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1.  INTRODUCTION 

Metal oxide gas sensors are essential elements in industrial applications. The sensor output measurement system 

should be able to create accurate measurement data in the minimum possible calibration time and overcome non-linear 

output signals [1, 2]. Conventional calibration methods are typically conducted manually and repeatedly, resulting in a 

time-consuming process [3, 4]. Moreover, these methods are often specific to a particular sensor and cannot be applied 

to a general measurement system. Consequently, certain sensor parameters may change due to hysteresis, efficiency 

fluctuations, and nonlinearity, which adversely affect the accuracy of the calibrated output data [2, 5, 6]. 

The improved accuracy and precision in estimating gas concentrations in monitoring industrial and residential 

environments have significant practical implications in the following areas: safety, compliance with regulations and 

standards, energy efficiency, and proactive maintenance [7]. 
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In the realm of safety, the proposed self-calibration method, with its more reliable measurements, can aid in 

identifying and alerting users to hazardous levels of target gas.  This enables users to take preventative actions, such as 

adjusting ventilation systems or implementing strategies to reduce CO levels [8]. Additionally, the increased precision 

provided by the self-calibration method can facilitate the adherence to regulations and standards. Accurate monitoring 

of carbon monoxide is crucial for optimizing combustion processes, minimizing energy waste, and improving 

environmental conditions. The enhanced accuracy can contribute to better energy efficiency and reduced 

environmental impact. In the context of proactive maintenance, the improved precision from the self-calibration 

method can assist in the early detection of deviations and potential sensor failures. Continuous monitoring and self-

calibration of the CO sensor allow for the swift identification of deviations from expected responses, enabling timely 

maintenance and troubleshooting [9]. 

Smart sensors implement various calibration algorithms, including recursive algorithms [10, 11] and those based 

on neural networks [2, 12]. Neural networks offer a reliable means to model and predict complex problems [13-16]. 

Currently, neural networks are utilized to identify the sensor's transfer function (T.F) response curve and linearize the 

input-output relationship [17, 18]. Neural networks are versatile tools that can be utilized to tackle a broad range of 

problems and tasks, including but not limited to classification, interpretation, detection, modeling, and control. They 

are particularly useful for addressing problems that are too intricate to be tackled by traditional mathematical modeling 

or other conventional methods. The ability of neural networks to learn and generalize from data makes them an 

effective and efficient solution for many real-world problems [19]. Before designing any Artificial Neural Network 

(ANN), there are some essential considerations. Equation (1) defines the relationship between the measured input 

variable and the electrical output signal of the sensor. 

 

(1) хʹ = ƒ(ѵʹ) 

 

Where, хʹ is the electrical output signal, ѵʹ is the input variable, and ƒ is the T.F of the sensor. 

Gas sensor input and output variables typically have dissimilar scales and are often normalized between 0 and 1 

using equations (2) for the sake of simplicity [2]. 

 

х =
хʹ − хʹ𝑚𝑖𝑛

хʹ𝑚𝑎𝑥 − хʹ𝑚𝑖𝑛

 ѵ =
ѵʹ − ѵʹ𝑚𝑖𝑛

ѵʹ𝑚𝑎𝑥 − ѵʹ𝑚𝑖𝑛

 (2) 

 

Where, ѵʹ and хʹ are the input and output variables, respectively, and ѵʹ𝑚𝑖𝑛 , хʹ𝑚𝑎𝑥 , хʹ𝑚𝑖𝑛  and хʹ𝑚𝑎𝑥 are the 

minimum and maximum values of the input and output variables, respectively. The normalized variables are denoted 

by ѵ and х.  

The objective is to minimize the Mean Squared Error (MSE) between the desired target signal, t, and the output 

signal, 𝑦, in order to achieve a straight line with a unit slope, as depicted in Fig. 8, as part of the ideal calibration 

process. The ANN's ability to linearize the output signal (𝑦) is determined based on the minimum MSE, as outlined in 

equation (3). 
 

(3) 𝜀𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑛 − 𝑡𝑛)2

𝑁

𝑛=1
 

 

Here, 𝑁 stands for the number of data points, t represents the target signal, and y denotes the output signal of the 

ANN. Equation (4) defines the logsig function, a frequently employed activation function in artificial neural networks. 

