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ABSTRACT: 

In this paper, an adaptive controller is presented to control a quadrotor, whose parameters are extracted from the 

genetic algorithm optimization method. The advantage of this method is that based on the system states, the control 

coefficients are calculated online. For this purpose, a function between system states-space and control coefficients is 

obtained. From the database collected from the genetic algorithm optimization method, the parameters of the control 

coefficient function are obtained using the least squares method. The stability of the proposed controller is proved by 

the Lyapunov method. Finally, the performance of the proposed controller is compared with the PID controller, which 

is widely used in the literature. The results show that the proposed approach is promising. 

. 
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1.  INTRODUCTION 

In the recent decade, due to the general approach of 

using small drones, especially quadrotors, many 

researchers have proposed numerous methods to 

control and stabilize the quadrotor. Quadrotors have 

various promising application fields: civil engineering, 

military applications, industrial applications, and the 

service field. These robots are also available and have 

high reliability. 

A quadrotor configuration can be positive or cross to 

control yaw, pitch, and yaw angles, depending on how 

the rotors are paired. In both forms, one pair rotates 

clockwise and the other counterclockwise (Fig. 1). By 

increasing or decreasing the RPM of pairs or all 

engines together, the attitude or altitude of the robot 

can be changed, respectively. Since the number of 

inputs (four inputs) is less than the number of outputs 

(six outputs) in the flying robots, they are under-

actuated systems [1]. 

The motion equations of the quadrotor have complex 

nonlinear 6-DOF equations. Therefore, many variety 

control solutions have been proposed for the 

underactuated nonlinear quadrotor. In the category of 

linear controllers for the quadrotor, the use of PID 

controllers and LQR controllers is presented in [2-3].   

The combination of PI and PID controller controls the 

position and altitude in [4]. In this paper, the PI 

controller is used to control the horizon plane, and the 

PID controller is used to control the angles. LQR 

controller and backstepping control methods have been 

used to control and stabilize angles in hover mode in 

[5]. Since these controllers are designed for the linear 

model, they cannot be used globally. Therefore, in 

nonlinear systems, this problem has been solved by 

dividing the system into several modes and using 

different control coefficients in each mode [6]. The 

problem with this method is the stability and 

performance of the controller in changing modes. 

Therefore, according to the nonlinear dynamic model 

of the quadrotor, nonlinear control methods such as 

robust controller, adaptive control approach, and 

sliding mode strategy are more suitable for this system. 

In the category of nonlinear controllers for the 

quadrotor, in [7], a robust optimal adaptive control 

strategy for a quadrotor is developed to deal with the 

tracking problem by considering parametric 

uncertainties, actuator constraints, and unknown time-

varying disturbances.  In this method, while it is 

necessary to identify the parameters, the response is 

slow. Sliding mode control is a simple, robust 

technique that can be used in linear and nonlinear 

systems. [8-9], have presented the design of a sliding 

mode controller for both altitude and attitude control of 

the quadcopter.  In [10], the fuzzy control method is 

used to switch the sliding mode control gains. This 

technique can be controlled without an accurate system 

model, but extracting membership functions is difficult. 

Due to the inaccurate modeling of the quadrotor as well 
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as the dimensions and weight of this type of flying 

robot, disturbances and noise affect its performance. 

Therefore, robust control techniques are one of the 

main methods in quadrotor control [11]. In [12], based 

on the robust integral of the error, an adaptive tracking 

controller is developed for an underactuated quadrotor. 

Also, in [13], a robust controller for the trajectory 

tracking of a quadrotor is designed.  In this approach, 

two different controllers for the inner and outer loop of 

the flying robot are proposed. In [14], the trajectory 

tracking control is designed based on the robust 

backstepping feedback control for the underactuated 

quadrotor with input saturation. A simple and widely 

used method to nonlinearly control a flying robot is the 

feedback linearization technique [15]. Some other 

effective methods of nonlinear quadrotor control are 

mentioned in the references [16], [17]. The proposed 

nonlinear methods usually are complex to implement. 

