Document Type : Reseach Article

Authors

1 Laboratoire de Maitrise des Energies Renouvelables (LMER), Faculte de Technologie, Universite de Bejaia, 06000 Bejaia, Algeria

2 Laboratoire de Maitrise des Energies Renouvelables (LMER), Faculte de Technologie, Universite de Bejaia, 06000 Bejaia, Algeria.

Abstract

The Finite-Set Model Predictive Power Control (FS-PPC) is one of the most intriguing model predictive approaches for the induction machine. This control is successful because it operates without weight coefficients and does not require the rotor flux position, as in the Predictive Torque Control (FS-PTC) and the Predictive Current Control (FS-PCC), respectively. A simple extension to the double-star induction generator results in significant current harmonics and common mode voltage. To fix these issues, this paper proposes an improved FS-PPC applied to an asymmetric double-star induction generator based wind energy conversion system by introducing two concepts: (a) the virtual voltage vector (VVV), in order to eliminate the (x, y) components of the stator currents. (b) the zero common mode voltage vectors (ZCMV), to eliminate the common mode voltage. A simulation of the developed ZCMV-FS-PPC system control is created in MATLAB/Simulink. The results show the effectiveness of this approach with CMV equal to zero and negligible (x, y) components of the stator currents. Moreover, the elimination of the CMV not only avoids its damage but also reduces the computation by 50%.

