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1.  INTRODUCTION 

Machine learning is an advanced technology that is expanding its applications exponentially throughout the world 

by using futuristic technology to uplift socio-technicality [1]–[3]. The application of machine learning is expanding its 

horizon in the healthcare sector to analyze complex data sources and find unique patterns to interconnect each data point 

of big datasets to predict the onset of disease at an early stage [4]. After the incorporation of the ML system, optimal 

and accurate diagnosis is possible to find out the appropriate treatment of such kinds of ailments such as cancer, diabetes, 

Alzheimer’s, etc. [1]. Great anticipation of machine learning mechanisms to diagnose medical issues and eject enriched 

intricacies from a big dataset [5]. Enormous informatic embedded data is being generated every day in the medical field, 

every patient has their own characteristics and valuable medical report [4]. Nowadays every person suffers from different 
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types of health issues and that is accumulated as a medical report for the respective person. Therefore, the ML system 

emerged to introduce program software that is trained with all the informatic embedded data and learns from big data 

and intelligently predicts new insights from it.  

Machine learning tools and techniques have made significant contributions to the healthcare field. These 

technologies are being used to improve patient care, diagnostics, treatment plans, drug discovery, and more. Here are 

some ways in which machine learning is being employed in healthcare such as Disease Prediction and Diagnosis using 

machine learning algorithms that can analyze large sets of medical data, such as patient records, lab results, and imaging 

data, to predict diseases and assist in accurate diagnoses. For example, models have been developed to predict conditions 

like heart disease, diabetes, and certain types of cancer. Medical Imaging [6] using machine learning which has 

revolutionized medical imaging interpretation. Algorithms can detect abnormalities in X-rays, MRIs, CT scans, and 

other imaging modalities [7], aiding radiologists in identifying potential issues early and accurately. Drug discovery by 

machine learning models that can predict how different compounds will interact with biological systems, accelerating 

drug discovery processes. They can help identify potential drug candidates and optimize molecular structures. 

Personalized Treatment Plans by analyzing patient data and medical history, machine learning can assist in creating 

personalized treatment plans. This includes selecting appropriate medications and dosages based on individual patient 

characteristics. Machine learning is used to analyze genomic data to identify genetic markers related to diseases. This 

aids in understanding disease risk, prognosis, and potential treatment approaches [8]. Machine learning helps in 

managing and extracting valuable insights from electronic health records, enhancing patient care coordination and 

decision-making [9]. Machine learning can help identify suitable candidates for clinical trials based on their medical 

history, improving trial success rates [10]. 

It is important to note that while machine learning has immense potential in healthcare, its implementation requires 

careful consideration of ethical, privacy, and regulatory concerns. Proper data handling, model interpretability, and 

patient consent are critical aspects of applying machine learning in the healthcare sector. 

Besides the healthcare field, machine learning tools and techniques are employed in areas such as business 

development, market research, academic and clinical research, etc. [11]. A comprehensive survey on one of the areas is 

explained as follows: 

 

1.1.  Academic and Clinical Research 

With the tremendous transformation in the domain of academic and clinical research due to machine learning, big 

data is increasing day by day, and the data embedded with large enlightenment is broadly used to improve research 

outcomes and build a new strategy. Clinical investigation is a wide range of observational and experimental research 

that is used to accomplish a new insight to analyze the traditional trial. There is a considerable difference between 

academic and clinical research. The academic research, which is thoroughly based on theoretical investigation and the 

ML contribution is to significantly identify patterns using efficient machine learning algorithms from a repository, 

improving the precision of the classification models. Summarizing, insights from a massive dataset, improving 

experimental mechanisms, and implementing algorithms are the actions for the development of academic and clinical 

research. The delineation of clinical research in the context of experimental research, the importance and continued 

evolution of investigation that is being processed in heuristically solving industrial-based projects problems [12].  

