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boundedness 
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1.  INTRODUCTION 

The main characteristic of a Takagi and Sugeno (T-S) fuzzy model is the expression of local dynamics of each 

fuzzy rule by a linear system model. The overall fuzzy system model is obtained by combining the linear system 

models. Productive results on controller and filter design problems for nonlinear systems via T-S fuzzy model were 
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presented in articles [1-10]. For example, in [11], an observer-based exponential stabilization indicator for event-

triggered fuzzy systems with observer-based sliding mode fuzzy control was implemented. Event-triggered interval 

type-2 T-S fuzzy for nonlinear networked systems was presented in [12]. Event-triggered trusted control for a class of 

uncertain T-S fuzzy nonlinear systems was designed in [13]. Event-triggered controller for T-S fuzzy systems with 

time-delay has been implemented in [14]. 

Recently, finite-time stability has been raised in practical processes to prevent saturation and excitation of 

nonlinear dynamics during the transient response. Unlike Lyapunov stability, which requires the convergence of the 

equilibrium point in infinite time, in finite time stability, it is only required that the system remains stable at a certain 

time. Finite-time stability has advantages such as high convergence speed, greater resistance to uncertainty, and better 

disturbance rejection [15-16]. Since the settling time depends on the initial conditions, finite-time control is forbidden 

for systems with unattainable initial conditions. In digital control systems, the sampling process is intermittent or time-

triggered and the signals in the loop are updated at each sampling moment. However, when the controlled system 

states reach the equilibrium point, even if there is no disturbance, the sensor measurement signal has little effect on the 

system performance. In this case, useless sampled data may be generated. Undoubtedly, the transmission data reduces 

the efficiency of the communication network and leads to unnecessary energy consumption. For this purpose, the 

event-triggered communication scheme is proposed to overcome the shortcomings of the triggered time control 

method. This communication scheme can effectively use the bandwidth of the communication network because the 

transfer of sampled data between the controller and system occurs only when a pre-defined event-triggering condition 

is met. Therefore, finite-time event-triggered 𝐻∞ fuzzy output feedback controller is designed in [17] for a type of 

nonlinear system. Finite-time event-triggered controller for nonlinear semi-Markovian switching cyber-physical 

systems (S-MSCPSs) in the face of false data injection (FDI) attacks was checked in [18]. Event-triggered robust 

fuzzy adaptive finite-time control is reviewed for a type of strict-feedback nonlinear systems with external 

disturbances in [19]. Event-based decentralized adaptive fuzzy output-feedback finite-time controller was investigated 

in [20] for large-scale nonlinear systems. A dynamic event-triggered finite-time controller is provided in [21] for 

switched T-S Fuzzy systems. The authors in [22] have studied the model-based event-triggered control to check the 

performance of an underactuated surface vessel (USV). In [23], unknown nonlinear dynamics of nonlinear multi-agent 

systems are approximated by fuzzy logic systems with the goal of finite-time stability, and in order to increase 

communication bandwidth dynamic, event-triggered scheme is used. T-S fuzzy is used in [24] to model discrete-time 

nonlinear Markov jump systems with the control objective of maintaining system states within a predetermined range 

and at a given time. In order to improve network bandwidth, a mode-dependent event-triggered scheme is constructed. 

In order to control nonlinear systems with input hysteresis, parametric uncertainty fuzzy adaptive event-triggered 

finite-time constraint is used in [25]. Input–output finite-time stabilization of interval type-2 fuzzy systems against the 

effect of deception attack has been reviewed in [26]. Nonlinear systems with unmodeled dynamics, asymmetric time-

varying output constraints, and uncertain disturbances have been controlled by finite-time adaptive tracking scheme in 

[27]. An event triggering scheme in which the threshold is set dynamically has been used to preserve communication 

resources. In the mentioned articles, the prevention of Zeno behavior has not been proven. In [28], a fuzzy adaptive 

event-triggered scheme is used in multi-agent systems to satisfy the prescribed performance while avoiding zeno 

behavior. 

In the mentioned articles, system modes are required to be available. For times when system states are not 

available, the output feedback controllers with appropriate state observers should be designed. For this purpose, in 

[29], event-triggered control, based on the distributed model is proposed for load frequency regulation in smart grids, 

and input-state stability (ISS) is proved. It has been also shown that the use of the entire network model in the intervals 

between two consecutive events leads to a reduction in the state estimation error. In addition, the network model and 

event trigger block are also placed locally in the sensors to determine the data transfer time on the distributed network. 

Observer-based finite-time event-triggered fuzzy fault-tolerant controller is used in [30] for the interval type-2 (IT2) 

Takagi–Sugeno fuzzy system with parameter uncertainties and actuator faults. An observer-based finite-time event-

triggered 𝐻∞ fuzzy controller is designed in [31] for a class of nonlinear systems. 

Most of the existing works deal with T-S fuzzy systems have the following limitations or disadvantages: First, it is 

assumed that all states of the system are measurable, therefore output feedback control problems cannot be solved. 

Second, the designed controllers are time-triggered instead of using event-triggered schemes, so they are not able to 

increase the network bandwidth. 

 To the best of the authors' knowledge, the finite-time bounded fuzzy model-based event-triggered control has not 

been addressed for distributed T-S fuzzy systems with immeasurable states, which motivates this study. By the 

proposed method, in the intervals between two consecutive events, the event trigger engine determines the time to 

send information to neighboring subsystems by comparing the states obtained in the corresponding subsystem and the 

states of the fuzzy model of the entire system. When the information transmission happens, the remote measurement 
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unit partially updates the fuzzy model of the whole network by receiving the states of the neighboring subsystems. So, 

compared to [17], in which the dynamic event triggering scheme is used, the bandwidth is increased. In comparison 

with [29], where in distributed model-based event-triggered controller is used, the number of samples has further 

reduced. The proposed fuzzy model-based event-triggered controller compared to fuzzy time-based event-triggered 

controller in [32] has better tracking while fewer events are triggered. 

The main contribution of the paper is as follows: 

1- The model-based event-triggered is first introduced for distributed T-S fuzzy systems, which can reduce more 

computation and communication resources than the traditional static event-triggered mechanism while the 

boundedness of the closed-loop system and the existence of minimum inter-event time are guaranteed. 

2- By developing the model-based event-triggered scheme, the finite-time bounded performance criteria are deduced 

for distributed T-S fuzzy systems while the transmission delay is considered. It should be noted that the 

transmission delay makes it impossible to prove the finite time boundedness by ordinary Lyapunov functional and 

the Lyapunov-Krasovskii functional should be used. 

3- Considering the superiority of model-based event-triggered scheme over event-triggered schemes with static and 

dynamic threshold, in this paper, model-based event-triggered scheme is used for T-S fuzzy systems. 

4- Assuming that all states are not measurable, the state estimator has been designed. So the output feedback control 

problem can be solved on the T-S fuzzy systems with immeasurable states. 

     The rest of the paper is organized as follows: section 2 states mathematical prerequisites and used lemmas. Section 

3 illustrates the basic concepts of model-based finite-time bounded event-triggered control for distributed fuzzy T-S 

systems. In section 4 finite-time boundlessness and the condition of minimum time between events for the proposed 

controller are proven. Simulation results are presented in section 5 and finally, the conclusion is expressed in section 

6. 

 

2.  PRELIMINARIES 

Lemma 1: [33] Consider matrices 𝑌, 𝐸,𝐽 with appropriate dimensions where Y is a symmetric matrix. The 

𝑌 + 𝐸𝐹𝐽 + (𝐸𝐹𝐽)𝑇 < 0 

holds for all matrix 𝐹 satisfying 𝐹𝐹𝑇 < 𝐼, if and only if there exists a constants 𝜀 > 0, such that  

𝑌 + 𝜀𝐸𝐸𝑇 + 𝜀−1𝐽𝑇𝐽 < 0 

holds. 

Lemma 2: (schur complement) [34] Consider the following nonlinear matrix inequalities 

𝑅 > 0+ 𝑄 − 𝑆𝑅−1𝑆𝑇 > 0 

where 𝑄 = 𝑄𝑇  , 𝑅 = 𝑅𝑇. Based on schur complement, the above inequalities are equivalent to the following Linear 

Matrix inequality (LMI). 

[
𝑄 𝑆

𝑆𝑇 𝑅
] > 0 

Lemma 3: [35] There are real matrices 𝑊,𝐸,𝐽,𝑀 such that 𝑆 > 0 and 𝐹𝑇𝐹 ≤ 𝐼. Then for any constant 𝜖 > 0 such 

that 𝑆 − 𝜖𝐸𝐸𝑇 > 0, the following inequality holds. 