Keywords

  • [1] Rodas, I. Gonzalez-Prieto, Y. Kali, M. Saad, and J. Doval-Gandoy, “Recent Advances in Model Predictive and Sliding Mode Current Control Techniques of Multiphase Induction Machines,” Front. Energy Res., vol. 9, no., pp. 1-22 Aug. 2021, doi: 10.3389/fenrg.2021.729034.
  • [2] Merzouk, K. Bdirina, and M. L. Bendaas, “Finite set model predictive control of PWM AC/DC converter with virtual-flux estimation under grid imbalance,” Majlesi J. Electr. Eng., vol. 13, no. 2, pp. 111–119, 2019.
  • [3] Ayala, J. Doval-Gandoy, J. Rodas, O. Gonzalez, R. Gregor, and M. Rivera, “A Novel Modulated Model Predictive Control Applied to Six-Phase Induction Motor Drives,” IEEE Trans. Ind. Electron., vol. 68, pp. 3672–3682, May 2021, doi: 10.1109/TIE.2020.2984425.
  • [4] Wang, Z. Zhang, X. Mei, J. Rodríguez, and R. Kennel, “Advanced Control Strategies of Induction Machine: Field Oriented Control, Direct Torque Control and Model Predictive Control,” Energies, vol. 11, no. 1, p. 120, Jan. 2018, doi: 10.3390/en11010120.
  • [5] F. Elmorshedy, W. Xu, F. F. M. El-Sousy, M. R. Islam, and A. A. Ahmed, “Recent Achievements in Model Predictive Control Techniques for Industrial Motor: A Comprehensive State-of-the-Art,” IEEE Access, vol. 9, pp. 58170–58191, 2021, doi: 10.1109/ACCESS.2021.3073020.
  • [6] Habib, A. Shawier, M. Mamdouh, A. Samy Abdel-Khalik, M. S. Hamad, and S. Ahmed, “Predictive current control based pseudo six-phase induction motor drive,” Alexandria Eng. J., vol. 61, no. 5, pp. 3937–3948, May 2022, doi: 10.1016/j.aej.2021.09.015.
  • [7] Serra, I. Jlassi, and A. J. M. Cardoso, “A computationally efficient model predictive control of sixphase induction machines based on deadbeat control,” Machines, vol. 9, no. 12, 2021, doi: 10.3390/machines9120306.
  • [8] S. Mousavi et al., “Predictive Torque Control of Induction Motor Based on a Robust Integral Sliding Mode Observer,” IEEE Trans. Ind. Electron., vol. 70, no. 3, pp. 2339–2350, Mar. 2023, doi: 10.1109/TIE.2022.3169831.
  • [9] Li, J. Xia, X. Gao, Y. Guo, and X. Zhang, “Dual-Vector-Based Predictive Torque Control for Fault-Tolerant Inverter-Fed Induction Motor Drives With Adaptive Switching Instant,” IEEE Trans. Ind. Electron., pp. 1–10, 2023, doi: 10.1109/TIE.2023.3236088.
  • [10] Li, J. Xia, X. Gao, J. Rodriguez, Y. Guo, and X. Zhang, “Modulated Model Predictive Torque Control for Fault-Tolerant Inverter-Fed Induction Motor Drives With Single DC-Link Voltage Sensor,” IEEE Trans. Power Electron., pp. 1–12, 2023, doi: 10.1109/TPEL.2023.3267078.
  • [11] Benzouaoui, H. Khouidmi, and B. Bessedik, “Parallel model predictive direct power control of DFIG for wind energy conversion,” Int. J. Electr. Power Energy Syst., vol. 125, no. August 2020, p. 106453, Feb. 2021, doi: 10.1016/j.ijepes.2020.106453.
  • [12] Wei, M. Cheng, J. Zhu, H. Yang, and R. Luo, “Finite-Set Model Predictive Power Control of Brushless Doubly Fed Twin Stator Induction Generator,” IEEE Trans. Power Electron., vol. 34, no. 3, pp. 2300–2311, Mar. 2019, doi: 10.1109/TPEL.2018.2845129.
  • [13] Ji, S. Jin, W. Zhao, D. Xu, L. Huang, and X. Qiu, “Simplified Three-Vector-Based Model Predictive Direct Power Control for Dual Three-Phase PMSG,” IEEE Trans. Energy Convers., vol. 37, no. 2, pp. 1145–1155, Jun. 2022, doi: 10.1109/TEC.2021.3131961.
  • [14] Majout et al., “A Review on Popular Control Applications in Wind Energy Conversion System Based on Permanent Magnet Generator PMSG,” Energies, vol. 15, no. 17, p. 6238, Aug. 2022, doi: 10.3390/en15176238.
  • [15] Zhang et al., “Predictive Power Control of Induction Motor Drives,” in 2021 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), Nov. 2021, pp. 524–529, doi: 10.1109/PRECEDE51386.2021.9681051.
  • [16] Zhang, H. Li, Z. Li, and Z. Zhang, “Predictive Power Factor Control of Induction Motor Drives,” in 2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Jun. 2022, pp. 106–111, doi: 10.1109/SPEEDAM53979.2022.9842246.