To calculate the control coefficients online, we need 

a function based on the system variables. The purpose 

of this paper is to present a new method to obtain such 

a function. In the proposed method, the function 

calculates the control coefficients at any time based on 

the states of the system. The parameters of this function 

are obtained by the genetic algorithm database, which 

is the objective function of minimizing tracking error. 

In Section 2 of the article, the dynamic model of the 

quadrotor is presented, then the design of the controller 

and the gain adjustment mechanism are presented in 

Section 3. Section 4 deals with the stability analysis of 

the flying robot, and in Section 5, the simulation results 

are presented. And finally, about the results in section 

6, discussion and conclusions have been made. 

 

2.   DYNAMIC MODEL OF THE QUADROTOR  

In this section, the mathematical model of the 

quadrotor is introduced. Quadrotor dynamic models are 

described by a set of equations. These equations 

include the attitude and position of the flying robot in 

space, which has four control inputs. Here, the 

quadrotor is a rigid body, a fixed frame is attached to 

its center of gravity called the body frame 𝐵, and an 

inertial reference frame called 𝐸 is considered as shown 

in Fig. 1. 

 

 
Fig. 1. Quadrotor Coordinate System. 

Here, Euler angles are used to indicate the attitude of 

the robot. Therefore, the rotation matrix 𝑅 is as 

follows: 

 
𝑅

= [

𝐶𝜃𝐶𝜓 𝑆𝜙𝑆𝜃𝐶𝜓 − 𝐶𝜙𝑆𝜓 𝐶𝜙𝑆𝜃𝐶𝜓 + 𝑆𝜙𝑆𝜓
𝐶𝜃𝑆𝜓 𝑆𝜙𝑆𝜃𝑆𝜓 − 𝐶𝜙𝐶𝜓 𝐶𝜙𝑆𝜃𝑆𝜓 − 𝑆𝜙𝐶𝜓
−𝑆𝜃 𝑆𝜙𝐶𝜃 𝐶𝜙𝐶𝜃

] 
(1) 

 

Where 𝑆(. ) and 𝐶(. ) are sin(. ) and cos(. ), 

respectively. The quadrotor dynamic model and the 

equations of motion are as follows [18]: 

 

𝜙̈ = 𝜃̇𝜓̇ (
(𝐼𝑦𝑦 − 𝐼𝑧𝑧)

𝐼𝑥𝑥
) − 𝜃̇

𝐼𝑟𝑜𝑡𝑜𝑟

𝐼𝑥𝑥
𝛺𝑟 +

𝑢2

𝐼𝑥𝑥
 

𝜃̈ = 𝜙̇𝜓̇ (
(𝐼𝑧𝑧 − 𝐼𝑥𝑥)

𝐼𝑦𝑦
) − 𝜙̇

𝐼𝑟𝑜𝑡𝑜𝑟

𝐼𝑦𝑦
𝛺𝑟 +

𝑢3

𝐼𝑦𝑦
  

𝜓̈ = 𝜙̇𝜃̇ (
(𝐼𝑥𝑥 − 𝐼𝑦𝑦)

𝐼𝑧𝑧
) +

𝑢4

𝐼𝑧𝑧
  

𝑥̈ = (𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜓 + 𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜓)
1

𝑚
𝑢1 

𝑦̈ = (𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜓 − 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜓)
1

𝑚
𝑢1 

𝑧̈ = −𝑔 + (𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜃)
1

𝑚
𝑢1 

 

(2) 

Where x, y, and z are the position of the center of 

mass in inertial coordinates, ∅, θ, and ψ represent the 

roll, pitch, and yaw angles, respectively, in body 

coordinates. 𝑚 is the mass of the robot and 𝑔 is the 

gravitational acceleration. The 𝑢1, 𝑢2, 𝑢3 and 𝑢4 can be 

written as: 