(𝑊 + 𝐸𝐹𝐽)𝑇𝑀𝑇(𝑊 + 𝐸𝐹𝐽) ≤ 𝑊𝑇(𝑆 − 𝜖𝐸𝐸𝑇)−1𝑊 + 𝜖−1𝐽𝑇𝐽 

Lemma 4: [35] For matrices and integers {𝑎,𝑏,𝑘 ∈  ℤ+} such that 𝑎 ≤ 𝑏 ≤ 𝑘, there is the vector function 𝑦(𝑖) →
𝑥(𝑖 + 1) − 𝑥(𝑖),   𝑥(𝑖): [𝑘 − 𝑏, 𝑘 − 𝑎] ∩ 𝑍 → ℝ𝑛  

It can be shown that 

χ(𝑘,𝑎,𝑏) = {

1

𝑏 − 𝑎
[2 ∑ 𝑥(𝑖) + 𝑥(𝑘 − 𝑎) − 𝑥(𝑘 − 𝑏)

𝑘−𝑎−1

𝑖=𝑘−𝑏

]  𝑎 < 𝑏

2𝑥(𝑘 − 𝑎)                                                                  𝑎 = 𝑏

 

Then it can be obtained that 

−(𝑏 − 𝑎) ∑ 𝑦𝑇(𝑖)𝑋𝑦(𝑖) ≤ −[𝑥(𝑘 − 𝑎) − 𝑥(𝑘 − 𝑏)]𝑇𝑋[𝑥(𝑘 − 𝑎) − 𝑥(𝑘 − 𝑏)] − 3Ω𝑇𝑧Ω

𝑘−𝑎−1

𝑖=𝑘−𝑏

 

where Ω = 𝑥(𝑘 − 𝑎) + 𝑥(𝑘 − 𝑏) − χ(𝑘,𝑎,𝑏) 
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Definition 1: For constants 𝜛 and 𝑁, the time-varying disturbance input 𝜛 satisfies the following condition 

∑𝜔𝑇(𝑘)𝜔(𝑘) ≤ 𝜛

𝑁

𝑘=0

 

Notations: 

  ℝ𝑛denotes the n-dimensional Euclidean space. For symmetric matrices 𝑀, 𝑀 > 0 (𝑀 ≥ 0) means that the 

matrices are positive definite (semi-positive definite). 𝜆min(𝑃) (𝜆max(𝑃)) represents the minimum (maximum) 

eigenvalues of symmetric matrices 𝑃. 0 and 𝐼 represent the zero matrix and identity matrix, respectively. Transpose of 

matrix M, is shown with 𝑀𝑇. ‖. ‖ stands for the Euclidean norm. ℤ+ represents the set of nonnegative integers. 

 

3.  PROBLEM FORMULATION 

In Fig. 1, a distributed network which consists of 4 subsystems is shown. Each subsystem is controlled locally, 

while due to the interconnection between them, each one should be aware of the states of other ones. However, the 

continuous transmission of information between subsystems reduces the bandwidth and wastes energy in the 

communication network. Therefore, model-based event-triggered control has been proposed. 

 

 
 

Fig. 1. Configuration of a distributed network. 

  

The overview of the event-triggered fuzzy control for 𝑎th subsystem is shown in Fig. 2. Fuzzy system model, 

event trigger engine, observer, and controller gains are placed in the remote telemetry unit. State measurement in 

remote telemetry units occurs every ℎ seconds. The event trigger engine determines the time to send information to 

neighboring subsystems by comparing the states obtained in the corresponding subsystem and the states of the fuzzy 

model of the entire system. When the information transmission happens, the remote measurement unit partially 

updates the fuzzy model of the whole network by receiving the states of the neighboring subsystems. 

 

 
Fig. 2. Event-triggered fuzzy control of the 𝑎th subsystem. 

3.1.  Fuzzy Plant 
Consider a fuzzy T-S plant in which the 𝑖th rule for the 𝑎th subsystem is as follows. 
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IF 𝓋1
𝑎(𝑘) is 𝜇𝑖1

𝑎   and ⋯ and 𝓋𝑔
𝑎(𝑘) 𝑖𝑠 𝜇𝑖𝑔

𝑎   THEN 

 

(1) {
𝑥𝑎(𝑘 + 1) = 𝐴𝑖

𝑎𝑥𝑎(𝑘) + 𝐵𝑖
𝑎𝑢𝑎(𝑘) + 𝐷𝑖

𝑎𝜔(𝑘)

𝑧𝑎(𝑘) = 𝐺𝑖
𝑎𝑥𝑎(𝑘) + 𝐻𝑖

𝑎𝑢𝑎(𝑘) + 𝐿𝑖
𝑎𝜔(𝑘)

 

 

where for the 𝑎th subsystem, 𝑖 = 1,2, …, 𝑟 is the number of if-then rules, 𝜇𝑖𝑗
𝑎 (𝑖 = 1,2,…,𝑟; 𝑗 = 1,2,…,𝑔) and 𝜗𝑗

𝑎(𝑘) 

(𝑗 = 1,2,…,𝑔) represent fuzzy sets and premise variables respectively. 𝑥𝑎(𝑘) ∈ 𝑅𝑛×1 is the state vector of the plant 

and  𝜔(𝑘) ∈ 𝑅𝑚×1 is an external disturbance that satisfies Definition 1. 𝑢𝑎(𝑘) ∈ 𝑅𝑚×1 and 𝑧𝑎(𝑘) ∈ 𝑅𝑝×1 are control 

input and controlled output of the plant, respectively. 𝐴𝑖
𝑎 ∈ 𝑅𝑛×𝑛 , 𝐵𝑖

𝑎 ∈ 𝑅𝑛×𝑚, 𝐷𝑖
𝑎 ∈ 𝑅𝑛×𝑚,𝐺𝑖

𝑎 ∈ 𝑅𝑝×𝑛, 𝐻𝑖
𝑎 ∈

𝑅𝑝×𝑚, 𝐿𝑖
𝑎 ∈ 𝑅𝑝×𝑚 (𝑖 = 1, 2,⋯,𝑟) are constant known real matrices. The total number of subsystems is equal to 𝑛. 

The dynamics of fuzzy plant (1) are obtained as follows: 

 

(2) 

{
 
 

 
 𝑥𝑎(𝑘 + 1) =∑ℎ𝑖

𝑎(𝜗(𝑘))[𝐴𝑖
𝑎𝑥𝑎(𝑘) + 𝐵𝑖

𝑎𝑢𝑎(𝑘) + 𝐷𝑖
𝑎𝜔(𝑘)]

𝑟

𝑖=1

𝑧𝑎(𝑘) =∑ℎ𝑖
𝑎(𝜗(𝑘))[𝐺𝑖

𝑎𝑥𝑎(𝑘) + 𝐻𝑖
𝑎𝑢𝑎(𝑘) + 𝐿𝑖

𝑎𝜔(𝑘)]

𝑟

𝑖=1

  

 

 

Where, ℎ𝑖
𝑎(𝜗(𝑘)) =

∏ 𝜇𝑖𝑗
𝑎 (𝜗𝑗(𝑘))

𝑔
𝑗=1

∑ ∏ 𝜇𝑖𝑗
𝑎 (𝜗𝑗(𝑘))

𝑔
𝑗=1

𝑟
𝑗=1

 is the fuzzy basis function and 𝜇𝑖𝑗
𝑎 (𝜗𝑗(𝑘)) represents the membership grade 

of 𝜗𝑗(𝑘) in 𝜇𝑖𝑗
𝑎 , which satisfies ℎ𝑖

𝑎(𝜗(𝑘)) > 0 and ∑ ℎ𝑖
𝑎(𝜗(𝑘)) = 1𝑟

𝑖=1 . 

Definition 2: (Finite-Time Bounded) [17] The Matrix 𝑅 > 0 and the positive constant values 𝑐1, 𝑐2, 𝜛 and positive 

integer 𝑁 are given by the condition 𝑐1 < 𝑐2. System (2) with 𝑢(𝑘) ≡ 0 and Definition 1 is finite-time bounded 

according to (𝑐1,𝑐2,𝜛,𝑁,𝑅), if 𝑥
𝑇(0)𝑅𝑥(0) < 𝑐1 ⟹ 𝑥(𝑘)𝑇𝑅𝑥(𝑘) < 𝑐2 , ∀𝑘 ∈ {1,2,⋯,𝑁} 

 

3.2.  Fuzzy Model of Interconnected Subsystems 
Due to the uncertainty in subsystems model which is caused by imperfect modeling, subsystems matrices are not 

necessarily equal to model matrices. So the available model of 𝑎th subsystem with 𝑎 ∈ {1,⋯,𝑛} is as follows. 

