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1. INTRODUCTION 

In our rapidly evolving world, navigation and routing are one of the most basic needs, which is why positioning 

systems in cars, ships, and aircraft, as well as research and development, have been used to improve the accuracy of 

these systems. One of the principles of navigation and guiding devices, especially cars in smart transportation systems, 

is to maintain a continuous, accurate, and powerful position [1]. A number of technologies are available for 

positioning in urban environments, such as radar, LIDAR, ultrasonic, cameras, etc. Satellite navigation systems and 

inertial navigation systems are among the most widely used systems [2]. 

The received signals from satellites are used by GNSS receivers to continuously report the position of the receiver 

with an accuracy of approximately 5 meters and an update rate of 10 Hz [3]. Even though this error value remains 

constant at all times, the main problem with these receivers is their dependence on the received signal, which can be 

absent in some areas such as tunnels, forests, buildings and areas with disturbing signals [3]. On the other hand, an 

inertial navigation system is independent of external signals and factors and is capable of calculating its position 

wherever it is. A major disadvantage of this system is the increase in positioning error over time, which is caused by 

the IMU sensor used [4]. 

The integration of satellites and inertial navigation systems is used today in order to overcome the disadvantages 

mentioned above. By using GNSS data and the Kalman filter algorithm, the error of the IMU sensor is modeled, so 
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that in the absence of GNSS signals, the accuracy of the position can be increased by reducing the error of the IMU 

sensor. To integrate these two systems, a number of algorithms and methods have been presented, such as Bayesian 

filters, neural networks, fuzzy logic, etc. The most common of these methods are Bayesian filters, which are divided 

into two groups. An Extended KalmanFilter[5], Unscented Kalman Filter[6], Quadrature Kalman Filter[7], and 

Cubical Kalman Filter[8] are some methods from the first category, which use an approximate posterior probability 

density function in order to estimate the state of a system around an identified point. In the second category, Particle 

Filters[9], Gaussian Summation Filters[10], and RBPF filters[11] are included, which are based on an approximation 

of posterior probability density functions around all points of the sample space. Consequently, all methods attempt to 

reduce the complexity of the algorithm in order to increase the accuracy of variables estimation. 

The development of neural networks has led to the presentation of many different methods for improving the 

accuracy of the inertial navigation system in the absence of GNSS signals, so that these methods are able to model a 

large number of complex nonlinear problems. For instance, Rashad and his colleagues used the RBF neural network to 

model both the output position and the error between inertial navigation and satellite navigation [12], Chiang utilized 

speed and heading angle as inputs to model the position and speed error[13]. Reference [14] describes a method for 

combining GNSS and INS data based on artificial neural networks, and [15] describes a method for estimating the 

position using fuzzy logic. In [16], authors utilized multilayer neural networks to combine DGPS and INS 

information. Reference [17] investigated the new multilayer feed forward neural network algorithm for combining 

GNSS and INS data, and its results were compared with the Kalman filter, showing that this algorithm is more 

effective than the Kalman filter. 

In all the mentioned methods, static neural networks have been used by modeling using the data of the current and 

previous stage of INS data, and the neural network is used until the presence of the GNSS signal being trained, and 

then based on the latest information obtained, the trained neural network estimates the system error. In these methods, 

the main drawback is the inability to store dynamic data for long periods of time, which can cause inaccurate and 

unstable positioning during periods of long-term GNSS signal outages [18]. 

In this research, LSTM deep neural networks are used to resolve this problem. LSTM neural networks are a special 

type of recurrent neural networks that rely on more complex functions than recurrent neural networks, making them 

capable of memory adjustment and so solving the problem of long-term dependence in data.[19] In order to learn the 

proposed network, the output data of the IMU sensor, as well as the position and angles of the IMU are used as inputs, 

while the data received from the GNSS receiver is used as reference data. Until the GNSS signal is available, the 

trained network will learn the parameters of the Kalman filter, and if the signal is unavailable, the trained network will 

attempt to reduce the position error by estimating these parameters. 

The remainder of the paper is organized as follows. The structure of the proposed system, including coupled 

integrated inertial navigation subsystems, and the structure of the proposed LSTM neural network are described in 2-4 

sections. In Section 5, the proposed method is evaluated by experiment results. Finally, section 6 concludes the paper. 

