the parameters learned by a neural 

network. All other EMSs are the same, the only 

difference is the length of the driving cycle. According to 

TL theory, in the DDPG plus TL control instance, only 

the neural network's output layer has to be retrained for a 

new driving cycle. This might drastically shorten the 

amount of time required to master a new control regime. 

Here, we examine the convergence rate and training time 

of the DPPG plus TL versus the standard DDPG. To 

some extent, the Q table is approximated by the neural 

network in each of these DRL approaches. Fig.. 15 shows 

the average inaccuracy of Q table and the training 

sessions. The declining trends show that the quality of the 

control sequence obtained improves with each 

subsequent episode. Compared to regular DDPG the 

mean error value in DDPG plus TL is more reasonable 

for each episode. This finding suggests that the suggested 

method may be able to gain insight into its surroundings, 

leading to enhanced regulation. It follows that the DDPG 

plus TL is more efficient at learning than the standard 

DDPG. 
 

 
Fig. 15. Mean error under DDPG and DDPG plus TL. 

  

     To provide additional technical outcomes, Table 4 

shows the total time spent training with both strategies on 

the same driving cycle. Because most of the parameters 

in the neural network may be recycled, the DPPG plus 

TL is clearly more efficient than regular DDPG. This 

feature makes it possible to implement the planned EMS 

in practical driving situations. Also, DDPG+TL 

algorithm-based EMS requires 1.5 % less hydrogen fuel 

as compared to DDPG based algorithm based EMS.  

 

Table 4. Learning duration for DDPG and DDPG plus 

TL 

Algorithm Training Time (hrs) 

DDPG 03.17 

DDPG plus TL 0.59 

System Configuration- Intel(R) i3-3110M CPU @ 

2.40GHz and usable RAM 7.89 GB. 

 

5. CONCLUSION  
      This research provides a learning-based energy 

management method for FCHET’s that is model-free and 

is constructed on the DDPG algorithm of DRL. The 

model-free DDPG method uses trial and error to discover 

the best possible EMS solution. In order to accomplish 

this goal, DDPG collects a sizable number of actual 

samples from the real environment and achieves 

improved performance. 

       In the Simulation implementation, two stages 

register capacitor equivalent circuit model (Lithium-ion 

battery) and Dick-laminae electric circuit model 

(PEMFC) were used to represent the nonlinear modeling 

of battery-FC for calculation of state space analysis.  The 

prime objective of this research is to investigate the 

feasibility of incorporating algorithms for reinforcement 

learning into an energy management approach for hybrid 

trains. As a result of this,  DDPG and DDPG with transfer 

learning outperformed in terms of fuel consumption, 

which indicates that the DDPG-based approaches can 

learn better control policies that lead to higher energy 

efficiency with reduced fuel required for the powertrain. 

Also, action masking restricts the set of actions that the 

agent can take, while the reward function shapes the 

behavior of the agent by providing a measure of success 

or failure for each state-action pair. Both AM and 

rewards techniques can be used together to improve the 

performance of a DDPG agent in complex 

environments. After putting the DDPG algorithm into 

practice using real train drive cycles (Jind -Sonipat) to 

train the agent, the agent with the highest reward is 

chosen and then that agent's performance is analyzed 

using again same drive cycle. An additional algorithm 

that is known as DDPG plus transfer learning is 

developed. The research integrates DDPG and transfer 

learning to achieve its objectives to construct an adaptive 

EM controller for FCHET’s to decrease the laborious 

training time associated with the DRL technique. It is 

simple to generalize this control architecture such that it 

may be used in another hybrid power train. 
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