 

IF𝓋1
𝑎(𝑘) is 𝜇𝑖1

𝑎 and⋯and 𝓋𝑔
𝑎(𝑘) is 𝜇𝑖𝑔

𝑎 THEN 

 

{
𝑥̂𝑎(𝑘 + 1) = 𝐴̂𝑖

𝑎𝑥̂𝑎(𝑘) + 𝐵̂𝑖
𝑎𝑢𝑎(𝑘) + ∑ 𝐴̂𝑖

𝑎𝑏𝑥̂𝑏(𝑘)

𝑛

𝑏=1,𝑏≠𝑎

𝑧̂𝑎(𝑘) = 𝐺̂𝑖
𝑎𝑥̂𝑎(𝑘)                                                            

 

(3) {
𝑥̂𝑎(𝑘 + 1) = 𝐴̂𝑖

𝑎𝑥̂𝑎(𝑘) + 𝐵̂𝑖
𝑎𝑢𝑎(𝑘) + ∑ 𝐴̂𝑖

𝑎𝑏𝑥̂𝑏(𝑘)

𝑛

𝑏=1,𝑏≠𝑎

𝑧̂𝑎(𝑘) = 𝐺̂𝑖
𝑎𝑥̂𝑎(𝑘)                                                            

 

 

Where, 𝑥̂𝑎(𝑘) ∈ 𝑅𝑛×1 is the model state of 𝑎th subsystem and 𝑥̂𝑏(𝑘) ∈ 𝑅𝑛×1 is the state of the neighboring 

subsystem 𝑏, and 𝑛𝑎 and 𝑛𝑏 represent the total number of neighbor subsystems of 𝑎th and 𝑏th control subsystem. 

Matrices 𝐴̂𝑖
𝑎 ∈ 𝑅𝑛×𝑛,𝐴̂𝑖

𝑎𝑏 ∈ 𝑅𝑛×𝑛,𝐵̂𝑖
𝑎 ∈ 𝑅𝑛×𝑚,𝐺̂𝑖

𝑎 ∈ 𝑅𝑝×𝑛 are constant known real matrices. 𝑖 = 1,2, … , 𝑟 is the 

number of if-then rules. 𝜇𝑖𝑗
𝑎 (𝑖 = 1,2, … ,𝑟; 𝑗 = 1,2, … ,𝑔) and 𝜗𝑗

𝑎(𝑘) (𝑗 = 1,2, … ,𝑔) represent fuzzy sets and premise 

variables, respectively. 𝑢𝑎(𝑘) ∈ 𝑅𝑚×1 is control input and 𝑧̂𝑎(𝑘) ∈ 𝑅𝑞×1 is the output. 

The dynamics of model (3) are obtained as follows 
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(4) 

𝑥̂𝑎(𝑘 + 1) =∑

                                                                          

ℎ𝑖
𝑎(𝜗(𝑘)) [𝐴̂𝑖

𝑎𝑥̂𝑎(𝑘) + 𝐵̂𝑖
𝑎𝑢𝑎(𝑘) + ∑ 𝐴̂𝑖

𝑎𝑏𝑥̂𝑏(𝑘)

𝑛

𝑏=1,𝑏≠𝑎

]

𝑟

𝑖=1

𝑧̂𝑎(𝑘) = ∑ℎ𝑖
𝑎(𝜗(𝑘))[𝐺̂𝑖

𝑎𝑥̂𝑎(𝑘)]                                                                     

𝑟

𝑖=1

 

 

 

Where ℎ𝑖
𝑎(𝜗(𝑘)) =

∏ 𝜇𝑖𝑗
𝑎 (𝜗𝑗(𝑘))

𝑔
𝑗=1

∑ ∏ 𝜇𝑖𝑗
𝑎 (𝜗𝑗(𝑘))

𝑔
𝑗=1

𝑟
𝑗=1

 is the fuzzy basis function and 𝜇𝑖𝑗
𝑎 (𝜗𝑗(𝑘)) is defined as the membership 

degree of 𝜗𝑗(𝑘) in 𝜇𝑖𝑗
𝑎 . 

 

3.3.  Fuzzy Observer 
In the implementation of distributed networks due to the multiplicity of system states, sometimes only a part of 

states is measured and other states are estimated by observer in remote telemetry units [29]. 

     The decentralized state observer in the remote telemetry unit of the 𝑎th subsystem can be described in the 

following form: 

 

IF𝓋1
𝑎(𝑘) is 𝜇𝑖1

𝑎 and⋯and 𝓋𝑔
𝑎(𝑘) is 𝜇𝑖𝑔

𝑎 THEN 

 

(5) 𝑥̅𝑎(𝑘 + 1) = 𝐴𝑖
𝑎𝑥̅𝑎(𝑘) + 𝐵𝑖

𝑎𝑢𝑎(𝑘) + L𝑖
𝑎(𝑧𝑎(𝑘) − 𝐺𝑖

𝑎𝑥̅𝑎(𝑘)) 

 

Where for the 𝑎th subsystem, 𝑖 = 1,2, ….,𝑟 is the number of if-then rules, 𝜇𝑖𝑗
𝑎 (𝑖 = 1,2,…,r;j=1,2,…,𝑔) and 𝜗𝑗

𝑎(𝑘) 

(𝑗 = 1,2,…,𝑔) represent fuzzy sets and premise variables, respectively. 𝑥̅𝑎(𝑘) ∈ 𝑅𝑛×1 is the observed state vector of 

𝑎th subsystem and L𝑖
𝑎 ∈ 𝑅𝑛×𝑝 (𝑖 = 1, 2,⋯,𝑟) is the observer matrix gains. 

The dynamic model of (5) is 

(6) 𝑥̅𝑎(𝑘 + 1) =∑𝐴𝑖
𝑎𝑥̅𝑎(𝑘) + 𝐵𝑖

𝑎𝑢𝑎(𝑘) + L𝑖
𝑎(𝑧𝑎(𝑘) − 𝐺𝑖

𝑎𝑥̅𝑎(𝑘))

𝑟

𝑖=1

 

 
3.4.  Model-Based Event-Triggered 

In this scheme, the remote measurement unit plays a different role. In the remote telemetry unit of the 𝑎th 

subsystem, a fuzzy model of all neighboring subsystems and controller gain is embedded. The remote telemetry unit 

of each subsystem periodically calculates the error between the model state and the estimated state obtained by the 

observer which is defined according to the following equation. 

 

(7) e𝑎(𝑘) = x̂𝑎(𝑘) − x̅𝑎(𝑘𝑙)                                             

 

Where x̅𝑎 = [(𝑥̅1)𝑇 (𝑥̅2)𝑇 ⋯ (𝑥̅𝑛)𝑇]𝑇 is the observed state vector at the last moment of data transfer, x̂𝑎  =
[(𝑥̂1)𝑇 (𝑥̂2)𝑇 ⋯ (𝑥̂𝑛)𝑇]𝑇 is the model state vector in the last sampling moment and e(𝑘) ∈ 𝑅𝑛×1 is state error.  

      Consider the event triggering function as below 

 

(8) Ω𝑙‖e
𝑎(𝑘)‖ < 𝜎𝑙‖x̂

𝑎(𝑘)‖                                         

 

Where, 𝜎𝑙 and Ω𝑙  are positive scalars which must be determined. Based on (8), it can be obtained that the next 

transfer instant of the 𝑎th subsystem is determined by the following equation. 