 

2. AN OVERVIEW OF THE PROPOSED NAVIGATION SYSTEM 

A key feature of the proposed navigation system is the absence of auxiliary sensors such as cameras, speedometers, 

and steering angle sensors. Instead, only one IMU sensor and one GNSS receiver are used, the general structure of 

which is shown in Fig. 1. 

According to this structure, there are two stages of learning and estimating. During the learning phase, the IMU 

sensors data including acceleration 𝑓𝑖𝑏
𝑏  and angular velocity𝑤𝑖𝑏

𝑏 in body coordinates are entered into the inertial 

navigation system, and then position 𝑃𝐼𝑁𝑆, velocity 𝑉𝐼𝑁𝑆, and attitude 𝐴𝐼𝑁𝑆 are calculated. 
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Fig.1. Structure of the proposed methodology. Up: learning phase. Down: prediction phase 

 

The error of the IMU sensor is modeled by observing the position of the GNSS receiver position in conjunction 

with the Extended Kalman Filter. At any time, the inertial navigation system position and sensor errors can be 

corrected. The learning phase of the proposed LSTM neural network is carried out until the GNSS receiver signal is 

available and valid. 

The input data of this deep neural network is, respectively, the output data of the IMU sensor along with its internal 

temperature and the position, velocity and attitude angles obtained from the inertial navigation system, as well as all 

state parameters of the Extended Kalman Filter which are used as reference data for training. 

GNSS satellite signals are disrupted or multi-pathed in environments such as mountains, forests, tunnels, tall 

buildings, etc., which triggers the estimation stage of the proposed structure. In this case, the Extended Kalman Filter 

is removed and replaced with the trained LSTM neural network. The subsystems of this structure will be discussed in 

the following sections. 

 

3. LOOSELY COUPLED INERTIAL NAVIGATION SYSTEM 

Fig. 2 illustrates the typical schematic of a loosely coupled inertial navigation system. As shown in this figure, the 

collected data by the IMU sensor corresponds to the acceleration and angular velocity in the body coordinate is 

transmitted to the inertial navigation system which calculates the position (P), velocity (V), and attitude angles (A). 

Using the Kalman filter, the output from the inertial navigation system and the output from the IMU sensor are 

corrected based on the position error obtained from the inertial navigation system and the GNSSreceiver[20]. 

 

 
Fig. 2. Structure of the loosely coupled inertial navigation system[21]. 

 

Inertial navigation systems use following dynamic equations to calculate position, velocity, and attitude angles[21]. 

This article utilizes the 15-variable Extended Kalman Filter to model the inertial navigation system error, where 

equations (1) and (2) define state equations. 

 

xε,k = Akxε,k−1 + wk                                                       (1) 
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+ 𝑤𝑘                             (2) 

 

In these equations 𝛿𝑃𝜀,𝑘,𝛿𝑉𝜀,𝑘,𝛿𝐴𝜀,𝑘,𝑎𝜀,𝑘
𝑏 and 𝑑𝜀,𝑘

𝑏  are 3 x 1 vectors which indicate the error of position, velocity, 

attitude, the bias of gyroscope sensors and linear accelerometer sensors in the body coordinate respectively, and also 

𝑤𝑘   is a 1 x 15 vector which represents the noise of the process. 

Also, in this article, the measurement process  𝑧𝜀,𝑘
𝑏  is expressed as a 6x1 vector according to equation (3) where 

𝑃𝐼𝑁𝑆 and 𝑉𝐼𝑁𝑆 are 3x1 vectors respectively indicating the position and the velocity obtained from the inertial navigation 

system, and 𝑃𝐺𝑁𝑆𝑆 and 𝑉𝐺𝑁𝑆𝑆 are 3x1 vectors which express the position and the velocity obtained from the GNSS 

receiver. 

 

zε,k
b = [

PINS,k − PGNSS,k

VINS,k − VGNSS,k
]                                           (3) 

 

According to these state equations, as long as the GNSS signal is available, the Extended Kalman Filter equations 

are updated, and when this signal is unavailable it seeks to reduce the accumulation error of the inertial navigation 

system output by estimating the state. 