2.  RESEARCH OBJECTIVE 

Our research is centered around the core objective of comprehensively grasping the connection between blood 

glucose concentration and hematocrit volume, all the while conducting a thorough comparative analysis of the outcomes 

derived from two distinct algorithms. Within the healthcare domain, our focus lies in unraveling potential insights into 

the intricate interplay and mutual influence of these two pivotal parameters. We aim to establish a robust and nuanced 

relationship between blood glucose concentration and hematocrit volume, delving into the complex dynamics governing 

their interaction within the human body. To achieve this, our approach involves the utilization of two different algorithms 

for the estimation of blood glucose concentration and hematocrit volume. By meticulously comparing the outcomes 

generated by these algorithms, we endeavor to discern any disparities, advantages, or variations in their predictive 

accuracy and efficiency. Our research endeavors to make a substantial contribution to the broader healthcare field by 

shedding light on the implications stemming from the correlations identified between blood glucose and hematocrit. The 

potential ramifications of these findings include advancements in diagnostic tools, treatment methodologies, and patient 

care practices. Through meticulous data collection, rigorous algorithm implementation, and an exhaustive comparative 

assessment, our aim is to elevate our understanding of the intricate relationship between blood glucose concentration 

and hematocrit volume. 
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3.  LITERATURE REVIEW 

Numerous research studies have been conducted in the realm of diabetes mellitus prediction utilizing machine 

learning techniques. These investigations have explored a diverse array of methods and datasets to enhance the accuracy 

of detection. Various innovative approaches have been employed, each offering unique insights into this critical area of 

healthcare. The following literature review provides an overview of some of these approaches: 

 

3.1.  Continuous Glucose Monitoring Systems 
A substantial body of research has centered around the utilization of continuous glucose monitoring systems for 

diabetes mellitus prediction. These systems leverage real-time glucose level data to facilitate early detection and 

personalized management of the disease. Machine learning algorithms have been harnessed to analyze the intricate 

patterns and fluctuations in glucose levels, aiding in accurate prediction [13]. 

 

3.2.  Plethysmography Signals 
Another avenue explored is the use of plethysmography signals for diabetes prediction. By analyzing variations in 

blood volume within tissues, these signals offer valuable insights into vascular function and blood flow dynamics. 

Machine learning algorithms have been applied to decipher complex patterns within plethysmography data, contributing 

to the development of predictive models for diabetes [13], [14]. 

 

3.3.  Calorimetry Methods 
Calorimetry techniques, which involve measuring heat release or absorption during metabolic processes, have also 

been integrated with machine learning for diabetes detection. These methods provide an indirect indicator of metabolic 

activity and energy expenditure. By harnessing machine learning algorithms, researchers have endeavored to derive 

correlations between calorimetry data and diabetes risk, enhancing prediction accuracy [15]. 

 

3.4.  Colorimetry Techniques 
Colorimetry, a method that quantifies color changes in response to chemical reactions, has been harnessed for 

diabetes prediction. The interaction between blood components and reagents can yield insights into glucose 

concentrations. Machine learning algorithms applied to colorimetric data have contributed to the development of non-

invasive and cost-effective prediction models [15]. 

 

3.5.  Demographic and Anthropometric Measurements 
Beyond physiological signals, demographic and anthropometric measurements have also been integrated into 

diabetes prediction models. Factors such as age, gender, body mass index (BMI), and waist circumference have been 

shown to have significant correlations with diabetes risk. Machine learning algorithms have been leveraged to create 

comprehensive predictive frameworks that incorporate these variables [16]. 

Overall, the literature demonstrates a wide range of innovative approaches for diabetes mellitus prediction using 

machine learning algorithms. These methodologies, including continuous glucose monitoring systems, plethysmography 

signals, calorimetry methods, colorimetry techniques, and demographic and anthropometric measurements, collectively 

contribute to advancing our understanding of diabetes risk factors and enhancing the accuracy of predictive models. The 

synthesis of these diverse approaches holds promise for improving early detection and intervention strategies in the 

management of diabetes mellitus. 

The methodologies mentioned have several limitations that need to be considered. Continuous glucose monitoring 

systems, while providing real-time glucose level data, can be affected by sensor inaccuracies, signal lag, and skin 

irritation, potentially compromising their reliability. Plethysmography signals, commonly used in cardiovascular 

assessment, may suffer from motion artifacts and provide limited information on specific physiological parameters. 