(9) 𝑘𝑙+1
𝑎 = 𝑘𝑙

𝑎 +min{𝑘 > 𝑘𝑙
𝑎|  Ω𝑙‖e

𝑎(𝑘)‖ ≥ 𝜎𝑙‖x̂
𝑎(𝑘)‖} 

 
3.5.  Control Rule 

The 𝑖th control rule of 𝑎th subsystem can be defined as follows 

IF𝓋1
𝑎(𝑘) is 𝜃𝑖1

𝑎 and⋯and𝓋𝑔
𝑎(𝑘) is 𝜃𝑖𝑔

𝑎 THEN 

𝑢𝑎(𝑘) = 𝐾𝑖
𝑎𝑥̂𝑎(𝑘)      
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+ ∑ 𝐾𝑖
𝑎𝑏𝑥̂𝑏(𝑘),     𝑎 ∈ {1,⋯,𝑛}

𝑛𝑎

𝑏=1,𝑏≠𝑎

 

𝑥̂𝑎(𝑘 + 1) = 𝐴̂𝑖
𝑎𝑥̂𝑎(𝑘) + 𝐵̂𝑖

𝑎𝑢𝑎(𝑘) + ∑ 𝐴̂𝑖
𝑎𝑏𝑥̂𝑏(𝑘)

𝑛𝑎

𝑏=1,𝑏≠𝑎

𝑘 ≠ 𝑘𝑙

𝑥̂𝑏(𝑘 + 1) = 𝐴̂𝑖
𝑏𝑥̂𝑏(𝑘) + 𝐵̂𝑖

𝑏𝑢𝑏(𝑘) + ∑ 𝐴̂𝑖
𝑏𝑓
𝑥̂𝑓(𝑘)

𝑛𝑏

𝑓=1,𝑓≠𝑏

𝑘 ≠ 𝑘𝑙

𝑢𝑏(𝑘) = 𝐾𝑖
𝑏𝑥̂𝑏(𝑘) + ∑ 𝐾𝑖

𝑏𝑓
𝑥̂𝑓(𝑘)

𝑛𝑏

𝑏=1,𝑓≠𝑏

                          𝑘 ≠ 𝑘𝑙

𝑥̂𝑏(𝑘 + 1) = 𝐴̂𝑖
𝑎𝑏𝑥̅𝑏(𝑘 − 𝜏) + 𝐵̂𝑖

𝑏𝑢𝑏(𝑘)                         𝑘 = 𝑘𝑙

 

(10) 

Where 𝐾𝑖
𝑎 ∈ 𝑅𝑛×𝑝, 𝐾𝑖

𝑎𝑏 ∈ 𝑅𝑛×𝑝 and 𝐾𝑖
𝑏𝑓
∈ 𝑅𝑛×𝑝 are desired control gains that make the closed loop system finite-

time stable and transfer instants of the 𝑎th subsystem are determined by (9). 𝑥̂𝑓(𝑘) ∈ 𝑅𝑛×1 is the state of the 

neighboring subsystem 𝑓, 𝐴̂𝑖
𝑏𝑓
∈ 𝑅𝑛×𝑛 is the constant known real matrix and other parameters are defined in previous 

sections. Data transmission delay among subsystems when an event occurs is equal to 𝜏 (𝜏 = 𝛼ℎ, 𝛼 = 1,2,3, ….). 

Therefore, (10) can be rewritten as below. 

 

𝑢𝑎(𝑘) = 

∑[ℎ𝑖
𝑎(𝜗(𝑘)) [𝐾𝑖

𝑎𝑥̂𝑎(𝑘) + ∑ 𝐾𝑖
𝑎𝑏𝑥̂𝑏(𝑘)

𝑛𝑎

𝑏=1,𝑏≠𝑎

]]

𝑟

𝑖=1

 

𝑎 ∈ {1,⋯,𝑛} 
 

𝑥̂𝑎(𝑘 + 1) =

∑[ℎ𝑖
𝑎(𝜗(𝑘)) [𝐴̂𝑖

𝑎𝑥̂𝑎(𝑘) + 𝐵̂𝑖
𝑎𝑢𝑎(𝑘) + ∑ 𝐴̂𝑖

𝑎𝑏𝑥̂𝑏(𝑘)

𝑛𝑎

𝑏=1,𝑏≠𝑎

]]

𝑟

𝑖=1

𝑘 ≠ 𝑘𝑙

𝑥̂𝑏(𝑘 + 1) =

∑[ℎ𝑖
𝑎(𝜗(𝑘)) [𝐴̂𝑖

𝑏𝑥̂𝑏(𝑘) + 𝐵̂𝑖
𝑏𝑢𝑏(𝑘) + ∑ 𝐴̂𝑖

𝑏𝑓
𝑥̂𝑓(𝑘)

𝑛𝑏

𝑓=1,𝑓≠𝑏

]]

𝑟

𝑖=1

𝑘 ≠ 𝑘𝑙

𝑢𝑏(𝑘) =

∑[ℎ𝑖
𝑎(𝜗(𝑘)) [𝐾𝑖

𝑏𝑥̂𝑏(𝑘) + ∑ 𝐾𝑖
𝑏𝑓
𝑥̂𝑓(𝑘)

𝑛𝑏

𝑏=1,𝑓≠𝑏

]]

𝑟

𝑖=1

                  𝑘 ≠ 𝑘𝑙

𝑥̂𝑏(𝑘 + 1) =

∑[ℎ𝑖
𝑎(𝜗(𝑘))[𝐴̂𝑖

𝑎𝑏𝑥̅𝑏(𝑘 − 𝜏) + 𝐵̂𝑖
𝑏𝑢𝑏(𝑘) ]]

𝑟

𝑖=1

                           𝑘 = 𝑘𝑙

 

(11) 

4.  FINITE-TIME CONTROL 

In this section, it is assumed that the stabilizer control law stabilizes the closed loop system; then, the event 

triggering coefficients are designed to make the closed loop system finite-time bounded. Using control input (11) and 

event-triggered scheme (8), the fuzzy closed loop control of 𝑎th subsystem is shown as follows. 

x̂𝑎(𝑘 + 1) =∑∑ℎ𝑖
𝑎ℎ𝑗

𝑎(𝐴̂𝑖
𝑎 + 𝐵̂𝑖

𝑎𝐾𝑗
𝑎)

𝑟

𝑗=1

𝑟

𝑖=1

x̂𝑎(𝑘) 

+∑∑ℎ𝑖
𝑎ℎ𝑗

𝑎𝐵̂𝑖
𝑎𝐾𝑗

𝑎

𝑟

𝑗=1

𝑟

𝑖=1

e𝑎(𝑘 − 𝜏) +∑ℎ𝑖
𝑎𝐵̂𝑖

𝑎

𝑟

𝑖=1

𝜔(𝑘) 
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(12) 

 

𝑧̂𝑎(𝑘) = ∑∑ℎ𝑖
𝑎ℎ𝑗

𝑎(𝐺̂𝑖
𝑎 + 𝐻𝑖

𝑎𝐾𝑗
𝑎)

𝑟

𝑗=1

𝑟

𝑖=1

x̂𝑎(𝑘) 

+∑∑ℎ𝑖
𝑎ℎ𝑗

𝑎𝐻𝑖
𝑎𝐾𝑗

𝑎

𝑟

𝑗=1

𝑟

𝑖=1

e𝑎(𝑘 − 𝜏) +∑ℎ𝑖
𝑎𝐿𝑖

𝑎

𝑟

𝑖=1

𝜔(𝑘) 

(13) 

By using (11), the model-based distributed fuzzy T-S controller is obtained as follows 

 

u(𝑘) = 𝐾x̂(𝑘)                                                              𝑘 ≠ 𝑘𝑙 

{
x̂(𝑘 + 1) = 𝐴̃x̂(𝑘) + 𝐵̃u(𝑘)                                  𝑘 ≠ 𝑘𝑙
x̂(𝑘 + 1) = [𝐴̃x̅(𝑘 − 𝜏) + 𝐵̃u(𝑘)]                        𝑘 = 𝑘𝑙

   

(14) 

Where 

 

𝐾 = [

𝐾11

𝐾21
⋮
𝐾𝑛1

𝐾12

𝐾22

⋮
𝐾𝑛2

⋯
⋯
⋱
⋯

𝐾1𝑛

𝐾2𝑛

⋮
𝐾𝑛

] 

(15) 

 

According to (12) – (14), overall system equations with 𝑛 subsystem are as follows. 

x(𝑘 + 1) =∑∑ℎ𝑖ℎ𝑗((𝐴̃𝑖 + ∆𝐴̃𝑖) + 𝐵̃𝑖𝐾𝑗)

𝑟

𝑗=1

𝑟

𝑖=1

x̂(𝑘) 

+∑∑ℎ𝑖ℎ𝑗𝐵̃𝑖𝐾𝑗

𝑟

𝑗=1

𝑟

𝑖=1

e(𝑘 − 𝜏) +∑ℎ𝑖𝐷̃𝑖

𝑟

𝑖=1

𝜔(𝑘) 

(16) 

z(𝑘) =∑∑ℎ𝑖ℎ𝑗(𝐺̃𝑖 +𝐻𝑖𝐾𝑗)

𝑟

𝑗=1

𝑟

𝑖=1

x̂(𝑘) 