 

4. STRUCTURE AND FUNCTION OF THE PROPOSED NEURAL NETWORK 

By using feedback mechanism,  STM deep neural networks operate very efficiently to estimate the next state of a 

system on time series data as input. In this article, this algorithm has been used to estimate the position of the inertial 

navigation system when there is no auxiliary data of the satellite navigation system. In this section, the network 

structure, important network parameters, and network training and testing conditions will be stated. 

LSTM networks can use their feedback unit to store useful input information from the past period in their memory 

[22]. The LSTM neural network consists of four gates: input, forget, replacement and output gates which form the 

memory unit. The input gate of this network 𝑖𝑡 , according to the following relations, determines whether or not input 

data is added to the previous state, where 𝑦𝑡  represents the input of the network at time t, which includes angular 

velocity (1x3), linear acceleration (1x3) in three axis of the body coordinate, internal temperature of the IMU sensor, 

position (1x3), velocity (1x3) and altitude (1x3) obtained from the inertial navigation system in all three axes: 

 

𝑖𝑡 = 𝜎(𝑤𝑖𝑦𝑡 + 𝑢𝑖ℎ𝑡−1 + 𝑏𝑖)                                          (4) 
𝑧𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑧𝑦𝑡 + 𝑢𝑧ℎ𝑡−1 + 𝑏𝑧)                                 (5) 
𝑖𝑡 = 𝑓𝑡⨀𝑐𝑡−1 + 𝑖𝑡⨀𝑧𝑡                                                                           (6) 

 

The forgetting gate determines what information from the previous state must be forgotten according to the 

following relationship: 

 

𝑓𝑡 = 𝜎(𝑤𝑓𝑦𝑡 + 𝑢𝑓ℎ𝑡−1 + 𝑏𝑓)                                          (7) 

 

Also, the output gate determines which information to keep in the next hidden state: 

 

𝑜𝑡 = 𝜎(𝑤𝑜𝑦𝑡 + 𝑢𝑜ℎ𝑡−1 + 𝑏𝑜)                                        (8) 
ℎ𝑡 = 𝑜𝑡⨀tanh (𝑐𝑡)                                                           (9) 

 

In these equations, h is the hidden state, c is the previous cell state, z is the replacement cell state, w and u are the 

weighting matrices, b is the bias matrix, and ⨀ is the Hadamardmultiplication [23]. 

According to the stated content, the structure of the deep neural network used in this article is shown in Fig. 3. This 

network has an input layer, two hidden layers and an output layer. At any time, the time vector {i(t),...,i(t-4)} is used 

as input, where i(t) represents a 1x16 vector. The value of the last state in the last layer of this structure is entered into 

a fully connected layer with the Leaky ReLU activation function and its final output is the state vector x(t) expressed 

in equation (1). The important parameters of the proposed structure are listed in Table 1. 
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Fig. 3. Overall architecture of LSTM network. 

 

Table 1. Specifications of the proposed LSTM neural network. 

value Feature 

Leaky ReLU Activation Function 

200 Number of neurons 

0.1 Learning rate 

100 maximum number of epochs 

50 batch size 

BPTT Learning Algorithm 

 

5. EXPERIMENTS RESULTS  

In order to check the performance of the proposed navigation system, all the tests have been performed on the real 

data recorded on the car in 4 different phases of driving. In these tests, two sensors IMU and GNSS, were used and 

tried to have the proper cost and accuracy. The technical specifications of these two sensors are listed in Table 2. For 

better performance, before performing each of these phases, the proposed system is first used for 8 hours at different 

times and in different phases without GNSS signal gap for learning. 

 

Table 1. Technical specifications ofsensors used in experiments. 

 Feature value 

G
y

ro
sc

o
p

e 

Measurement range 450 ° 𝑠𝑒𝑐⁄  
In-Run Bias Stability 20° ℎ⁄  

Angular Random Walk 3° √ℎ⁄  

Rate Random Walk 54° √ℎ3⁄  
Output noise 0.16 ° 𝑠𝑒𝑐⁄  

Update rate 50 Hz 

A
cc

el
er

o
m

et
er

 

Measurement range 18𝑔 

In-Run Bias Stability 0.1 𝑚𝑔 

Velocity Random Walk 0.029 𝑚 𝑠𝑒𝑐/√ℎ⁄  

Output noise 1.5𝑚𝑔 

Update rate 50 Hz 

G P
S

 Position accuracy 5 meter 
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Update rate 10 z 

 

5.1. Phase 1 
The purpose of this phase is to investigate the effect of gyroscope bias on the performance of the proposed 

navigation system. In this phase of the test, after traveling a straight distance, the car turns around in an approximate 

circle path with 65 meters radius, and then the GNSS signal is cut off, and after 20 seconds, the car continues on a 

straight path, and again GNSS signal is connected after 10 seconds. The amount of time that the GNSS signal is not 

available is about 30 seconds. The behavior of the proposed navigation system compared to the GNSS receiver and 

inertial navigation based on the Extended Kalman Filter is shown in Fig. 4. 