This function, along with other activation functions such as Gaussian, sigmoid, and ramp functions, is widely used to 

enable ANNs to solve complex problems. It is worth noting that the logsig function constrains the output range to 

(0~1). 

(4) logsig(𝑥) =
1

1 + exp(−𝑥)
 

 

Where, x is the input to the function, and exp(−𝑥) is the exponential function of −𝑥. 

In [20, 21], ANN topologies such as Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF) have been 

evaluated. Both types of networks have the ability to approximate functions. Although it is clear that RBF is a good 

function approximation system, compared to the RBF network, the MLP is a relatively straightforward approach. 

Moreover, the RBF network is entirely computational in nature [22, 23]. However, the main role of 

successful algorithm training is to minimize MSE, increase convergence speed, and select an appropriate learning rate. 

Levenberg-Marquardt Backpropagation (LMBP) is a variation of the Newtonian method and uses the backpropagation 

process. This method is designed to minimize non-linear functions that are the sum of other non-linear functions' 
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squares. Additionally, it can decrease the sum of squares in each iteration by utilizing a specific approach [24]. A 

flowchart outlining the steps of this algorithm can be found in reference [2]. This method is suitable for training neural 

networks where the performance index is Mean Squared Error. The structure of the article includes the following 

sections. In Section 2, the specifications of the gas sensor used are briefly reviewed. The electronic circuit design for 

reading the output is also discussed in this section. Section 3 focuses on the proposed neural network for calibration. 

Section 4 will delve into the results acquired from the design's implementation, while Section 5 will offer a synopsis of 

the conducted work. 

 

2.  GAS SENSOR SPECIFICATIONS AND OUTPUT READING CIRCUIT 

For the gas sensor designed and manufactured in Fig. 1a with 27.5 sec response time and 39 sec recovery time, the 
results of measurements at a temperature of 250°C are shown in Fig. 1b, which indicates the changes in sensor 
resistance as a function of applied gas concentration. If Ra represents the sensor resistance in ambient air and Rg 
represents the resistance in the presence of the target gas, the sensor resistance without the target gas (exposed to air) 
was measured at 169 KΩ with an output voltage of 720.58 mV. However, in the test with a concentration of 470 ppm, 
the sensor resistance was measured at 1.12 KΩ and the output voltage was 2876.18 mV. Using a 12-bit Analog to 
Digital Converter (ADC) unit and an STM32F107VC microcontroller with a resolution of 0.805 µV, the output 
voltage was measured using the proposed reading circuit. 

Fig. 2 shows the deflection-type Wheatstone bridge circuit used to measure changes in the sensor resistance. 
The resistance R1 is used to adjust the sensitivity of the bridge, and R2 is the zero-adjustment resistor used for gas 
sensor calibration. The output voltage of the bridge varies proportionally with the change in the sensor layer 
conductivity and is connected to the AD623. The circuit is designed in such a way that the low-level bridge output is 
amplified and converted to a voltage that can be transferred to an ADC. AD623 is an instrumentation amplifier that 
offers high-precision amplification of small signals. It has a high Common-Mode Rejection Ratio (CMRR) and a 
low input offset voltage, making it suitable for amplifying small differential signals in noisy environments. AD623 has 
the advantages of easy gain adjustment and a low loading effect. The gain can be adjusted by changing the 𝑅𝐺𝑎𝑖𝑛 
resistor and the gain can be calculated using Equation (5). 

 

(5)   𝐺𝑎𝑖𝑛 =
100 𝐾𝛺

𝑅𝐺𝑎𝑖𝑛
+ 1                                                

With 𝑅𝐺𝑎𝑖𝑛=100 𝐾𝛺, the gain is obtained as 2. Using equation (6), the output voltage of the instrumentation 
amplifier can be calculated differentially. 

(6) 
 

 0 2 1v Gain v v   

 

 

 

Fig. 1. a) The employed CO gas sensor. b) Changes in the sensor resistance as a function of the applied gas 

concentration to the sensor [25] . 
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Fig. 2. Circuit for readout and amplifying the output signal of the sensor. 