+∑∑ℎ𝑖ℎ𝑗𝐻𝑖𝐾𝑗

𝑟

𝑗=1

𝑟

𝑖=1

e(𝑘 − 𝜏) +∑ℎ𝑖𝐿̃𝑖

𝑟

𝑖=1

𝜔(𝑘) 

(17) 

Where 

 

(18) x̂ = [(x̂1)𝑇 (x̂2)𝑇 ⋯ (x̂𝑛)𝑇]𝑇 

(19) e(𝑘) = [(e1)𝑇 (e2)𝑇 ⋯ (e𝑛)𝑇]𝑇 

(20) u = [(𝑢1)𝑇 (𝑢2)𝑇 ⋯ (𝑢𝑛)𝑇]𝑇 

(21) z = [(𝑧̂1)𝑇 (𝑧̂2)𝑇 ⋯ (𝑧̂𝑛)𝑇]𝑇 

(22) ∆𝐴̃𝑖 = diag{∆𝐴̂1 ∆𝐴̂2 ⋯ ∆𝐴̂𝑛} 
(23) 𝐵̃𝑖 = diag{𝐵1 𝐵2 ⋯ 𝐵𝑛} 
(24) 𝐷̃𝑖 = diag{𝐷1 𝐷2 ⋯ 𝐷𝑛} 
(25) 𝐺̃𝑖 = diag{𝐺1 𝐺2 ⋯ 𝐺𝑛} 
(26) 𝐻𝑖 = diag{𝐻1 𝐻2 ⋯ 𝐻𝑛} 
(27) 𝐿̃𝑖 = diag{𝐿1 𝐿2 ⋯ 𝐿𝑛} 

(28) 𝐴̃𝑖 = [

𝐴̂1

𝐴̂21

⋮
𝐴̂𝑛1

𝐴1
𝐴̂2

⋮
𝐴̂𝑛2

⋯
⋯
⋱
⋯

𝐴̂1𝑛

𝐴̂2𝑛

⋮
𝐴̂𝑛

] 
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It is assumed that ∆𝐴̃𝑖 = 𝐸𝐹𝐽, where ∆𝐴̃𝑖 is the parametric uncertainty, 𝐽 and 𝐸 are constant positive known 

matrices with appropriate dimensions. 𝐹 is a real-time variant unknown matrix that satisfies the condition 𝐹𝑇𝐹 ≤ 𝐼. 

Theorem 1: Matrices 𝑃 > 0 and 𝑄 > 0 and constant numbers 𝜖 > 0 and 𝜇 > 1 are given; (16) is finite-time 

bounded with respect to (𝑐1,𝑐2,𝜛,𝑁,𝑅) if the following condition 

(29) (𝑐1 + 𝛾
2𝜇𝑁𝜛) − 𝑐2 < 0 

 

and the following LMI holds. 

 

[

−𝑃
𝑃(𝐴̃𝑖 + 𝐵̃𝑖𝐾𝑗)

𝐸
𝐽

∗
−𝑃
0
0

∗
∗

−𝜖−1𝐼
0

∗
∗
∗

−𝜖𝐼 − 𝛾2𝐼

] < 0 

    (30) 

 

in which the controllers’ gain is obtained by (14). 

Proof: 

Consider the Lyapunov function  

 

(31)  𝑉(𝑘) = xT(𝑘)𝑃x(𝑘)  

 

For 𝑘 ∈ [𝑘𝑙 + 𝜏   𝑘𝑙+1 + 𝜏) by calculating the forward difference and replacing parametric uncertainty ∆𝐴̃𝑖 by 𝐸𝐹𝐽 
one can arrive at 

 

∆𝑉(𝑘) = 𝑉(𝑘 + 1) − 𝑉(𝑘) − 𝛾2𝜔𝑇(𝑘)𝜔(𝑘) 

=∑∑ℎ𝑖ℎ𝑗x
𝑇(𝑘)

𝑟

𝑗=1

𝑟

𝑖=1

[((𝐴̃𝑖 + 𝐵̃𝑖𝐾𝑗) + 𝐸𝐹𝐽)
𝑇
𝑃 + 𝑃((𝐴̃𝑖 + 𝐵̃𝑖𝐾𝑗) + 𝐸𝐹𝐽) − 𝑃] x(𝑘) 

+∑∑ℎ𝑖ℎ𝑗x
𝑇(𝑘)[(𝐴̃𝑖 + 𝐵̃𝑖𝐾𝑗) + 𝐸𝐹𝐽]

𝑇
𝑟

𝑗=1

𝑟

𝑖=1

 𝑃 [𝐵̃𝑖𝐾𝑗] e(𝑘 − 𝜏) 

+∑∑ℎ𝑖ℎ𝑗e
𝑇(𝑘 − 𝜏)[𝐵̃𝑖𝐾𝑗]

𝑇
𝑟

𝑗=1

𝑟

𝑖=1

𝑃[(𝐴̃𝑖 + 𝐵̃𝑖𝐾𝑗) + 𝐸𝐹𝐽]x(𝑘) 

+ ∑∑ℎ𝑖ℎ𝑗e
𝑇(𝑘 − 𝜏)[𝐵̃𝑖𝐾𝑗]

𝑇
𝑟

𝑗=1

𝑟

𝑖=1

𝑃[𝐵̃𝑖𝐾𝑗]e(𝑘 − 𝜏) 

+∑∑ℎ𝑖ℎ𝑗x
𝑇(𝑘)[(𝐴̃𝑖 + 𝐵̃𝑖𝐾𝑗) + 𝐸𝐹𝐽]

𝑇
𝑟

𝑗=1

𝑟

𝑖=1

𝑃𝐷̃𝑖𝜔(𝑘) 

+ ∑∑ℎ𝑖ℎ𝑗𝜔
𝑇(𝑘)𝐷̃𝑖

𝑇
(𝑘)

𝑟

𝑗=1

𝑟

𝑖=1

𝑃[(𝐴̃𝑖 + 𝐵̃𝑖𝐾𝑗) + 𝐸𝐹𝐽]x(𝑘) 

+ ∑∑ℎ𝑖ℎ𝑗𝜔
𝑇(𝑘)𝐷̃𝑖

𝑇
(𝑘)

𝑟

𝑗=1

𝑟

𝑖=1

𝑃[𝐵̃𝑖𝐾𝑗]e(𝑘 − 𝜏) + 

∑∑ℎ𝑖
2𝜔𝑇(𝑘)𝐷̃𝑖

𝑇
𝑟

𝑗=1

𝑟

𝑖=1

𝑃𝐷̃𝑖𝜔(𝑘) − 𝛾
2𝜔𝑇(𝑘)𝜔(𝑘) 

(32) 

Equation (32) can be written as follows 

∑∑ℎ𝑖ℎ𝑗

𝑟

𝑗=1

𝑟

𝑖=1

[x𝑇(𝑘) e𝑇(𝑘 − 𝜏) 𝜔𝑇(𝑘)] [

𝑄11 𝑄12 𝑄13
𝑄12
𝑇 𝑄22 𝑄23

𝑄13
𝑇 𝑄23

𝑇 𝑄33

] [

x(𝑘)

e(𝑘 − 𝜏)

𝜔(𝑘)
] 
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−𝛾2𝜔𝑇(𝑘)𝜔(𝑘) 
(33) 

Where 

(34) 𝑄11 = [((𝐴̃𝑖 + 𝐵̃𝑖𝐾𝑗) + 𝐸𝐹𝐽)
𝑇
𝑃 + 𝑃((𝐴̃𝑖 + 𝐵̃𝑖𝐾𝑗) + 𝐸𝐹𝐽) − 𝑃]  

(35) 𝑄22 = [𝐵̃𝑖𝐾𝑗]
𝑇
𝑃[𝐵̃𝑖𝐾𝑗] 

(36) 𝑄33 = 𝐷̃𝑖
𝑇
𝑃𝐷̃𝑖 

(37) 𝑄12 = [(𝐴̃𝑖 + 𝐵̃𝑖𝐾𝑗) + 𝐸𝐹𝐽]
𝑇
𝑃[𝐵̃𝑖𝐾𝑗] 

(38) 𝑄13 = [(𝐴̃𝑖 + 𝐵̃𝑖𝐾𝑗) + 𝐸𝐹𝐽]
𝑇
𝑃𝐷̃𝑖 

(39) 𝑄23 = [𝐵̃𝑖𝐾𝑗]
𝑇
𝑃𝐷̃𝑖 

By assumption that [

𝑄11 𝑄12 𝑄13
𝑄12
𝑇 𝑄22 𝑄23

𝑄13
𝑇 𝑄23

𝑇 𝑄33

] < 0 and since ℎ𝑖ℎ𝑗(𝜗(𝑘)) > 0 and ∑ ℎ𝑖ℎ𝑗(𝜗(𝑘)) = 1𝑟
𝑖=1 , the above equations 

can be rewritten as follows: 

∆𝑉(𝑘) = [x𝑇(𝑘) e𝑇(𝑘 − 𝜏) 𝜔𝑇(𝑘)] [

x(𝑘)

e(𝑘 − 𝜏)

𝜔(𝑘)
] < 𝛾2𝜔𝑇(𝑘)𝜔(𝑘)  

(40) 

     Lemma 3 has been used to check the performance of the system in the face of parametric uncertainty. Based on 

Lemma 3, the following inequality is correct. 

