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1.  INTRODUCTION 

Cancer is a type of disease that causes the growth of cells in a part of the body to increase abnormally and 

excessively[1]. These produced cells gather together and form a Mass or gland. Cancers are classified into two types, 

benign or malignant, in the benign type, the cancer cells are fixed, but in the malignant type, these cells are transferred 

to other parts of the body and enable the growth of cancer cells [2]. Breast cancer is the second cause of death in 

women after respiratory tract cancer [3-9]. Recent advances in Mammography images aim to better detect 

abnormalities in the chest and increase the patient's chances of recovery [6,10,11]. Ultrasound is the most common and 

popular technique designed for breast imaging, due to the clarity and resolution of the images[12]. This method is 

more accurate than the ultrasound-based method [13-15] and has the greatest effect on screening and diagnosis[16].  

The average detectable size for tumors using ultrasound is 16.6 mm. Ultrasound sensitivity is different for various age 

ranges and increases with age, so that its sensitivity is 85% for people over 60 years old and 64% for people under 50 

years old[17-19]. In general, masses and calcium deposits are two abnormalities found in ultrasound images. Based on 

the shape, the masses can be classified into benign and malignant[20]. Ultrasound is a two-dimensional projection 

method [21] and it may be difficult for radiologists to detect some subtle lesions, especially for dense breasts, and lead 
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to breast tissue sampling with a false diagnosis of positive cancer[22]. Recently, computational design methods have 

been used to diagnose cancer using a non-invasive test with minimal error [6,23], which helps radiologists analyze 

ultrasound images[24]. Computer-Aided Diagnosis(CAD) is a set of automated or semi-automated tools that use 

computer technologies to help radiologists diagnose and classify breast abnormalities[25]. The main goals of CAD are 

image enhancement, early detection of breast cancer, and stable, accurate and reproducible analysis [26-29].The 

general framework for a CAD system using ultrasound images includes two main processing steps, namely Feature 

Extraction from the ROI region of interest and their classification [30]. More precisely, the steps of doing the work are 

pre-processing, image segmentation, feature extraction, image Dimensionality reduction, feature selection and 

classification[31]. In the pre-processing stage, it is necessary to remove the pectoral muscle and text on the image[32]. 

Therefore, after this step, we will have the sectioning of the chest[33]. Before the feature extraction stage, pre 

processing is used to increase the quality of the region of interest (ROI)[34], which includes thresholding, Region-

based techniques, and edge detection techniques[3,35]. Effective ultrasound segmentation, in which the main 

characteristics of tumors, especially borders, are preserved, can successfully influence subsequent stages[36-40]. In 

feature extraction, texture-based features are tried to be extracted[41]. Feature extraction is the main stage of observing 

the features of different classes in ultrasound images [42]. At this stage, data are extracted that can be used for the 

effective classification of normal, benign and malignant lesions. Histology provides us with useful information related 

to the spatial arrangement and intensity of light in the image, so that healthy tissue can be separated from unhealthy 

tissue. Image classification is the last stage of image processing and a relatively difficult process that is performed 

after image preprocessing, image segmentation and image feature extraction[12]. The purpose of image classification 

is to separate the original input image into predefined classes[43]. The most common classification methods are 

Probabilistic Neural Networks (PNN), K-Nearest Neighbor (KNN), Fuzzy Sugeno Classifier (FSC), Support Vector 

Machine (SVM), Linear Discriminate Analysis (LDA), and Naïve Bayes Classifier (NBC)[3,6,7,27,44]. In order to 

evaluate the proposed algorithms by different people, there are different databases. Among the most famous of them is 

the MIAS database, the algorithms implemented in this research were implemented and checked on these images 

[3,6,7,45,46,47] . This database contains 161 pairs of MLO images with dimensions of 1024x1024 pixels which has 

256 gray levels, and every 200 microns (volume unit) has been converted into a digital pixel. Images with even 

numbers belong to the left breast and images with odd numbers belong to the right breast of a person. This database 

includes normal and abnormal ultrasound images such as Calcification, Speculated, Architectural distortion, and 

Asymmetry with background tissues with different characteristics such as fat and dense tissues. This database has 52 

malignant images, 63 benign images and 207 normal images. In this research, the goal is to use Gabor filter and Gray 

Level Spatial Dependency Matrix)GLCM( to extract texture features. In addition, we will use image texture with other 

feature extraction methods such as LAWS filters and so on to improve the classification performance. In the next 

section, due to the fact that the number of extracted features is very large, the number of features should be reduced in 

a suitable way. PCA will be used to reduce the dimension. In the next step, different classifiers such as KNN, Ada 

KNN and ELM will be tested and the best classifier will be selected. 