Calorimetry methods, although valuable for assessing energy expenditure, can be influenced by variations in metabolic 

rate and may not capture all relevant factors affecting metabolism. Colorimetry techniques, while useful for various 

biochemical analyses, might lack the precision and sensitivity required for detecting subtle changes. Demographic and 

anthropometric measurements are prone to self-reporting errors and may not fully capture individual variations in body 

composition or other relevant factors. It is crucial to acknowledge and address these limitations when interpreting results 

obtained from these methodologies, ensuring accurate and meaningful insights into the physiological phenomena under 

investigation. 

 

4.  NOVELTY 

The innovation of using amperometric signals for estimating blood glucose and hematocrit levels introduces a 

groundbreaking approach to the simultaneous measurement of two crucial health indicators. Our study acknowledges 
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the growing availability of data integrated into medical practices, specifically in the realm of diabetes mellitus. It 

recognizes the swift accumulation of data and emphasizes the necessity of harnessing this information to enhance the 

management and predictive understanding of diabetes-related elements. The primary focus of this investigation revolves 

around establishing a link between blood glucose levels and hematocrit volume – the proportion of red blood cells within 

the overall blood volume. 

By delving into the interplay between these two factors, the research aims to contribute valuable insights into the 

realm of diabetes and its effective management. The study employs amperometric signals obtained via an enzyme-based 

electrochemical glucose sensor (commonly known as a glucose strip) through a redox reaction. The purpose of analyzing 

these glucose signals is to formulate a methodology for forecasting both blood glucose levels and hematocrit volume. 

This innovative approach adds to the existing body of knowledge by introducing a novel prediction technique rooted in 

amperometric signals. 

However, the novelty of this study is embedded in various aspects. These include the exploration of the relationship 

between blood glucose concentration and hematocrit volume, the utilization of amperometric signals for predictive 

analysis, the integration of a Linear Regression and Support Vector Regressor, the implementation of evaluation metrics 

to gauge performance, and the aspiration to craft effective software for a biochemical glucose estimation analyzer. These 

elements collectively advance knowledge and hold promise for refining diabetes management, thereby mitigating the 

limitations inherent in current glucose measurement techniques. 

 

5.  MATERIAL AND METHODS 

The dataset under consideration has been meticulously compiled through a comprehensive analysis of an 

electrochemical glucose sensor. This sensor operates based on the principle of amperometric transient current, which is 

generated as a result of the intricate interplay between micromolecules and macromolecules present within the 

bloodstream. At its core, the electrochemical glucose sensor functions as a sophisticated analytical tool aimed at 

quantifying the concentration of glucose within a biological sample, often blood. This process hinges on the phenomenon 

of amperometry, a technique employed in electroanalytical chemistry to measure the electric current generated during a 

redox reaction. In this particular application, the redox reaction is mediated by glucose molecules, which are subject to 

oxidation or reduction at the sensor's electrode surface[18]. The dataset's inception involves the careful selection of 

experimental parameters, such as the specific electrode material[19], the geometry of the sensor, and the electrochemical 

conditions. These factors collectively influence the sensor's performance characteristics, including sensitivity, 

selectivity, and response time. Subsequently, an array of blood samples, each with varying glucose concentrations, is 

subjected to the sensor's measurement process. The amperometric transient current, an integral aspect of this dataset, 

manifests as a time-dependent electric current response generated by the sensor [20]–[22]. It is a direct consequence of 

the interaction between the glucose molecules and the electrode surface. As glucose molecules come into contact with 

the sensor's electrode, they undergo a redox reaction. This interaction leads to the transient flow of electric charge, which 

is precisely quantified and recorded by the sensor. 

The process of data collection is characterized by precision and systematic execution. Each blood sample is 

introduced to the sensor under controlled conditions, ensuring consistency and repeatability. The resulting amperometric 

transient current responses are captured over a defined time period, generating a wealth of temporal data points. These 

data points collectively form the foundation of the dataset, which encapsulates a diverse range of glucose concentrations 

and associated electric current profiles. Furthermore, the dataset's uniqueness arises from its ability to encapsulate not 

only the role of micromolecules like glucose in this electrochemical interaction but also the influence of macromolecules 

present within the blood matrix. These macromolecules, including proteins and other biomolecules, can impact the 

sensor's response due to their potential interference with the glucose-electrode interface. Thus, the dataset embodies a 

comprehensive representation of the complex interplay between various blood components and the sensor's analytical 

performance. 