 

((𝐴̃𝑖 + 𝐵̃𝑖𝐾𝑗) + 𝐸𝐹𝐽)
𝑇

𝑃 ((𝐴̃𝑖 + 𝐵̃𝑖𝐾𝑗) + 𝐸𝐹𝐽) 

≤ (𝐴̃𝑖 + 𝐵̃𝑖𝐾𝑗)
𝑇
(𝑃−1 − 𝜖𝐸𝐸𝑇)−1(𝐴̃𝑖 + 𝐵̃𝑖𝐾𝑗) 

+𝜖−1𝐽𝑇𝐽 + 𝛾2𝜔𝑇𝜔 

(41) 

According to Lemma 2, the above inequality can be written as 

 

[

−𝑃
𝑃(𝐴̃𝑖 + 𝐵̃𝑖𝐾𝑗)

𝐸
𝐽

∗
−𝑃−1

0
0

∗
∗

−𝜖−1𝐼
0

∗
∗
∗

−𝜖𝐼 − 𝛾2𝐼

] < 0 

(42) 

     Then, pre- and post-multiplying (42) by diag{I. P𝑖 . I. I} and its transpose, respectively; (30) is obtained. 

     Based on Lemma 4, it can be obtained that 

 

(43) ∆𝑉(𝑘) − (𝜇 − 1)𝑉(𝑘) < 0 

 

that is 

 

(44) 𝑉(𝑘) < 𝜇𝑉(𝑘 − 1) 
 

so it is concluded that 

 

(45) 𝑉(𝑘) < 𝜇𝑉(𝑘 − 1) < 𝜇2𝑉(𝑘 − 2) < ⋯ < 𝜇𝑁𝑉(0)  
 

Therefore, for (29) 

 

𝑉(𝑘) ≤ 𝜇𝑉(𝑘 − 1) + 𝛾2𝜔𝑇(𝑘 − 1)𝜔(𝑘 − 1) 
           ≤ 𝜇2𝑉(𝑘 − 2) + 𝜇𝛾2𝜔𝑇(𝑘 − 1)𝜔(𝑘 − 1) + 𝜔𝑇(𝑘 − 2)𝜔(𝑘 − 2) 
⋮ 

           ≤ 𝜇𝑁𝑉(0) + 𝛾2∑𝜇𝑁+1−𝑖𝜔𝑇(𝑘 − 𝑖)𝜔

𝑁−1

𝑖=0

(𝑘 − 𝑖) 
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           ≤ 𝜇𝑁𝑉(0) + 𝛾2𝜇𝑁𝜛 

 

by placing P̅ = 𝑅−1/2𝑃𝑅−1/2 , it can be obtained V(0) = x𝑇(0)𝑅−1/2P̅𝑅−1/2 x(0) ≤ 𝑐1. Based on (29), it can be 

found that 

 
(46) 𝑐2 − (𝑐1 + 𝛾

2𝜇𝑁𝜛) > 0  
 

Therefore, it can be concluded that 

 

(47) 
x𝑇(𝑘)𝑅x(𝑘) < 

𝑐2
𝑐1 + 𝛾

2𝜇𝑁𝜛
× (𝑐1 + 𝛾

2𝜇𝑁𝜛) = 𝑐2 

 

Based on Definition 1, (16) is finite-time bounded according to (𝑐1,𝑐2. 𝜛,𝑁,𝑅), and the proof is 

completed. 

In the following, the condition of minimum time between events for the proposed controller is 

demonstrated. For this purpose, 𝑑𝑀 is considered as the minimum time between events and is defined in 

(48). 

 

(48) 0 ≤ 𝑑(𝑘) ≤ ℎ + 𝜏 = 𝑑𝑀 

      

      Obviously, if there is a minimum time between executions, the number of execution times cannot be infinite. That 

is, Zeno's behavior can be removed. 

Theorem 2: Consider the fuzzy T-S system (16) with event-triggering condition (8), then the minimum inter-event 

time is equal to 𝑑𝑀. 

Proof:  

     It concluded that ∆𝑒(𝑘) = −∆𝑥(𝑘), then for 𝑘 ∈ [𝑘𝑙 + 𝜏   𝑘𝑙+1 + 𝜏) 

‖∆𝑒(𝑘)‖ ≤ ‖∑∑ℎ𝑖ℎ𝑗((𝐴̃𝑖 + 𝐵̃𝑖𝐾𝑗)

𝑟

𝑗=1

𝑟

𝑖=1

x(𝑘) +∑∑ℎ𝑖ℎ𝑗𝐵̃𝑖𝐾𝑗

𝑟

𝑗=1

𝑟

𝑖=1

𝑒(𝑘 − 𝜏) +∑ℎ𝑖𝐷̃𝑖

𝑟

𝑖=1

𝜔(𝑘)‖ 

≤ ‖∑∑ℎ𝑖ℎ𝑗𝐵̃𝑖𝐾𝑗

𝑟

𝑗=1

𝑟

𝑖=1

−∑∑ℎ𝑖ℎ𝑗((𝐴̃𝑖 + 𝐵̃𝑖𝐾𝑗)

𝑟

𝑗=1

𝑟

𝑖=1

‖‖𝑒(𝑘 − 𝜏)‖ 

+‖∑∑ℎ𝑖ℎ𝑗(𝐴̃𝑖 + 𝐵̃𝑖𝐾𝑗)

𝑟

𝑗=1

𝑟

𝑖=1

+∑∑ℎ𝑖ℎ𝑗𝐵̃𝑖𝐾𝑗

𝑟

𝑗=1

𝑟

𝑖=1

‖‖𝑥(𝑘𝑙)‖ + ‖∑ℎ𝑖𝐷̃𝑖

𝑟

𝑖=1

‖ ‖𝜔(𝑘)‖ 

  (49) 

     Since ℎ𝑖ℎ𝑗(𝜗(𝑘)) > 0 and ∑ ℎ𝑖ℎ𝑗(𝜗(𝑘)) = 1𝑟
𝑖=1 , the above equations is written as follows: 

 

‖∆𝑒(𝑘)‖ ≤ ‖(𝐴̃𝑖 + 𝐵̃𝑖𝐾𝑗)x(𝑘) + 𝐵̃𝑖𝐾𝑗𝑒(𝑘 − 𝜏) + 𝐷̃𝑖𝜔(𝑘)‖ 

≤ ‖𝐵̃𝑖𝐾𝑗 − (𝐴̃𝑖 + 𝐵̃𝑖𝐾𝑗)‖‖𝑒(𝑘 − 𝜏)‖ + ‖(𝐴̃𝑖 + 𝐵̃𝑖𝐾𝑗) + 𝐵̃𝑖𝐾𝑗‖‖𝑥(𝑘𝑙)‖ + ‖𝐷̃𝑖‖‖𝜔(𝑘)‖ ≤ 𝑣1‖𝑒(𝑘 − 𝜏)‖ + 𝑣2 

  (50) 

     in which 

 

 𝑣1 = 𝑚𝑎𝑥{|𝜆((𝐵̃𝑖𝐾𝑗) − (𝐴̃𝑖 + 𝐵̃𝑖𝐾𝑗))|} 

(51) 𝑣2 = 𝑚𝑎𝑥{|𝜆(𝐴̃𝑖 + 𝐵̃𝑖𝐾𝑗)|}‖𝑥(𝑘𝑙)‖ + 𝑚𝑎𝑥{|𝜆(𝐷̃𝑖)|}√𝜛 

 

     For 𝑘 ∈ [𝑘𝑙 + 𝜏   𝑘𝑙+1 + 𝜏), the following auxiliary variable is defined. 