 Therefore, this article is divided into two sections. In section 2, the desired methods will be discussed. In section 3, 

the proposed method is presented. In section 4, the evaluation of the proposed method will be done. In section 5, the 

conclusion of the article will be presented.. 

 

2.  MATERIAL AND METHOD  

GLCM and Gabor based features are used in this research. Table 1 shows the features extracted in GLCM 

 

2.1.  Feature Extraction 
Gabor filters are generally used to extract features from texture images such as iris. This descriptor is one of the 

stable descriptors against changes[48]. In some researches, a group of Gabor filters has been used for feature 

extraction. Generally, in these methods, the input image I(x,y), (x,y) € Ω(where Ω is a subset of image points) with the 

two-dimensional Gabor filter function g(x,y), (x,y) € Ω in the form of a convolve equation  and the Gabor function of 

r(x,y) feature is obtained. 

𝑟(𝑥, 𝑦) = ∬ 𝐼(𝜉, 𝜂)𝑔(𝑥 − 𝜉, 𝑦 − 𝜂)𝑑𝜉𝑑𝜂                     (1)

𝛺

 

      in which the family of Gabor filters used is equational: 

𝑔𝜆,𝜃,𝜑(𝑥′, 𝑦′) = 𝑒
(

𝑥2+𝛾2𝑦2

2𝜎2 )
cos (2𝜋

𝑥

𝜆
+ 𝜎)           (2) 

      In the above equation: 
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𝑥 = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃, 𝑦 = −𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃  ,     σ = −0.56λ   ,   γ = 0.5     (3)    

       

      The above values are set as the best values for Gabor filter parameters. 

 
2.2.  Dimension Reduction 
Principal Component Analysis (PCA) algorithm has been used to improve the feature vectors quantitatively and 

qualitatively. In mathematical definition, this algorithm is an orthogonal linear transformation that transfers data to a 

new coordinate system. So that the largest data variance is placed on the first coordinate axis and the second largest 

variance is placed on the second coordinate axis and this procedure will continue for the analysis of all data. Principal 

component analysis can be used to reduce the dimensionality of the data, in such a way that this algorithm preserves 

the components of the data set that have the greatest influence on the variance. For a data matrix with zero empirical 

mean, where each row is a set of observations and each column is data corresponding to an indicator, considering that 

the feature descriptors used in this research are of three different types, it is very natural to generate a large number of 

features for each image. However, it should be kept in mind that many of the generated features do not contain useful 

information and discriminators for determining the desired image type, so after extracting features from the image for 

each image and using the one-step basic component analysis algorithm, feature selection is done on the generated 

feature vectors to reduce the length of the feature vectors and reduce the computational and time complexity in the 

classification stage. Another important point that can be mentioned about PCA is that this analysis eliminates the 

correlation between features and increases the differentiation of feature vectors of different classes, which ultimately 

improves the rate of tumor type identification. 

 

Table 1. Features extracted in GLCM. 

 

2.3.  Classification 
The K-Nearest Neighbor classifier is one of the most widely used and popular classifiers in the field of machine 

learning, and its popularity is mainly due to its simplicity in use. But this classification, while being simple, also has 

its complexities. The K nearest neighbor class has two important input parameters. The first parameter is the type of 

neighborhood distance calculation, which uses Euclidean neighborhood by default, and the second important 

parameter is the number of neighbors of the tested point to determine the class, which is denoted by K. In the case that 

the number of training samples for each subject is one, the variable K is naturally set to one. But in the case that the 

number of training samples is more than one, finding the best value for the variable K is very important. Under K, in 

the maximum state, it will have high computational and time complexity, and in the minimum state, the identification 

rate will face more errors. Therefore, finding a mechanism with the ability to find the best K for each test sample can 

greatly improve the identification rate. 

Descriptor Explanation Descriptor 

Maximum 

likelihood 
It measures the strongest response ,

max( )ij
i j

p  
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3.  THE PROPOSED METHOD 

Pre-processing can be considered as the first step in the processing of medical images in the diagnosis of motor 

type. The purpose of pre-processing is to improve image quality, remove noise, and improve image contrast control. 