 
𝑢1 = 𝑏(𝛺1

2 + 𝛺2
2 + 𝛺3

2 + 𝛺4
2) 

𝑢2 = 𝑏𝑙(𝛺2
2 − 𝛺4

2)  
𝑢3 = 𝑏𝑙(𝛺1

2 − 𝛺3
2)  

𝑢4 = 𝐾(𝛺1
2 − 𝛺2

2 + 𝛺3
2 − 𝛺4

2) 

(3) 

 

Therefore: 

 

[

𝑢1

𝑢2

𝑢3

𝑢4

] = [

𝑏 𝑏 𝑏 𝑏
0 𝑏𝑙 0 −𝑏𝑙
𝑏𝑙 0 −𝑏𝑙 0
𝑘 −𝑘 𝑘 −𝑘

]

[
 
 
 
 
Ω1

2

Ω2
2

Ω3
2

Ω4
2]
 
 
 
 

⇒  

[
 
 
 
 
Ω1

2

Ω2
2

Ω3
2

Ω4
2]
 
 
 
 

= [

𝑏 𝑏 𝑏 𝑏
0 𝑏𝑙 0 −𝑏𝑙
𝑏𝑙 0 −𝑏𝑙 0
𝑘 −𝑘 𝑘 −𝑘

]

−1

[

𝑢1

𝑢2

𝑢3

𝑢4

] 

(4) 

 

Where Ω1, Ω2, Ω3 and Ω4 denote motor speed signal 

and Ω𝑟  can be calculated as follows: 

𝛺𝑟 = −𝛺1 + 𝛺2 − 𝛺3 + 𝛺4 = ∑(−1)𝑖

4

𝑖=1

𝛺𝑖 (5) 

 

The state space form of the orientation of the 

quadrotor model can be arranged as follows: 
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𝑥̇(𝑡) = 𝐴(𝑥(𝑡))𝑥(𝑡) + 𝐵𝑢(𝑡) (6) 

 

Where 𝑥(𝑡) = [∅ 𝜃 𝜓 ∅̇ 𝜃̇ 𝜓̇]𝑇  and 

𝐴(𝑥(𝑡)) 

 

=

[
 
 
 
 
 
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 𝑎2𝑥5(𝑡)

0 0 0 𝑎1𝑥6(𝑡) 0 0

0 0 0 0 𝑎3𝑥4(𝑡) 0 ]
 
 
 
 
 

, 

𝐵 =

[
 
 
 
 
 
 
 
 
 
0 0 0
0 0 0
0 0 0
1

𝐼𝑥𝑥
0 0

0
1

𝐼𝑦𝑦
0

0 0
1

𝐼𝑧𝑧]
 
 
 
 
 
 
 
 
 

  &  𝑢(𝑡) =  [

𝑢2

𝑢3

𝑢4

] 

𝑎1 = (
(𝐼𝑧𝑧−𝐼𝑥𝑥)

𝐼𝑦𝑦
)  &  𝑎2 = (

(𝐼𝑧𝑧−𝐼𝑥𝑥)

𝐼𝑦𝑦
)  &  𝑎3 = (

(𝐼𝑥𝑥−𝐼𝑦𝑦)

𝐼𝑧𝑧
) 

 

3.  NONLINEAR OPTIMAL ADAPTIVE 

CONTROLLER DESIGN AND GAIN TUNING 

    In modern control, there are various methods for 

controller design and gains tunning. Moreover, in 

complex systems, the controller coefficients are usually 

obtained with fixed values assuming specific scenarios. 

In this article, the goal is to control the Euler angles for 

the stability and tracking of the desired flight path by 

using a new method of gains tunning. Fig. 2 shows the 

block diagram of the system with the proposed 

controller. 