3.  CALIBRATION AND PROPOSED ANN ARCHITECTURE 

The traditional calibration methods, which involve manual and often repetitive processes, can be time-consuming 

depending on the required accuracy of the sensor measurement. The current section provides an overview of the 

implementation of an ANN model for the self-calibration of the gas measurement system. Along with this, the training 

algorithm parameters of the model are described in detail. To evaluate the response and calibration, first, the sensor is 

placed in a chamber. Then, the heater temperature is set and the system is allowed to stabilize to the measured 

response. The raw values read by the ADC are then stored and used for neural network training. The block diagram of 

the testing and data collection system is illustrated in Fig. 3. 

 

A

A

Wheatstone 

Bridge

ucontroller 

STM32A/D

Train ANN

 
Fig. 3. Block diagram of the testing and data collection system. 

In order to improve the calibration time and accuracy of gas sensors used in real-time measurement systems, it is 

recommended to incorporate a self-calibration algorithm during their development. This is particularly important for 

electrochemical sensors since their sensitivity and linearity can decrease over time due to chemical reactions between 

the sensor surface and the environment. By using a self-calibration algorithm, the sensor can be optimally utilized and 

maintained in the best possible condition. Optimizing the architecture of an artificial neural network lacks a widely 

accepted method, thus a trial-and-error approach was employed based on the method put forth in [18]. Throughout the 

design process, various features such as the number of layers, neurons, training algorithms, activation functions, and 

computational requirements were taken into account. The objective was to create an ANN structure that would result 

in the lowest possible output error while maintaining simplicity. The network architecture was initially designed with 

a small number of hidden neurons, which were later modified based on the outcomes achieved. Fig. 4 shows the 

proposed ANN model architecture that offers excellent generalization. The network is composed of several layers of 

neurons, each having a non-linear transfer function. This feature allows the network to learn and comprehend both 

linear and non-linear relationships between input and output vectors. The non-linear transfer functions are crucial 

because they enable the network to model complex relationships that exist in the data. The network's ability to capture 

both linear and non-linear relationships is essential for its effectiveness in applications such as pattern recognition and 

classification. This feature makes the network capable of processing and interpreting data inputs, regardless of their 

complexity, to produce the desired output. The proposed ANN model includes an input node that represents the 

various parameters that affect the gas sensor's calibration. The hidden layer of the network comprises eight neurons 

with a logarithmic activation function, while the output layer consists of a single neuron with a linear activation 

function. This neuron is responsible for representing the gas pattern in the self-calibration process. The output of the 

ANN is defined by Equation (7).  

 

𝑦 = 𝑃𝑢𝑟𝑒𝑙𝑖𝑛 [𝑤𝑖
2(𝐿𝑜𝑔𝑠𝑖𝑔(𝑤𝑖

1𝑥 + 𝑏𝑖
1)) + 𝑏1

2] 

𝑖 = 1 𝑡𝑜 8 
(7) 

 

In equation (7), 𝑥 denotes the normalized output signal, while 𝑦 denotes the linearized or uncalibrated signal. The 

vector 𝑤 represents the weights of the network, while 𝑏 denotes the bias. 
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Fig. 4. The architecture of the ANN used. 

After conducting a thorough analysis, it was determined that the MLP feedforward model with the LMBP training 

algorithm was the most fitting approach for the task at hand. To ensure that the calibration data was unbiased, it was 

randomly divided into three subsets, namely training, test, and validation subsets. This approach allowed for a more 

comprehensive evaluation of the model's performance. The traditional training validation testing approach is adopted 

to optimize the ANN model. The training set plays a crucial role in determining the structure of the model and 

computing the ANN weights and biases. The primary objective of this process is to minimize the error function and 

augment the accuracy of the model with each iteration. The validation set is employed to prevent overfitting and 

identify the optimal set of parameters, which provides an unbiased evaluation of the generalization error of the model. 

On the other hand, the test set is solely utilized to assess the performance of the trained model, providing a reliable 

measure of its effectiveness. The training process continues until the validation error is unsuccessful. The values of the 

parameters employed in the artificial neural network model and their corresponding properties are demonstrated in 

Table 1. 