In conclusion, the dataset obtained through the analysis of the electrochemical glucose sensor, operating via the 

generation of amperometric transient currents, stands as a testament to meticulous experimentation and data 

collection[23], [24]. It embodies the intricate interactions between micromolecules such as glucose and the broader 

context of macromolecules within the blood. The dataset's integrity and value lie in its potential to drive advancements 

in glucose sensing technology, contribute to medical research, and enhance our understanding of electrochemical 

phenomena in biological systems. 

 

5.1.  Data Collection 

Electrochemical Glucose Sensor (also known as glucose strip) is the glucose sensing phenomenon that senses glucose 

by the reaction of bioassays (enzyme, mediator, buffer salts, etc.) of glucose strips with the blood samples through a 

redox reaction [22], [24], [25]. The mechanism of the redox reaction is explained via three equations. 
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Glucose + GOX(OX) → Gluconic acid + GOX(red)…..(1) 

GOX(red) + 2M(OX) → GOX(OX) + 2M(red) + 2H+…......(2) 

2M(red) →2M(OX) + 2e-………………..……………..(3) 

 

Where GOX (OX) and GOX (red) are oxidized and reduced glucose oxidase respectively, and M (OX) and M (red) are 

oxidized and reduced mediators respectively [22]. The above redox reaction shows the reaction between glucose strip 

bioassays and glucose in the blood sample. The redox reaction produces a transient current, and the transient current is 

considered a glucose signal [19], [26]. Glucose signals are produced by the variation of micromolecule (glucose 

concentration of the blood) and macromolecule (hematocrit volume of the blood) of the blood sample [22]. Redox 

reaction takes some time to complete the entire reaction because bioassays take time in dilution [21], [24].  

 

5.2.  ML Model Implementation 

Machine Learning algorithms are applied to resolve the problem of the accuracy of a glucometer. We worked on the 

regression analysis to build the ML model for the prediction of blood glucose concentration and hematocrit volume [22], 

[27], [28]. There are four variables; peak current (IP), the time corresponding to peak current (TP), blood glucose 

concentration (GC), and hematocrit volume (HV). Two of them will be predicted and the rest two will be input. 

 

5.2.1. Linear Regression 
 We employed the mechanism of linear regression in building a machine-learning model because of the continuous 

form of our dataset. The dataset is split into 70% & 30% proportions, the proportion of the training dataset is 70% and 

the remaining for the test dataset. On drawing and adjusting a linear straight line between GC and IP which corresponds 

x and y axes respectively. We obtained a coefficient of ~ 0.828 and an intercept of ~ 0.369 for glucose concentration 

which is shown in Fig. 1. Similarly, coefficient ~ -0.0122 and intercept ~ 0.369 for a straight line between HV and IP 

on the axis of x and y respectively, which is shown in Fig.2.  

Fig. 1. Glucose Concentration. 

 

Fig. 2. Hematocrit Volume. 
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5.2.2. Support Vector Regressor 

We observed the regression analysis of the support vector 

machine is suitable for better prediction than linear regression and applied kernel trick for the non-linear dataset. There 

are four types of kernel functions namely ‘linear’, ‘sigmoid’, ‘RBF’, and ‘poly’. The polynomial function is fitted best 

for the non-linear dataset between GC and IP and kernel = ‘RBF’ (radial basis function) is fitted best for the HV and IP 

dataset. 

 

6.  RESULTS AND DISCUSSION 

6.1.  Linear Regression and its Outcome 

In our modeling, 70% of the dataset is used for training the model with variables such as peak current (IP), peak time 

(TP), and glucose concentration (GC). After training the model, we tested the trained model on the remaining 30% of 

the dataset. We found an R2 score between the test data of GC (y) and predicted values of GC (y_hat) from the sci-kit 

learn library.  

      A few code statements can be referred below: 

≫from sklearn. metrics import r2_score 

print ("R2-score: %.3f" % r2_score (y, y_hat)) 

R2-score: 0.916 

 

 
Fig. 3. Original v/s Predicted Glucose Concentration. 

Table 1. Comparison of Original Glucose Concentration with Predicted Glucose Concentration on Transient Current 

and Current Corresponding Time. 