  • [17] Zhang, Z. Zhang, X. Liu, Z. Li, and O. Babayomi, “Predictive power control of induction motor drives with improved efficiency,” Energy Reports, vol. 9, no. April, pp. 496–503, Apr. 2023, doi: 10.1016/j.egyr.2023.03.053.
  • [18] Gonzalez-Prieto, I. Gonzalez-Prieto, and M. J. Duran, “Smart Voltage Vectors for Model Predictive Control of Six-Phase Electric Drives,” IEEE Trans. Ind. Electron., vol. 68, no. 10, pp. 9024–9035, Oct. 2021, doi: 10.1109/TIE.2020.3028812.
  • [19] Gonzalez et al., “Model Predictive Current Control of Six-Phase Induction Motor Drives Using Virtual Vectors and Space Vector Modulation,” IEEE Trans. Power Electron., vol. 37, no. 7, pp. 7617–7628, Jul. 2022, doi: 10.1109/TPEL.2022.3141405.
  • [20] Aciego, A. Gonzalez-Prieto, I. Gonzalez-Prieto, A. Claros, M. J. Duran, and M. Bermudez, “On the Use of Predictive Tools to Improve the Design of Undergraduate Courses,” IEEE Access, vol. 10, no. December, pp. 3105–3115, 2022, doi: 10.1109/ACCESS.2021.3139803.
  • [21] Xu, L. Chen, and X. Sun, “MPTC of a six-phase PMSHM with auxiliary voltage vectors,” Int. J. Appl. Electromagn. Mech., vol. 65, no. 4, pp. 763–779, Apr. 2021, doi: 10.3233/JAE-201550.
  • [22] Zhang, Q. Sun, Q. Di, and Y. Wu, “A Predictive Torque Control Method for Dual Three-Phase Permanent Magnet Synchronous Motor Without Weighting Factor,” IEEE Access, vol. 9, pp. 112585–112595, 2021, doi: 10.1109/ACCESS.2021.3104301.
  • [23] M. Alcaide et al., “Common-Mode Voltage Mitigation of Dual Three-Phase Voltage Source Inverters in a Motor Drive Application,” IEEE Access, vol. 9, pp. 67477–67487, 2021, doi: 10.1109/ACCESS.2021.3072967.
  • [24] Shen, D. Jiang, Z. Liu, D. Ye, and J. Li, “Common-Mode Voltage Elimination for Dual Two-Level Inverter-Fed Asymmetrical Six-Phase PMSM,” IEEE Trans. Power Electron., vol. 35, no. 4, pp. 3828–3840, Apr. 2020, doi: 10.1109/TPEL.2019.2933446.
  • [25] Yuan, R. Zhao, R. Xiao, and Z. Liu, “Zero Common-Mode Voltage Model Predictive Torque Control Based on Virtual Voltage Vectors for the Dual Three-Phase PMSM Drive,” Electronics, vol. 11, no. 20, p. 3293, Oct. 2022, doi: 10.3390/electronics11203293.
  • [26] Khouidmi, A. Benzouaoui, and B. Bessedik, “Sliding-mode MRAS speed estimator for sensorless vector control of double stator induction motor,” Majlesi J. Electr. Eng., vol. 12, no. 3, pp. 41–53, 2018.
  • [27] Nesri, K. Nounou, K. Marouani, A. Houari, and M. F. Benkhoris, “Efficiency improvement of a vector-controlled dual star induction machine drive system,” Electr. Eng., vol. 102, no. 2, pp. 939–952, Jun. 2020, doi: 10.1007/s00202-020-00924-9.
  • [28] Guettab, Z. Boudjema, E. Bounadja, and R. Taleb, “Improved control scheme of a dual star induction generator integrated in a wind turbine system in normal and open-phase fault mode,” Energy Reports, vol. 8, pp. 6866–6875, Nov. 2022, doi: 10.1016/j.egyr.2022.05.048.
  • [29] J. Aciego, I. Gonzalez Prieto, and M. J. Duran, “Model Predictive Control of Six-Phase Induction Motor Drives Using Two Virtual Voltage Vectors,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 7, no. 1, pp. 321–330, 2019, doi: 10.1109/JESTPE.2018.2883359.
  • [30] K. Pandit, M. V. Aware, R. V. Nemade, and E. Levi, “Direct Torque Control Scheme for a Six-Phase Induction Motor With Reduced Torque Ripple,” IEEE Trans. Power Electron., vol. 32, no. 9, pp. 7118–7129, Sep. 2017, doi: 10.1109/TPEL.2016.2624149.
  • [31] Amimeur, D. Aouzellag, R. Abdessemed, and K. Ghedamsi, “Sliding mode control of a dual-stator induction generator for wind energy conversion systems,” Int. J. Electr. Power Energy Syst., vol. 42, no. 1, pp. 60–70, Nov. 2012, doi: 10.1016/j.ijepes.2012.03.024.
  • [32] -R. Jo, Y.-J. Kim, and K.-B. Lee, “LCL-Filter Design Based on Modulation Index for Grid-Connected Three-Level Hybrid ANPC Inverters,” J. Electr. Eng. Technol., vol. 16, no. 3, pp. 1517–1525, May 2021, doi: 10.1007/s42835-021-00703-x.
  • [33] Han et al., “Modeling and Stability Analysis of LCL-Type Grid-Connected Inverters: A Comprehensive Overview,” IEEE Access, vol. 7, pp. 114975–115001, 2019, doi: 10.1109/ACCESS.2019.2935806.