 

Table 1. Properties and parameters of the proposed ANN model. 

Values Training parameters 

Feedforward Model of neural network 

Pure line Transfer function output layer 

Logsig Transfer function hidden layer 

1 Input nodes 

8 Hidden layer neurons 

1 Hidden layer 

1 Output nodes 

LMBP Algorithm for network training  

15 Testing percentage 

70 Training data Percentage 

1 Output layer neurons 

15 Validation percentage 

384 Number of epochs 

6 Validation checks (iterations) 

0.28249 Performance 

MATLAB software was utilized to implement the proposed method for training and output computation. The 

process of training the model and calculating the output was carried out through the use of this software. This allowed 

for the efficient execution of the proposed method and helped to ensure that the results obtained were accurate and 

reliable. The training of the proposed model updates the weights between neurons as per equation (7), where the ANN 

outputs are calculated by combining biases and weights. Each time an ANN is trained, it may result in a new solution 

due to various factors such as the initial values of weights and the allocation to training, validation, and testing (TVT) 

sets of data. This means that the output generated by different ANNs for the same input to solve a particular problem 

may not be consistent. The variation in the output can occur due to differences in the neural network architectures, 

training techniques, and the initial weights assigned to the connections between neurons in the network. To 

guarantee high accuracy in ANN training, this study employed a trial-and-error approach, training the network 

multiple times. The results presented in the subsequent section represent the best output after several training sessions. 
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The training output was continually updated at each iteration to achieve the best performance by reaching 

the minimum MSE, signifying the successful implementation of a self-calibration method. 

4.  RESULTS OF THE PROPOSED NEURAL NETWORK TRAINING AND EVALUATION 

In this section, the experimental and analytical results of the gas sensor-based measurement system will be 

discussed. The results of the performance of the calibration algorithm that is implemented are comprehensively 

analyzed and interpreted. 

 Furthermore, the investigation into the performance of the ANN model is evaluated. This model aims to provide a 

thorough evaluation of the gas sensor-based measurement system and the associated calibration algorithm. In addition, 

a detailed analysis of the effectiveness and efficiency of the model is presented. 

      The dynamic calibration process involves calibrating measurements that vary over time. For this purpose, a 

chamber, a shut-off valve, and a calibrated gas capsule were employed in the proposed design to expose the sensor to 

gas continuously, enabling instant readings and storage of standard values. However, precise measurement data from 

the gas sensor is crucial to obtain acceptable results. Therefore, the relationship between the read voltage, which is 

proportional to changes in the sensor resistance, and the applied gas concentration must be learned. The sensor's 

performance was evaluated over the given, and the calibration process was repeated several times. During this 

evaluation, errors caused by non-linearity, hysteresis, and non-repeatability were identified. The relative change in 

the measured voltage during the test indicates the presence of errors such as changes in gain, non-linearity, and 

hysteresis, which can adversely impact the measurement system. Fig. 5 illustrates the behavior of the output voltage as 

a function of gas concentration under ideal and measured conditions. Fig. 5 shows that in the presence of CO gas, the 

sensor's resistance initially decreases due to the release of free electrons, causing an increase in the output voltage. 

However, it eventually saturates depending on the type of electrochemical sensor structure. 

 

 
Fig. 5. Graph of changes in the output voltage of the gas sensor as a function of the density of CO gas applied to the 

sensor in two expected and measured states. 

In the proposed method, an ANN was implemented with some modifications using the Levenberg-Marquardt 

backpropagation (LMBP-ANN) algorithm in the MATLAB Neural Network toolbox. The feedforward networks are 

usually trained by using the backpropagation algorithm. In LMBP, the data goes from the input to the hidden and then 

to the output layer. The error signal at the output layer is sent back to the hidden and input layers. The connection 

weights are adjusted to minimize the sum of squares of the error. As data generation is essential in the training 

algorithm, Data was gathered from the measurement system using a gas sensor and an interface board, with gas 

chromatography utilized as a reference for calibration data. More than 15,000 calibration data points were obtained to 

train the gas sensor ANN, with dynamic calibration conducted as well. The proposed ANN model structure is depicted 

in Fig. 6. 
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Fig. 6. Feedforward network (Logsig T.F and a linear T.F in the hidden layer and the output layer). 