 

(52) ‖∆𝑣(𝑘)‖ = 𝑣1‖𝑣(𝑘)‖ + 𝑣2 

 

     Where ‖∆𝑣(𝑘 − 𝜏)‖ = 0. Based on comparison lemma it can be found that 𝑒(𝑘 − 𝜏) ≤ 𝑣(𝑘). Moreover, for 𝑘 ∈
[𝑘𝑙 + 𝜏   𝑘𝑙+1 + 𝜏), two modes will be obtained. 
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A) 𝑣1 ≠ 0 

(53) ‖𝑣(𝑘)‖ =
𝑣2
𝑣1
(𝑒𝑣1(𝑘−𝑘𝑙) − 1) 

B) 𝑣1 = 0 

(54) ‖𝑣(𝑘)‖ = 𝑣2(𝑘 − 𝑘𝑙) 
 

      On the other hand, based on event triggering condition (8) for 𝑘 ∈ [𝑘𝑙 + 𝜏   𝑘𝑙+1 + 𝜏), it can be concluded that 

 

(55) ‖𝑒(𝑘 − 𝜏)‖ ≤
𝜎𝑙
Ω𝑙
‖𝑥(𝑘𝑙)‖ ≤

𝜎𝑙
Ω𝑙
‖𝑥(𝑘𝑙) − 𝑒(𝑘 − 𝜏)‖ 

 

       Considering that, 
𝜎𝑙

Ω𝑙
≅ 1 and ‖𝑥(𝑘𝑙) − 𝑒(𝑘 − 𝜏)‖

2 ≥ (‖𝑥(𝑘𝑙)‖ − ‖𝑒(𝑘 − 𝜏)‖)
2 then the sufficient condition for 

(55) is obtained as follows. 

 

(56) ‖𝑒(𝑘 − 𝜏)‖2 ≤ (‖𝑥(𝑘𝑙)‖ − ‖𝑒(𝑘 − 𝜏)‖)
2 

 

If 𝑣1 ≠ 0,  by combining (53) and (55), it can be obtained that 

 

(57) 𝑑𝑀 =
1

𝑣1
ln (1 +

𝑣1
𝑣2
‖𝑥(𝑘𝑙)‖) 

 

If 𝑣1 ≠ 0,  by combining (53) and (55), it can be obtained that 

 

(58) 𝑑𝑀 =
1

𝑣2
‖𝑥(𝑘𝑙)‖ 

 

From (57) and (58), it can be concluded that 𝑑𝑀 > 0. So, there is a minimum inter event time. 

 

5.  SIMULATION 

In this section, the effectiveness and advantages of the developed model-based finite-time event-triggered control 

scheme have been checked using MATLAB software for a centralized and a distributed fuzzy T-S system, 

respectively. 

Example 1 ([37]) 

     A class of discrete fuzzy system is shown below. 

 

Rule 1: IF 𝑥1(𝑘) is 𝑀1 THEN  

𝑥(𝑘 + 1) = 𝐴1𝑥(𝑘) + 𝐵1𝑢(𝑘),𝑧(𝑘) = 𝐶1𝑥(𝑘) 
Rule 2: IF 𝑥1(𝑘) is 𝑀2 THEN  

𝑥(𝑘 + 1) = 𝐴2𝑥(𝑘) + 𝐵2𝑢(𝑘),𝑧(𝑘) = 𝐶2𝑥(𝑘) 
 

     Membership functions for rules 1 and 2 are as below. 

 

𝑀1(𝑥1(𝑥)) =
1

1+exp (−2𝑥1(𝑘))
  

𝑀2(𝑥1(𝑥)) = 1 − 𝑀1(𝑥1(𝑥)) 
With 

𝐴1 = [
−0.5 2
−0.1 1.1

] , 𝐴2 = [
−0.19 0.5
−0.1 −1.2

] 

𝐵1 = [
4.1
4.8
] , 𝐵2 = [

3
0.1
] 

𝐶1 = [1 0.3], 𝐶2 = [0.8 0.2] 
 

     Control rule is as below. 

Rule 1: IF 𝑥1(𝑘) is 𝑀1 THEN 𝑢(𝑘) = 𝑘1𝑥1(𝑘) 
Rule 2: IF 𝑥1(𝑘) is 𝑀2 THEN 𝑢(𝑘) = 𝑘2𝑥1(𝑘) 
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Initial conditions are 

 

𝑥1(0) = 2.054, 𝑥2(0) = −2.054 

 

In Fig.3. the time between two consecutive events is shown. By choosing 
𝜎𝑙

𝛺𝑙
= 0.22, the event-triggered system is 

stable. Based on (42), the value of 
𝜎𝑙

𝛺𝑙
 is equal to 0.9. In Fig.4. event ratio (𝑅) versus error criterion (

𝜎𝑙

𝛺𝑙
) from 0 to 0.22 

is shown. As can be seen, with the increase in the error criterion (
𝜎𝑙

𝛺𝑙
), event ratio decreases. 

 
Fig. 3. The time between two consecutive events for a stable system. 

 

 

Fig. 4. Event ratio versus error criterion (
𝜎𝑙

𝛺𝑙
). 

 

In Fig. 5, the history of 𝑥(𝑘)𝑇𝑅𝑥(𝑘) for the stable system is shown. For the given initial conditions, it can be seen 

that 

 

𝑥(0)𝑇𝑅𝑥(0) < 8.4378 ⟹ 𝑥(𝑘)𝑇𝑅𝑥(𝑘) < 48.28 

 

      So, based on Definition 1, the system is finite-time bounded. 

 
Fig. 5. History of 𝑥(𝑘)𝑇𝑅𝑥(𝑘). 
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Example 2 

     Consider the DC-DC buck converter of a subsystem of a distributed network as in Fig. 6. It should be noted that 

uncertainties and disturbances are not considered. 

 

 
Fig. 6. DC-DC buck converter of a subsystem. 

 

     To verify the effectiveness of the proposed method, based on the distributed topology that is presented 

in [38-41], the distributed grid which consists of four DC-DC buck converters is simulated as in Fig. 7. 

 

 
Fig. 7. Islanded DC microgrid including 4 distributed generators (DGs). 

 

Fuzzy T-S model of DC-DC buck converter is as follows [42] 

 

(59) 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵(𝑥)𝑢(𝑘) + 𝐷 

 

Where 

0 ≤ 𝑢(𝑘)  ≤ 1, 𝑥(𝑘) = [
𝑖(𝑘)
𝑣(𝑘)

] 

𝐴 =

[
 
 
 
 
−
𝑅𝐿𝑖+

𝑅𝑖𝑅𝑐𝑖
𝑅𝑖+𝑅𝑐𝑖

𝐿𝑖
−

𝑅𝑖

𝐿𝑖𝑅𝑖+𝐿𝑖𝑅𝑐𝑖
𝑅𝑖

𝐶𝑖𝑅𝑖+𝐶𝑖
−

1

𝐶𝑖𝑅𝑖+𝐶𝑖𝑅𝑐𝑖]
 
 
 
 

 , 

𝐵(𝑥) = [−
𝑅𝑀𝑖𝑖

(𝑡)−𝐸−𝑉𝛾

𝐿𝑖

0
], 𝐷 = [

−
𝑉𝛾

𝐿𝑖

0
] 

 

Where 𝑖 = 1, … ,4 is the index of DGs. 

DC-DC buck converter parameters of each of the 4 DGs and parameters of DC-DC buck converter model are 

presented in Table 1 and Table 2, respectively. Also, the distributed network parameters are presented in Table 3. 
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Table 1. DC-DC Buck Converter Parameters. 

Parameter Value 

𝑅1,𝑅2, 𝑅3,𝑅4 6 Ω, 5.7 Ω, 6.3 Ω, 6.6 Ω 

𝑅𝐿1, 𝑅𝐿2, 𝑅𝐿3, 

 𝑅𝐿4 

 48.4 mΩ, 45.9 mΩ, 50.8 mΩ, 

53.2 mΩ 

𝐸 30 V 

𝐿1, 𝐿2, 𝐿3, 𝐿4 98.5 mH, 93.6 mH, 103.5 mH, 108.4 

mH 

𝑅𝐶1, 𝑅𝐶2, 𝑅𝐶3, 𝑅𝐶4 0.162 Ω, 0.153 Ω, 0.170 Ω, 0.178 Ω 

𝑅𝑀1, 𝑅𝑀2, 𝑅𝑀3, 𝑅𝑀4 0.27 Ω, 0.25 Ω, 0.28 Ω, 0.29 Ω 

𝑉𝛾 0.82 V 

𝐶1, 𝐶2, 𝐶3, 𝐶4 202.5 μF, 192.3 μF, 212.6 μF, 222.7 μF 

 

Table 2. Model Parameters of DC-DC Buck Converter. 