Wiener filter is used in order to remove noise in the proposed method. The Wiener filter has been very successful in 

removing noise. Therefore, Wiener filter has been used in this research to improve the quality. Although               

non-sharpening masking methods can also improve the contrast. Therefore, in this research, in addition to the 

Wiener filter, non-sharpening masking methods have also been used. After improving the image quality, image 

segmentation has been done in order to extract the desired ROI area. With segmentation, the image is divided into 

meaningful regions. In the segmentation, the suspicious areas in which the tumor is likely to exist will be identified 

by the name of ROI. For this purpose, Otsu thresholding has been used. In thresholding, the pixels are divided into 

two groups. Then, using FCM clustering, the subject area is identified. Unique characteristics are extracted from the 

identified area under the name of ROI. The extracted features play a role in the performance of classifications such 

as neural networks, support vector machine, KNN and ELM. The extracted feature will be extracted from the 

desired area of texture, edge, and spatial features. Gabor windows in scales and directions can identify fine patterns 

in the structure of edges forming abnormal areas in ROI. Gabor is directly extracted from the values of the pixels. 

On the other hand, GLCM is directly extracted from image pixels. GLCM features is a two-dimensional matrix that 

can extract several features. GLCM is sensitive to the scale of features. scale-invariant feature transform scale-

invariant feature transform (SURF( also uses comparison concepts to detect status.  

 

Input images

Initial enhancement with 
Wiener filter and unsharp 

masking

Atsu thresholding

FCM clustering

SURF GaborGLCM

Dimensions 
reduction

Evaluation 

70% of data30% of data

Diagnosis of tumor type 
into benign and 

malignant and healthy 
area

 
Fig.1. Block diagram of the proposed method. 
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One of these mechanisms is the Ada KNN method proposed by Mullick et al [49]. In this method, a set 

of K values is identified for each point of the training area. which will be explained further. In order to 

find the best values of K from any part of the training set, a set of K is first defined: this set has two 

important properties, firstly, that the value of K is neither a very large value nor a small value, to the 

property of being local. Keep it Second, the value of K depends on the amount of training data for each 

person. However, identifying all of them requires a very high processing complexity in terms of 

computational complexity, especially when the training set contains many samples. In addition, the best 

value for K is selected from a set of k values, which may increase its complexity if the value is large. The 

presented method uses a random selection method among k values to reduce this complexity. With this 

mechanism, firstly, the computational complexity to perform calculations for all k values is reduced, 

secondly, all values will have an equal chance to be selected. After selecting a number of k set values, this 

information (selected values from k set and training data) is fed as input to an MLP neural network. The 

introduced neural network, for each region, among the selected k values, introduces the most accurate 

value as the best k value for that region to the Ada-KNN classifier. Therefore, with a dynamic mechanism, 

the value of k will be changed for each area and the identification accuracy will be the best. In order to 

improve the performance of Ada-KNN in this thesis, ELM has been used instead of MLP. 

 

4.  EVALUATION 

Identifying and diagnosing tumor type in breast ultrasound images can reduce human error and high diagnosis 

costs. Also, to minimize physical damage due to pathology in the chest. In this research, an efficient method for 

detecting the type of tumor has been presented, in which tumor zoning in the breast image is done for various reasons, 

including the partial volume effect, the similarity of the brightness of some areas of the tumor with the mammary 

glands, and variation in shape, and random position challenging. However, in this research, the desired area has been 

identified using Otsu's threshold and fuzzy clustering, and texture, edge, and spatial features have been extracted from 

the desired area with Gabor, and GLCM methods. After dimension reduction with PCA, they are classified with Ada 

KNN classifier improved with ELM. The final step in a tumor type identification system in the pattern identification 

process is the accuracy, sensitivity, and specificity of the parameters for evaluating the accuracy of the classification. 

To describe these two parameters, the following 4 terms should be introduced. Necessary explanations are given in the 

equation to some values used in formulas (4) to (6)[50].  

 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
                       (4) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                           (5) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                           (6) 

 

In the above equation, True Negative: TN, False Negative: FN, True Positive: TP, False Positive: FP. 

To simulate the proposed method, ultrasound (US) images in grayscale have been used. These images 

were collected and stored in the DICOM format in Bahia Hospital. The collection and annotation of 

images took about a year. Ultrasound datasets were classified into three classes: normal, benign, and 

malignant. Initially, the number of images collected was 1100 images, which after pre-processing on the 

data set, the number of images was reduced to 780 images. The original images do not contain important 

information that can be used for mass classification. In addition, they may affect the output results of the 

training process. The tools used in the scanning process are the LOGIQ E9 ultrasound system and the 

LOGIQ E9 Agile ultrasound system. These tools are usually used in TOP-natch imaging for radiology, 

cardiovascular applications. The resolution of the images prepared with these devices is 1024*1280. 