 

+

-

-

-

+

+

φd 

ϴd 

ψd 

u2

u3

u4

U11=K1φ(t)

U22=K2 ϴ(t)

U33=K3 ψ(t)

K1K2K3

U33 U22 U11

ќ1

ќ2

ќ3

(φ, ϴ, ψ)

d/

dt

 
Fig. 2. The block diagram of the system. 

 

The control coefficients can be written as follows: 

 

𝐾 = 𝑓(𝑥(𝑡)) = 𝐾𝑥(𝑡) (7) 

 

The goal is to obtain the coefficient 𝐾 using the 

database generated by the genetic algorithm. The 

following five steps describe the control coefficients 

algorithm: 

Step 1: The desired state feedback control with 

unknown control coefficients is considered as: 

 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵(𝑟(𝑡) − 𝐾𝑥(𝑡)) ⇒ 

𝑥̇(𝑡) = (𝐴 − 𝐵𝐾)𝑥(𝑡) + 𝐵𝑟(𝑡) 
(8) 

Step 2: The fitness function of this optimization 

problem is formed as follow: 

 

𝐹𝑜𝑏𝑗 = (𝑅(𝑡) − Υ(𝑡))
2
 (9) 

 

Where 𝑅(𝑡) = [𝜙 𝜃 𝜓] is the desired vector and 

Υ(𝑡) = [𝜙𝑑 𝜃𝑑 𝜓𝑑] is the output vector. 

To minimize the results of the fitness function in 

different conditions, the control coefficients calculated 

by the GA method are used. M and S store system 

variables and control coefficients, respectively. So: 



Majlesi Journal of Electrical Engineering                            Vol. 17, No. 4, December 2023 

 

48 

 

𝑆 = [

𝐾11 𝐾21 ⋯ 𝐾𝑙1

𝐾12 𝐾22 ⋯ 𝐾𝑙2

⋮ ⋮ ⋱ ⋮
𝐾1𝑁 𝐾2𝑁 ⋯ 𝐾𝑙𝑁

] 

 𝑀 =

[
 
 
 
 
𝑥11(𝑡𝑓) 𝑥21(𝑡𝑓) ⋯ 𝑥𝑛1(𝑡𝑓)

𝑥12(𝑡𝑓) 𝑥22(𝑡𝑓) ⋯ 𝑥𝑛2(𝑡𝑓)

⋮ ⋮ ⋱ ⋮
𝑥1𝑁(𝑡𝑓) 𝑥2𝑁(𝑡𝑓) ⋯ 𝑥𝑛𝑁(𝑡𝑓)]

 
 
 
 

 

 

Step 3: The linear relationship between variables of 

the system and control coefficients is as follows: 

 

𝐾1 = 𝑘̅1𝑥1(𝑡) + 𝑘̅2𝑥4(𝑡) = 𝑘̅1𝜙(𝑡) + 𝑘̅2𝜙̇(𝑡) 

𝐾2 = 𝑘̅3𝑥2(𝑡) + 𝑘̅4𝑥5(𝑡) = 𝑘̅3𝜃(𝑡) + 𝑘̅4𝜃̇(𝑡) 

𝐾3 = 𝑘̅5𝑥3(𝑡) + 𝑘̅6𝑥6(𝑡) = 𝑘̅5𝜓(𝑡) + 𝑘̅6𝜓̇(𝑡) 
(10) 

 

Therefore 

[

𝐾1

𝐾2

𝐾3

] = [

𝑘̅1 0 0 𝑘̅2 0 0

0 𝑘̅3 0 0 𝑘̅4 0

0 0 𝑘̅5 0 0 𝑘̅6

]

[
 
 
 
 
 
 
𝜙(𝑡)

𝜃(𝑡)

𝜓(𝑡)

𝜙̇(𝑡)

𝜃̇(𝑡)

𝜓̇(𝑡)]
 
 
 
 
 
 

 (11) 

 

We assume that each control force affects only one 

channel, so we can use the channel states to calculate 

its control input. 