Current, 

Time 

Original 

Glucose 

Concentration 

Predicted 

Glucose 

Concentration 

[19.5182, 

4.32] 
[400] [368.30057307] 

[29.187, 

4.01] 
[500] [504.41921745] 

[23.5459, 

5.24] 
[500] [452.35467053] 

[11.004, 

3.82] 
[200] [228.28444682] 

[8.539, 

4.37] 
[200] [205.86025839] 

[3.527, 

2.04] 
[50] [70.36674891] 

[12.291, 

3.24] 
[200] [232.35781899] 

[11.64, 

4.84] 
[300] [264.36177387] 

[20.6, 

4.67] 
[400] [393.55925649] 
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Similarly, in the context of hematocrit volume (HV) prediction, our study demonstrated the precision of the original 

values versus the predicted values. Despite the challenges posed by the intricate relationships within the dataset, our 

study lays the foundation for further research into refining predictive models for hematocrit volume. The nuanced 

insights gained from this analysis are valuable for medical professionals and researchers striving to better understand 

hematocrit volume dynamics and their implications for various health conditions. A few lines of code for finding the 

evaluation metric for hematocrit volume are referred below: 

≫from sklearn.  metrics import r2_score 

print ("R2-score: %.3f" % r2_score (y_2, y_hat_2)) 

R2-score: 0.537 

Where y_2 is the test data of HV and y_hat_2 is the predicted values of HV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Original v/s Predicted Hematocrit Volume. 

 

Table 2. Comparison of Original Hematocrit Volume with Predicted Hematocrit Volume on Transient Current and 

Current Corresponding Time. 

Current, 

Time 

Original 

Hematocrit 

Volume 

Predicted 

Hematocrit 

Volume 

[19.5182, 

4.32] 
[40] [37.58306666] 

[29.187, 

4.01] 
[30] [24.06292658] 

[1.9101, 

4.28] 
[60] [58.79058921] 

[23.5459, 

5.24] 
[40] [37.87630072] 

[11.004, 

3.82] 
[50] [45.12308021] 

[8.539, 

4.37] 
[60] [51.22986971] 

[3.527, 

2.04] 
[30] [44.17142161] 

[12.291, 

3.24] 
[40] [40.28077642] 

[11.64, 

4.84] 
[60] [50.1096327] 

 

Our observation as displayed in Fig. 3 shows the difference between the actual values of glucose concentration and 

predicted values of glucose concentration at the rate of change of the current value. Fig. 4. shows the plotted value of 

original values and predicted values of hematocrit volume at the rate of change of the current value. And, Table 1. and 
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Table 2. show the comparison between original values and predicted values of glucose concentration and hematocrit 

volume, respectively. 

6.2.  Support Vector Regressor and its Outcome 
Utilizing the sci-kit learn library, the dataset is split into trainsets and test sets in the same proportion as in the linear 

regression model. Firstly, the considered variables are IP, TP, and GC for training the model, and glucose concentration 

(GC) must be predicted. The dataset can be linear or non-linear, therefore we used the kernel trick for the non-linear 

dataset. The dataset is fitted best for the polynomial kernel function and the remarkable prediction is observed via the 

following code lines: 

≫svr_poly. score (test_set_x, test_set_y) 

0.96066 

≫from sklearn. metrics import r2_score 

print ("R2-score: %.3f" % r2_score (test_set_y, y_hat)) 

R2-score: 0.961 

 

Where test_set_y is the original value of GC and y_hat is the predicted value of glucose concentration (GC). 

 

 
Fig. 5. Original v/s Predicted Glucose Concentration. 

 

Similarly, this process was executed for the prediction of hematocrit volume (HV), but there is a bit slight difference 

between them in that the ‘RBF’ radial basis kernel function is used for HV prediction instead of the polynomial kernel 

function to fit the model for glucose concentration. 

≫from sklearn.  metrics import r2_score 

print ("R2-score: %.3f" % r2_score (test_set_y_2, y_hat_2))  

R2-score: 0.506 

Where test_set_y_2 is the original value of HV and y_hat_2 is the predicted value of hematocrit volume (HV). 