The training process was carried out until the network achieved the best validation performance. Fig. 7 displays the 

changes in the Mean Squared Error (MSE) throughout the training stages. The TVT errors declined consistently until 

the validation error stopped decreasing after six iterations, and the validation process was halted. During this training, 

the network attained the best MSE at stage 378, which is a logical outcome for several reasons: the final 

performance was low, at 0.28249; the validation set error and test set error had similar properties, and there was no 

substantial overfitting at stage 378, which coincided with the best validation performance. 
 

 
Fig. 7. Performance of TVT errors consisting of training epochs. 

 

5.  PERFORMANCE OF LMBP-ANN MODEL 

The performance of the ANN model primarily depends on the accuracy of the model's prediction of laboratory 

output data. Fig. 8 demonstrates that the output of the ANN model can precisely predict gas self-calibration compared 

to Empirical measurements data. For instance, the R2 coefficient of determination against the experimental data for the 

TVT are 0.99992, 0.99991, and 0.99991, respectively. The proposed ANN model has demonstrated its efficacy in 

capturing the intricate and multifaceted relationships that exist between the input and output data. The ANN model has 

proven to be a powerful tool for modeling complex systems, as it is capable of learning and adapting to the underlying 

patterns and structures of the data. By leveraging the principles of machine learning and statistical analysis, the ANN 

model has been able to effectively capture the nuances of the input and output data, resulting in a highly accurate and 

reliable predictive model. Overall, the proposed ANN model represents a significant advancement in the field of data 

analysis and modeling. The model has exhibited exceptional performance in precisely and comprehensively 

processing and interpreting the input data, resulting in the production of the intended outputs. This exemplary 

performance serves as a testament to the system's efficacy and efficiency, further highlighting its impressive 

capabilities. To evaluate the effectiveness of the LMBP-ANN model proposed in this study for the entire dataset, the 

model's predictions were compared to experimental results, and both the MSE and R2 coefficient are calculated. The 

MSE was determined to be 0.28249 using formula 3, and the R2 value was calculated to be 0.99992, indicating good 

performance. 
 

(8) 

𝑤1 = [ -33.8089   -1.3363    -6.6277    7.3073    1.7907    7.2151     -9.3117    -10.9006] 

𝑏1  = [ 32.1993    2.6160      3.4751    -2.2077   -0.2122    2.6985    -5.7544    -9.2788  ] 

𝑤2  = [ -0.0008    -13.4417   -0.0027    0.0013    0.0359     0.0011    -0.0013    -0.0012  ] 

𝑏2   = [ 12.4751] 
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Fig. 8. The compromise between the output gas concentration of the network and the target for training, validation, 

testing, and complete dataset. 

To further verify the performance of the network, the histogram method was utilized. The distribution of data for a 

continuous variable is shown in Fig. 9, with the blue, green, and red bars representing the TVT data, respectively. The 

histogram can identify outliers, where data points deviate significantly from the major part of the acquired data. In this 

instance, the error histogram implies that they are often between -1 and 1, and based on the test regression plot, no 

outliers were present. As a result, there was no need to collect additional data. 
The bias and weight matrices for the trained ANN at epoch 384 are displayed and saved for use in programming 

microcontrollers to determine gas compensation. In equation set (8), w1 refers to the input hidden-layer connection 
weights, and w2 stands for the output hidden-layer connection weights. Additionally, b1 and b2 are employed to 
determine the bias value of both layers, respectively. 

 

 
Fig. 9. Histogram of 20 Bins using the LMBP training based on the proposed Neural Network. 