Step 4: The linear relationship between control 

coefficients and system variables is obtained by 

applying the least squares method to the database: 

 

𝐾 = (𝑀𝑇𝑀)−1𝑀𝑇𝐾 (12) 

 

Step 5: The resulting functions are implemented in 

a non-linear system 

 

4.  STABILITY ANALYSIS 

In this section, the stability of the proposed 

controller is formed and the controller design 

connected in the close loop will be investigated. It is 

known that the controller design can be described as 

follows: 

 

𝑢(𝑡) = −𝐾(𝑥(𝑡))𝑥(𝑡) = −(𝐾𝑥(𝑡)) 𝑥(𝑡) (13) 

 

By substituting this equation in the quadrotor state 

space equation, the equations can be rewritten as 

follows: 

 

𝑥̇(𝑡) = 𝐴(𝑥(𝑡))𝑥(𝑡) + 𝐵 (−𝐾(𝑥(𝑡))𝑥(𝑡))  ⟹ 

𝑥̇(𝑡) = (𝐴(𝑥(𝑡)) − 𝐵𝐾(𝑥(𝑡))) 𝑥(𝑡) 
(14) 

 

To investigate the stability of (15), the following 

Lyapunov function in quadratic form is employed: 

 

𝑉 =
1

2
𝑋𝑇(𝑡)𝑋(𝑡) (15) 

 

It is clear that 𝑉(0) = 0 and 𝑉 > 0, for all 𝑥 ≠ 0 

For the stable system, there exists 𝑉̇ ≤ 0, where 

[19]: 

 
𝑉̇ = 𝑋𝑇(𝑡)𝑋̇(𝑡) ⟹ 

𝑉̇ = 𝑋𝑇(𝑡) (𝐴(𝑥(𝑡)) − 𝐵𝐾(𝑥(𝑡)))𝑋(𝑡) 
(16) 

 

The stability condition (𝑉̇ < 0 for all 𝑥 ≠ 0) is 

satisfied if the right side of (16) is as follows. 

 
𝐴(𝑥) − 𝐵𝐾(𝑥) < 0 ⇒ 𝐴(𝑥) − 𝐵ℎ𝑥(𝑡) < 0 (17) 

 

If the above relation is satisfied, then the function of 

control coefficients stabilizes the system. 

 

5.  SIMULATION RESULTS 

The controller is designed for the flying robot and 

the simulation results are compared with the PID 

controller. The simulation is performed in MATLAB 

for 100 seconds and the PID coefficients are obtained 

by the software. The parameters of the quadrotor are 

given in Table 1. 

 

Table 1. Simulation parameters [20]. 

Parameters Value 

M 0.8(kg) 

𝐼𝑥𝑥  0.028 (𝑘𝑔.𝑚2) 

𝐼𝑦𝑦 0.031 (𝑘𝑔.𝑚2) 

𝐼𝑧𝑧 0.044 (𝑘𝑔.𝑚2) 

𝐼𝑟𝑜𝑡𝑜𝑟  0.000083 (𝑘𝑔.𝑚2) 

𝑏 0.00003 (𝑘𝑔.𝑚2) 

𝐾 0.000003 (𝑘𝑔.𝑚2) 

𝑙 0.2 (𝑚) 

𝑅 0.12 (𝑚) 

𝑔 9.81 (
𝑚

𝑠2
) 

 

And the parameters of GA for the system are shown 

in Table 2. 
 

Table 2. The parameters of GA. 

Generations Elite Count Crossover Fraction 

70 3 0.7 

 

In this section, for simulation, the desired trajectory 

and initial conditions are as follows: 

 

𝑅 = [5 sin
𝜋

40
𝑡 −3 cos

𝜋

40
𝑡 10] (𝐷𝑒𝑔) 

Υ0 = [0 −3 0] (𝐷𝑒𝑔) 
(18) 

 

Fig. 3 shows the convergence trends of the GA 

controller. 
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Fig. 3. 