 

Fig. 6. Original v/s Predicted Hematocrit Volume 

The difference between the actual values of glucose concentration and predicted values of glucose concentration at 

the rate of change of the current value is shown in Fig. 5, moreover, Fig. 6 displays the plotted value of original values 

and predicted values of hematocrit volume at the rate of change of the current value. 
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For glucose concentration prediction, using linear regression yielded an R2 score of 0.916, while utilizing a 

polynomial kernel function with a Support Vector Regressor (SVR) improved the prediction to an R2 score of 0.961. 

Similarly, for hematocrit volume prediction, we achieved an R2 score of 0.537 with linear regression and an R2 score 

of 0.506 with SVR using an RBF radial basis kernel function. These results demonstrate the effectiveness of the SVR 

approach, especially with the appropriate kernel function, in enhancing the predictive accuracy for both glucose 

concentration and hematocrit volume. The findings underscore the importance of choosing an appropriate modeling 

technique and kernel function for different types of datasets to achieve accurate predictions. 

 

7.  BIOLOGICAL ASPECTS 

 The outcomes of our modeling and analysis hold significant implications in the realm of biology and healthcare. The 

connection existing between blood glucose and hematocrit enables the concurrent assessment of glucose concentration 

and hematocrit volume. This capability proves advantageous in the identification and diagnosis of diabetes and 

polycythemia. By leveraging a comprehensive dataset comprising peak current (IP), peak time (TP), glucose 

concentration (GC), and hematocrit volume (HV), we effectively trained and tested predictive models to discern crucial 

biological insights. The precision of our predictions, as measured by R-squared scores, highlights the potential of these 

models in estimating key biological parameters. Notably, the utilization of a polynomial kernel function with a Support 

Vector Regressor (SVR) significantly enhanced the accuracy of predicting both glucose concentration (GC) and 

hematocrit volume (HV). These findings provide valuable tools for clinicians and researchers to gain deeper insights 

into the relationships between these parameters, thereby aiding in the diagnosis and management of various medical 

conditions. Moreover, the study underscores the pivotal role of selecting appropriate modeling techniques and kernel 

functions tailored to specific dataset characteristics, emphasizing the importance of precision in biological predictions 

for advancing medical understanding and patient care. 

8.  CONCLUSION 

The evolution of machine learning tools and techniques within the realm of data mining has emerged as a potent 

mechanism for extracting valuable insights within the healthcare domain. This article has traversed the landscape of 

machine learning's evolving landscape, particularly in the context of prediction, setting a benchmark for the 

advancement of artificial intelligence. Our exploration has been driven by a profound interest in leveraging learning 

algorithms to enhance the healthcare landscape, employing the transformative potential of cutting-edge machine learning 

technologies in the estimation of blood glucose concentration through meticulous regression analysis. Additionally, we 

have delved into the intricate correlation that exists between glucose concentration and hematocrit volume, unraveling 

new avenues of understanding. 

Our research foundation was built upon a clinically validated dataset procured from an electrochemical glucose 

sensor, commonly known as a glucose strip. This dataset encompassed varying levels of glucose concentration and 

hematocrit volume. Leveraging this dataset, we developed a software program for a glucometer, a pivotal tool in our 

experimental approach. The crux of our methodology rested on the utilization of both linear regression and support 

vector regressor techniques, which were instrumental in predicting the values of glucose concentration (GC) and 

hematocrit volume (HV). 

Our findings reveal that, through linear regression, the R2 score for GC approximates 0.916, whereas for HV, it 

stands at approximately 0.537. On the other hand, employing the support vector regressor, we attained an R2 score of 

roughly 0.961 for GC and 0.506 for HV. Upon a meticulous comparative analysis of these two-machine learning 

regressor models, we gleaned that the support vector regressor exhibited higher accuracy for the test dataset of glucose 

concentration. This marked our empirical validation of the potential efficacy of this approach in glucose concentration 

prediction. 

In culmination, our methodological journey has significantly contributed to the domain of healthcare prediction by 

unearthing new horizons through the amalgamation of machine learning techniques and domain-specific insights. The 

newfound correlation between glucose concentration and hematocrit volume, coupled with the enhanced accuracy 

achieved through the support vector regressor, underscores the transformative capabilities of machine learning in 

revolutionizing healthcare analytics and fostering improved patient outcomes. 
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