 
To evaluate the efficiency of the trained neural network, a new and independent input data set was employed, 

which was not included in the algorithm during the training phase. The neural network was tasked with predicting gas 
calibration based on a new vector consisting of 2000 input data points. These data points were proportional to the gas 
concentration measured by the Wheatstone bridge circuit and were used to create a voltage vector. The trained neural 
network was then able to process this new input data and generate predictions for the gas calibration. This approach 
helped to validate the accuracy of the neural network's predictions on new and independent data. The voltage data with 
values ranging from 0.72 to 2.89 volts were fed into the ANN. As depicted in Fig. 10, the LMBP-ANN model 
accurately predicted gas self-calibration compared to the target gas. This suggests that the neural network, which has 
been trained, is capable of accurately measuring and correcting gas input. 
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Fig. 10. Output of the trained ANN compared to the target (reference) using input from the dataset that was not used 

for training. 

 

6.  COMPARISON WITH PREVIOUS WORKS  

       In Table 2, a comprehensive comparison has been made between the performance of prior studies in gas sensor 

applications and the innovative design proposed in this work. It is worth noting that, in most previous works, instances 

similar to this paper, focusing on the development of neural network algorithms for gas concentration estimation and 

self-calibration of gas sensors, have rarely been observed. 

      In [26, 27], the Partial Least Squares (PLS) regression algorithm, which is a statistical method, has been employed. 

PLS is a multivariate regression technique used for predicting gas concentrations and chemical data. One of the 

challenges of this method is the complexity of interpretation, as it involves linear combinations of independent 

variables, making it difficult to interpret them for a precise understanding of the relationships between variables. 

Furthermore, it is not suitable for small datasets and requires various settings, such as the number of components. 

Sensitivity to outliers and data distribution dependency are also disadvantages of this method. This approach has been 

used in [26, 27], resulting in a Root Mean Square Error (RMSE) of 7.34 in gas concentration prediction. 

      In [28], the Multilayer Perceptron Neural Network algorithm has been utilized for gas concentration estimation. 

This method offers high generalization capability with an appropriate number of layers and hidden neurons, resilience 

to noisy features, and high flexibility. The use of this approach has led to a reduction in error rates, ranging from 7% 

to 19% in the worst-case scenario compared to other methods. However, it comes with drawbacks such as the need for 

proper initialization, complexity in parameter tuning, difficulty in interpreting the resulting models, and the time-

consuming nature of training. 

      In [29], another powerful machine learning algorithm called Extreme Gradient Boosting method (XGBoost) has 

been employed. The XGBoost is widely used in classification challenges. Its advantages include high accuracy and 

predictions achieved by combining decision trees and gradient boosting. Its resistance to overfitting results in better 

model generalization. Although this algorithm can handle noisy data, work with large datasets, and support various 

types of features, including numerical and ordinal features, using XGBoost in [29] improved the accuracy in 

classification to 96.62% and sensitivity to 95.6%. However, it comes with drawbacks such as the need for parameters 

tuning, longer training times compared to some simpler algorithms, and complexity in model interpretation compared 

to some simpler methods. 

      The K-Nearest Neighbors (KNN) algorithm is an instance-based machine learning algorithm used in classification 

and regression tasks. It is sensitive to noise, and consumes significant computational resources (memory and time), 

especially when dealing with a large number of samples. Additionally, the choice of the parameter K (the number of 

neighbors) is crucial, and selecting the wrong value for K can lead to suboptimal accuracy in predictions. However, in 

[30], this method has been used for drift compensation, resulting in an accuracy ranging from 80.74% to 97.5%. 

      OPLS is a method belonging to the PLS family. This algorithm is used for modeling the relationships between 

dependent and independent variables in multivariate data. The key feature of OPLS is that it separates information that 

may be incorrect or present in independent variables from the output (prediction) equation. In [31], OPLS has been 

used to improve accuracy up to 91%. 

      PLS-DA is a type of discriminant analysis used for data classification problems. This algorithm, similar to PLS, 

focuses on decomposing a linear combination of independent variables to predict dependent variables. However, in 
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PLS-DA, the main goal is data classification. In [32], the PLS-DA method has been employed for the same purpose, 

and it has also improved accuracy to 91%.  

      The performance of domain transfer depends on the selection of the source and target domains and the appropriate 

alignment of data. Given the changes in data distribution in the new domain, transfer can be achieved from one 

domain to another using techniques such as data distribution alignment, feature alignment, and domain feature 

alignment. Using these methods in [33, 34] results in average accuracy ranging from 79.4% to 95.92%. 