Parameter Value 

𝑅𝑚1,𝑅𝑚2, 𝑅𝑚3,𝑅𝑚4 4.5 Ω, 4.2 Ω, 4.8 Ω, 5.1 Ω 

𝑅𝐿𝑚1, 𝑅𝐿𝑚2, 𝑅𝐿𝑚3, 𝑅𝐿𝑚4 36.3 mΩ, 33.8 mΩ, 38.7 mΩ, 41.4 

mΩ 

𝐸 30 V 

𝐿𝑚1, 𝐿𝑚2, 𝐿𝑚3, 𝐿𝑚4 73.8 mH, 68.9 mH, 78.8 mH, 83.7 

mH 

𝑅𝐶𝑚1, 𝑅𝐶𝑚2, 𝑅𝐶𝑚3, 𝑅𝐶𝑚4 0.121 Ω, 0.113 Ω, 0.129 Ω, 0.137 Ω 

𝑅𝑀𝑚1, 𝑅𝑀𝑚2, 𝑅𝑀𝑚3, 𝑅𝑀𝑚4 0.20 Ω, 0.18 Ω, 0.21 Ω, 0.22 Ω 

𝑉𝛾 0.82 V 

𝐶𝑚1, 𝐶𝑚2, 𝐶𝑚3, 𝐶𝑚4 151.8 μF, 141.7 μF, 162 μF, 172.1 μF 

 

Table 3. Distributed Network Parameters. 

Parameter Value 

𝑅12,𝑅23, 𝑅34,𝑅41 0.1 Ω 

𝐿12, 𝐿23, 𝐿34, 𝐿41 2 μF 

𝐿𝑜𝑎𝑑1,𝐿𝑜𝑎𝑑2, 𝐿𝑜𝑎𝑑3,𝐿𝑜𝑎𝑑4 16 Ω 

 

To obtain the T-S fuzzy model of DC-DC buck converter, an interval with 𝑟 = 2 rules is chosen as follows. 

 

Rule 1: IF 𝑖(𝑘) = 𝑖𝑚𝑖𝑛 THEN  
𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + ℎ1(𝑘)𝐵1 + 𝐷 

Rule 2: IF 𝑖(𝑘) = 𝑖𝑚𝑎𝑥  THEN  
𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + ℎ2(𝑘)𝐵2 + 𝐷 

 

Where  

𝐵1 = [
−𝑅𝑚𝑖𝑚𝑖𝑛+𝐸+𝑉𝛾

𝐿

0
] , 𝐵2 = [

−𝑅𝑚𝑖𝑚𝑎𝑥+𝐸+𝑉𝛾

𝐿

0
].ℎ1(𝑘) =

𝑖𝑚𝑎𝑥−𝑖(𝑘)

𝑖𝑚𝑎𝑥−𝑖𝑚𝑖𝑛
 and ℎ2(𝑘) =

𝑖(𝑘)−𝑖𝑚𝑖𝑛

𝑖𝑚𝑎𝑥−𝑖𝑚𝑖𝑛
 are membership functions.  

 

Using the parameters of Table 1, matrix 𝐴2×2 of distributed network is defined as below. 

 

𝐴 =  [
𝐴11 𝐴12
𝐴21 𝐴22

] = [

−2.08 −9.87
4808 −801.40

−1.98 −3.38
4568 −761.33

−2.19 −10.37
5048 −841.47

−2.29 −10.85
5289 −881.54

] 

 

Using the parameters of Table 2, the initial matrix 𝐴𝑚2×2
 of the distributed network is defined as below. When the 

information transmission happens, the matrix 𝐴𝑚2×2
 is updated by receiving the states of the neighboring subsystems. 
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𝐴𝑚 = [
𝐴𝑚11 𝐴𝑚12
𝐴𝑚21 𝐴𝑚22

] = [

−1.46 −6.91
3365 −560.98

−1.65 −7.40
3606 −601.05

−1.66 −7.90
3846 −641.12

−1.77 −10.85
4087 −681.19

] 

     

     Event triggering function is defined based on (8). State feedback control is defined as below. 

 

(60) 𝑢 = 𝐾𝑚𝑣(𝑘) + 𝑣𝑟𝑒𝑓  

      

     State feedback gains are calculated in such a way that the closed-loop poles of the subsystems are placed at -20.77 

and -806.32. It should be noted that the optimal location of closed-loop poles is based on [43]. So, the state feedback 

gains are calculated as below. 

 

𝐾𝑚 = [
𝐾𝑚1 𝐾𝑚3
𝐾𝑚2 𝐾𝑚4

] = [
0.15 0.09 0.14 0.09
0.14 0.09 0.13 0.09

] 

       

      The voltage and current response, event-triggered instants, and the control input of the closed loop distributed 

smart grid by using Fuzzy Model-Based Event-Triggered Control (FMBETC) and Fuzzy Time-Based Event-Triggered 

Control (FTBETC) which is proposed in [32] for subsystems 1 to 4 are shown in Figs. 8-11. As can be seen by using 

FMBETC, the four subsystems are able to track the reference input but FTBETC failed to track the reference input 

while fewer events are triggered in FMBETC than in FTBETC. 

 
Fig. 8. Performance evaluation of DG 1 within microgrid. 

 
Fig. 9. Performance evaluation of DG 2 within microgrid. 
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Fig. 10. Performance evaluation of DG 3 within microgrid. 

 
Fig. 11. Performance evaluation of DG 4 within microgrid. 

 

One of the advantages of the model-based event-triggered scheme is to increase the network bandwidth by 

reducing the sent samples on the network. The ratio of the sent samples to the total number of measured samples is 

called the event ratio. In Table 4 event ratio of each subsystem is compared. 

 

Table 4. The event ratio of each subsystem obtained by FMBETC and FTBETC. 
 Subsystem 

1 

Subsystem 

2 

Subsystem 

3 

Subsystem 

4 

FMBETC 0.117 0.105 0.110 0.103 

FTBETC 

[32] 

0.266 0.266 0.264 0.268 

 

In Fig. 12. the event ratio (𝑅) versus the error criterion (
𝜎𝑙

𝛺𝑙
) is shown. As can be seen, with the increase of the error 

criterion (
𝜎𝑙

𝛺𝑙
), event ratio decreases. 

In Fig. 13. the history of 𝑥(𝑘)𝑇𝑅𝑥(𝑘) for a stable system is shown. For equal initial conditions for subsystems 1 to 

4 respectively, it can be observed that 

 

𝑥1(0)
𝑇𝑅𝑥1(0) < 3.2402 ⇒ 𝑥1(𝑘)

𝑇𝑅𝑥1(𝑘) < 19.17 

𝑥2(0)
𝑇𝑅𝑥2(0) < 3.2402 ⇒ 𝑥2(𝑘)

𝑇𝑅𝑥2(𝑘) < 13.60 

𝑥3(0)
𝑇𝑅𝑥3(0) < 3.2402 ⇒ 𝑥3(𝑘)

𝑇𝑅𝑥3(𝑘) < 9.43 

𝑥4(0)
𝑇𝑅𝑥4(0) < 3.2402 ⇒ 𝑥4(𝑘)

𝑇𝑅𝑥4(𝑘) < 6.52 

     



Majlesi Journal of Electrical Engineering                                              Vol. 18, No. 1, March 2024 
 

134 

 

     The above inequalities satisfy Definition 2. Also, the closed-loop system satisfies LMI (30) as the following 

equation. So, according to Theorem 2, the closed loop system is finite-time bounded. 

 

[
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0
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0
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−854
0
0
0
−4 ]

 
 
 
 
 
 
 

< 0 

 

 
Fig. 12. Event ratio (𝑅) versus error criterion (

𝜎𝑙

𝛺𝑙
). 

 

 
Fig. 13. History of 𝑥(𝑘)𝑇𝑅𝑥(𝑘). 

6.  CONCLUSION 

In this paper, model-based finite-time bounded event-triggered control for distributed fuzzy T-S systems is 

presented. For this purpose, the whole network model is embedded locally in both the controller and the remote 

telemetry unit. In the time interval between two consecutive events, the fuzzy model of the entire network is used in 

the controller to estimate the states of the plant. The model-based state estimation leads to the reduction of the state 

error and as a result, the instants of data transmission are reduced. By the model of the entire network and the event 

triggering block placed locally in each remote telemetry unit, the time of data transmission on the distributed network 

is determined. Finally, the finite-time boundedness of the closed-loop system has been investigated for a centralized 

system and a distributed system, respectively. 
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