As can be seen, the proposed navigation system has achieved better accuracy when there is no GNSS signal. This 

test was repeated in the absence of GNSS signal for 60 and 120 seconds, and again the proposed navigation system 

performed better and was able to perform 60% better than the inertial navigation system based on the Extended 

Kalman Filter (Fig. 5). 

 
Fig. 4. Position error comparison result of GPS, EKF and LSTM in the first phase of the experiment. 

 

 
Fig. 5. Performance comparison of vehicle position during GNSS outage in the first phase of the experiment. 

 

5.2. Phase 2 
In this phase of the movement, for bias removing investigating, the accelerometers are in the straight path, so that 

the car moves in the straight path, and the input data of the GNSS receiver is disconnected for 30 seconds and 

reconnected again. As can be seen in Fig. 6, the proposed navigation system performed better than the inertial 

navigation system based on the Extended Kalman Filter and had less deviation than it. This test was also repeated in 

the absence of GNSS signal for 60 and 120 seconds, and again the proposed navigation system performed better and 

was able to perform 55% better than the inertial navigation system based on the Extended Kalman Filter (Fig. 7). 
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Fig. 6. Position error comparison result of GPS, EKF and LSTM in the second phase of the experiment. 

 
Fig. 7. Performance comparison of the vehicle position during GNSS outage in the second phase of the experiment. 

5.3. Phase3 
In this phase of the experiment, the bias effect of both accelerometer and gyroscope sensors on the proposed 

navigation system is evaluated. So at first, the car moves in a straight path and then after cutting the GNSS signal and 

continuing the straight path, the car turns right and the GNSS signal is connected again (Fig. 8). The duration of GNSS 

signal interruption is 30, 60 and 120 seconds, and the proposed navigation system has better performance than the 

inertial navigation system based on the Extended Kalman Filter, and its accuracy has been improved by an average of 

60% (Fig. 9). 

 

 
Fig. 8. Position error comparison result of GPS, EKF and LSTM in the third phase of the experiment. 
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Fig. 9. Performance comparison of vehicle position during GNSS outage in the third phase of the experiment. 

5.4. Phase 4 
Considering that height increase and decrease by crossing bridges is inevitable, it is necessary to test the effect of 

IMU sensors in the third dimension(Z) as well. For this reason, in this phase of the experiment, the car moves in a 

straight path, and after cutting the GNSS signal, it goes up over a bridge and after going down and continuing to move, 

GNSS signal is connected again (Fig. 10). At times of 30, 60 and 120 seconds of signal interruption, this test is 

repeated and the results show that the proposed navigation system has better performance than the inertial navigation 

system based on the Extended KalmanFilter and has improved its accuracy by an average of 65% (Fig. 11).  

 

 
Fig. 10. Position error comparison result of GPS, EKF and LSTM in the fourth phase of the experiment. 

 

 
Fig. 11. Performance comparison of vehicle position during GNSS outage in the fourth phase of the experiment. 

6. CONCLUSION 

Today, the use of inertial navigation in unmanned vehicles is mandatory so that navigation can be done in 

situations such as forests, tall buildings, tunnels, etc., where the GNSS signal is not available. For this purpose, in this 

article an inertial navigation system based on LSTM neural networks is introduced and compared with the inertial 

navigation system based on the Extended Kalman Filter, which is the most common type of this system. 
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As long as the GNSS signal is available, the proposed neural network is in the learning phase, and when this signal 

is unavailable, it is used as a replacement for the Extended Kalman Filter. This system has been evaluated on the real 

data taken by the car and in 4 different maneuvers, and it has the ability to perform better than the inertial navigation 

system based on the Extended Kalman Filter and improves its accuracy by 60%. 
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