Transducers are 1-5 MHz on ML6-15-D Matrix linear probe. In order for a dataset to be useful, some 

actions need to be taken. Data that contains duplicate images should be deleted. Incorrect annotations 

should also be checked and corrected. DICOM images were converted to PNG format using a DICOM 

converter program. After refining the dataset, the number of ultrasound images was reduced to 780 

images. The final images were classified into three different classes, i.e. normal, benign and malignant. All 
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images were cropped to different sizes to remove unnecessary and insignificant borders from the images. 

For this purpose, quick photo cropping was used. An image annotation is added to the image name. 

Finally, all these images were examined by radiologists at Bahia Hospital 

Table 2. Description of the database used in this research. 

Number of images Class 
487 Benign 
210 malignant 

 133 normal 
780 Total 

 

Simulations, feature extraction, and classification will be based on this classification. It should be 

noted that 70% of relevant data will be used for training and 30% for testing. 

 

4.1. Simulation Results with Feature Selection using PCA-based Dimensionality Reduction Method 

K-Nearest Neighbor KNN classifiers and ELM's final machine learning neural network, Ada-KNN, 

and the proposed Ada-KNN+ELM classification method were used to classify the feature vectors extracted 

and reduced dimension given from the MIAS image database. After building the feature matrix from all 

three descriptors of the research, the feature selection stage was done with the help of dimension reduction 

with PCA, then the classification was done with the help of the introduced categories. Table 3 and Fig. 2 

show the results of these classifications. The desired categories include benign, malignant, and healthy 

tumors. As it is clear from the results of Table 4 and Fig. 3, the proposed Ada-KNN+ELM classifier has 

been able to obtain better results. As can be seen from the graph, using ELM instead of MLP has led to 

better results. Also, by reducing the Moir dimension, the classification results have shown a significant 

improvement compared to the case where there is no dimension reduction. This important fact proves that 

it is possible to improve the classification results by selecting the feature with the help of dimensionality 

reduction. This superiority is still perceptible in all the criteria used. ROC learner feature criterion is also 

included in these evaluations. To check the existing classifications with the number of selected features, 

the proposed method has been evaluated with different numbers of features including 20, 40, 60, and 80 

features with the used classifications. The length of the extracted feature vector is based on the proposed 

method of 1899. Therefore, the training matrix will have dimensions of 1899*225 and the test matrix will 

have 1899*97. As can be seen from the results of Tables 5 to 8, with the increase in the number of selected 

features, the evaluation parameters intended in this research, i.e., accuracy, sensitivity, specificity, and the 

ROC learner factor feature have improved. Among the used classifiers, the proposed Ada-KNN+ELM 

classifier has been able to obtain the best results. The accuracy of this classifier has been better compared 

to other classifiers in different dimensions of feature selection with dimension reduction with PCA such 

that the classification accuracy is 71.12% in 20 features and 91.03% in 80 features and finally in 100 

features, It has reached 98.18%. The criterion of the characteristic of the learner has reached 0.73% in 

twenty selected characteristics to 0.92% and 0.99% in 100 characteristics. For the features selected with 

the help of PCA method, the KNN classifier has shown the weakest results, reaching 87% accuracy with 

100 features. The results obtained in the Ada-KNN classifier were better than the ELM classifier. This 

superiority is evident in the evaluation criteria. 

 

4.2. The Results of Dimension Reduction Classification with PCA 

After the feature matrix is made of the desired features, with the help of the pre-features method, the 

corresponding features are improved by the method based on dimension reduction with PCA. KNN and 

ELM classifiers, Ada-KNN, and the proposed classification method Ada-KNN+ELM are categorized. The 

results obtained for 100 features selected among 1899 features extracted in the proposed method are 

shown in Table 4 and Fig. 3. As it is clear from the results of Table 4, the proposed Ada-KNN+ELM 

classifier has been able to obtain better results. As can be seen from the graph, using ELM instead of MLP 

has led to better results. Also, by reducing the Moir dimension, the classification results have shown a 

significant improvement compared to the case where there is no dimension reduction. This important fact 

proves that it is possible to improve the classification results by selecting the feature with the help of 

dimensionality reduction. This superiority is still perceptible in all the criteria used. To check the existing 
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classifications with the number of selected features, the proposed method has been evaluated with different 

number of features including 20, 40, 60, and 80 features with the used classifications. The length of the 

extracted feature vector is based on the proposed method of 1899. Therefore, the training matrix will have 

dimensions of 1899*225 and the test matrix will have 1899*97. As can be seen from the results of Tables 

(5-8), and Figs. (4-7) with the increase in the number of selected features, the evaluation parameters 

intended in this research, i.e., accuracy, sensitivity, specificity, and the ROC learner factor feature have 

improved. Among the used classifiers, the proposed Ada-KNN+ELM classifier has been able to obtain the 

best results. The accuracy of this classifier has been better compared to other classifiers in different 

dimensions of feature selection with dimension reduction with PCA such that the classification accuracy is 

71.12% in 20 features and 91.03% in 80 features and finally in 100 features, it has reached 98.18 percent. 