      In [35], a new discriminative method based on unsupervised Domain Adaptation (DA) has been introduced to 

address the gas sensor drift problem. In this paper, a novel DA with Neighborhood Preserving (DANP+) is presented, 

which incorporates subspace learning capabilities into classifier training. A weight allocation function is introduced to 

assign different weights to different subspace dimensions. In this paper, average accuracy has reached a range of 

77.83% to 79.76%. 

      Nevertheless, it is a common practice to use multiple evaluation methods, such as cross-validation, to select the 

best model. Additionally, combining different models as an ensemble architecture may lead to improved performance. 

Overall, it should be noted that algorithms based on machine learning have complexity in calculations and 

interpretation of information. Also, implementing these methods in a portable and industrial system often requires 

expensive and powerful hardware. However, the method presented in this paper has achieved an MSE value of 

0.28249 and an R2 value of 0.99992. Furthermore, as shown in Fig. 10, the evaluation of the neural network in gas 

concentration prediction demonstrates the high accuracy of the proposed neural network. The proposed neural network 

uses a small number of hidden layers and neurons, making it easier to implement on common hardware such as 

microcontrollers. 

 

7.  CONCLUSION  

In this article, a new method for estimating gas sensor self-calibration has been proposed to create reliability for 
the long-term use of electrochemical gas sensors. The proposed method for gas concentration estimation was 
implemented using the LMBP-ANN model, a neural network architecture that employs the LMBP training algorithm 
to minimize mean square error and determine optimal parameters. Real-time experimental data from the gas 
measurement system were collected and utilized to train the developed ANN model. The obtained results from the 
experiments indicate that the ANN model exhibits high precision in forecasting gas concentration, surpassing 
traditional approaches in the context of real-time estimation accuracy.  To determine the effectiveness of the proposed 
model, a comprehensive analysis was conducted of the entire dataset. The evaluation was carried out by comparing the 
model's predictions against the actual experimental results using two metrics: the MSE and the R2 coefficient of 
determination. The MSE value obtained was 0.28249, indicating that the average difference between the predicted and 
actual values was quite low. Similarly, the R2 value was found to be 0.99992, which suggests that the model's 
predictions were highly accurate and reliable. These results indicate that the proposed model performed exceptionally 
well in predicting the outcomes of the experiments, and can be deemed a valid tool for future research in this field. 

It is important to acknowledge the limitations of the based on AI methods, including: 
i. Dependency on Laboratory Conditions: Neural network-based methods typically require specific training data 

and laboratory conditions. As a result, this method may perform optimally only under specific laboratory conditions. 
ii. Sensitivity to Environmental Conditions: The performance of the electrochemical CO gas sensor may be highly 

sensitive to environmental factors such as temperature, humidity, and pressure. If this method has been developed 
exclusively under specific laboratory conditions, it may exhibit reduced accuracy in real-world settings and variable 
environments. 

iii. Computational Complexity: The use of the LMBP-ANN neural network for self-calibration may entail complex 
and time-consuming computations. These computations could impose limitations on real-time operations or 
deployment in embedded systems. 

 

Table 2. Comparison of Gas Sensor Algorithm Performance. 

References Performance metrics Applications Algorithms 

26, 27 RMSE: 7.34 Gas concentration 

prediction 

PLS 

28 Error decreased 7%–19% 

worst case 

Gas concentration 

estimation 

MLPNN 

29 Accuracy: 96.62%, 

Sensitivity: 95.60%, 

Specificity: 91.09% 

Classification XGBoost 
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30 Accuracy: 80.74%–97.5% Drift compensation KNN 

31 Accuracy: 91% Drift suppressed 

classification 

OPLS 

32 Accuracy: 91% Drift suppressed feature 

augmentation 

PLS-DA 

33,34 Avg accuracy: 79.4%–

95.92% 

Drift and interference 

suppression 

Domain transfer 

35 Avg accuracy: 77.83%–

79.76% 

Drift suppressed 

classification 

DANP & DANP+ 

This work MSE: 0.28249 

R2 :0.99992 

Gas concentration 

prediction and estimation  

LMBP 
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