The GA convergence trend in the controller.  

Fig. 3. Presenting the convergence of GA in the 

controller. 

 

A simulation for Euler angles of the quadrotor 

based on the proposed technique and PID controller is 

shown in Fig. 4 to Fig. 6. 

 

Fig. 4. Roll angle tracking the performance of two 

controllers. 

 

Fig. 5. Pitch angle tracking the performance of two 

controllers. 

Fig. 6. Performance of two controllers in yaw angle 

tracking. 

 

It is clear that the angles in the proposed method 

reach the desired value faster than the PID controller. 

Fig. 7 demonstrates the angular velocities of the robot. 

 

Fig. 7. Angular velocity of the quadrotor. 

 

The angular velocities of both approaches have 

almost the same results. However, the angular velocity 

in the y-axis is better in the PID method.  

To design and evaluate performance in practical 

control systems, integral absolute error (IAE) is usually 

used. The IAE is calculated as follows: 

 

𝐼𝐴𝐸 = ∑|𝑒(𝑖)|

𝑛

𝑖=1

 (19) 

 

The difference between the error of these two 

methods is shown in Table 3. 
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Table 3. Comparison of errors for the two simulated 

methods. 
Method 𝐸∅(𝐷𝑒𝑔) 𝐸𝜃(𝐷𝑒𝑔) 𝐸𝜓(𝐷𝑒𝑔) Total(𝐷𝑒𝑔) 

Proposed 

Approach 
0.06 0.00109 0.9533 1.0144 

PID 0.05 0.0246 1.9415 2.0161 
Improvemen

t Percentage 
-16% 2156% 103% 98% 

 

According to the calculations, the error in the 

proposed method has been improved by 98%. Fig. 8 

illustrates control torques in both methods.  

 

Fig. 8. Control signals between the proposed 

controller and PID controller. 

 

As can be seen, the control force and torque applied 

to the drone are limited. In both methods, the control 

input behavior is similar. Fig. 9 shows the convergence 

of the control coefficients using the proposed function. 

 

 
Fig. 9. Control Coefficients. 

The results show that the control coefficients are 

convergent. Fig. 10 shows the stability of the proposed 

approach which satisfies the condition of (17). 

Fig. 10. Stability chart of Control Coefficients in the 

proposed approach. 

 

Since the flying robot is powered by batteries, its 

energy consumption is important. Energy consumption 

is calculated as follows: 

 

𝑊 = ∑𝑈(𝑖). ∆𝜃(𝑖)

𝑛

𝑖=1

 (20) 

 

Table 4 shows the energy consumption of the two 

methods, in three axes 𝑥, 𝑦, and 𝑧. 

 

Table 4. Quantitative comparison of controllers’ 

performance. 

Method Wx (J) Wy(J) Wz(J) 
Total(J

) 

Proposed 

Approach 
0.0227 0.0032 0.003 0.0289 

PID 0.0349 0.02 0.0021 0.0570 
Percentage of 

improvement 53% 525% -30% 97% 

 

As can be seen from Table 4, the new method has 

better energy consumption than PID; it is improved by 

97%. The test results show that the proposed approach 

shows improvement compared to the PID controller 

which is used in the literature for control. 

 

6.  CONCLUSION 

In this paper, to control the Euler angles of a 

quadrotor, an optimal nonlinear adaptive controller was 

designed. In this approach, we used a database 

generated by GA to find online the control coefficients 

of the adaptive control, based on the system states. The 

Lyapunov equation is used to prove the stability of the 

closed-loop system. The validity of the proposed 
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approach is evaluated by simulation. Simulation results 

show the perfect tracking of the desired trajectory, a 

significant improvement in smoothness, and energy 

consumption compared to the PID method. The 

proposed method has 97% less energy consumption 

and 98% less error than the PID controller. 
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