The criterion of the characteristic of the learner has reached 0.73% in twenty selected characteristics to 

0.92% and 0.99% in 100 characteristics. For the features selected with the help of PCA method, the KNN 

classifier has shown the weakest results, reaching 87% accuracy with 100 features. The results obtained in 

the Ada-KNN classifier were better than the ELM classifier. This superiority is evident in the evaluation 

criteria. 

 

Table 3. The results of simulation without dimensionality reduction with PCA using the introduced classifications. 

Metric     Ada KNN+ELM          Ada KNN  ELM  KNN 

        Precision        86.26         79.13     75.65   73.85   
         Sensitivity        89.38         78.57     71.72   71.50   
          Specificity         88.21            85.89      75.43  74.59   
     Characteristics        

of the learning agent 
         0.87             0.80     0.74   0.71 

 

Table 4. The results of tumor type detection using dimensionality reduction with PCA with 100 features. 

Metric     Ada KNN+ELM          Ada KNN  ELM  KNN 

        Precision        98.18        95.81     94.10 87.50 
         Sensitivity         96.25        91.51    85.37 89.13 
          Specificity         97.80        91.86    90.81 84.23 
     Characteristics        

of the learning agent 
          0.99          0.94  0.91 0.88 

 

Table 5. The results of tumor type detection using dimensionality reduction with PCA with 20 features. 

Metric     Ada KNN+ELM          Ada KNN  ELM  KNN 

        Precision         77.12        65.11  64.18 61.13 
         Sensitivity       70.15           67.00  65.15 60.50 
          Specificity        71.17         66.45  66.12 58.15 
     Characteristics        

of the learning agent 
         0.73           0.64  0.63 0.60 

 

Table 6. The results of tumor type detection using dimensionality reduction with PCA with 40 features. 

Metric     Ada KNN+ELM          Ada KNN  ELM  KNN 

        Precision         77.12        65.11  64.18 61.13 

         Sensitivity       70.15           67.00  65.15 60.50 

          Specificity        71.17         66.45  66.12 58.15 

     Characteristics        

of the learning agent 
         0.73           0.64  0.63 0.60 
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Table 7. The results of tumor type detection using dimensionality reduction with PCA with 60 features. 

Metric     Ada KNN+ELM          Ada KNN  ELM  KNN 

        Precision       88.08       79.74  77.00 74.28 
         Sensitivity       78.19       78.19  76.84 74.78 
          Specificity       86.00       79.33  77.50 73.63 
     Characteristics        

of the learning agent 
         0.88         0.80  0.76 0.74 

 

Table 8. The results of tumor type detection using dimensionality reduction with PCA with 80 features. 

Metric     Ada KNN+ELM          Ada KNN  ELM  KNN 

        Precision      95.96       91.94  90.48 80.22 
         Sensitivity      91.93        89.87  89.73 81.19 
          Specificity      90.17        85.19  90.95 82.84 
     Characteristics        

of the learning agent 
       0.94          0.92  0.91 0.80 

 

 
Fig. 2. The results of simulation without dimension reduction with PCA using the introduced classifications. 

 

 
Fig. 3. The results of tumor type detection using dimensionality reduction with PCA with 100 features. 
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Fig. 4. The results of tumor type detection using dimensionality reduction with PCA with 20 features. 

 

 
 

Fig. 5. The results of tumor type detection using dimensionality reduction with PCA with 40 features. 

 

 
Fig. 5. The results of tumor type detection using dimensionality reduction with PCA with 60 features. 
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Fig. 6. The results of tumor type detection using dimensionality reduction with PCA with 80 features. 

 

5.  CONCLUSION 

In this article, a method is proposed for classifying and diagnosing breast tumors based on tissue, spatial, and edge 

features with the help of dimensionality reduction with PCA type with K nearest neighbor KNN classes and final 

machine learning neural network ELM, Ada KNN. The proposed classification method Ada-KNN+ELM was 

implemented. The criteria of accuracy, sensitivity, specificity and effectiveness of ROC were calculated. The same 

results were tested for classification with feature selection based on dimensionality reduction with PCA in the 

proposed method. The superiority of the proposed method can be understood from the graphs and figures obtained. In 

such a way that the obtained classification accuracy is equal to 98.81%, as well as 51.91% sensitivity and 94.54% 

specificity compared to other figures. 
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