Document Type : Reseach Article

10.57647/j.mjee.2024.1802.39

Abstract

The main objectify of this article subject is the study and feasibility of micro wind turbine used for small farms, the electrical power generated from an axial flux permanent magnet generator when the power scale is in direct correlation with wind velocity. The proposed design shows more economic costs with accepted recovered power. The originality of this proposed generator is due to the flexibility and malleability of stator windings’ various positions connection which
allowed it to pass from the signal phase to multiphase generator. The mechanical coupling between the generator and wind turbine is a direct drive system without mechanical gear when the rotor is designed to excite the stator from hollow disc permanent magnets. However, the generator electromagnetic model study with finite element analyses is carried out in three dimensions thanks to Flux3D accuracy software. The simulation results assent to the forefront of a decision to proceed with primary experimental tests on the designed prototype.

Keywords

[1] H. Gu, W. Y. Liu, Q. W. Gao, and Y. Zhang. “A review
on wind turbines gearbox fault diagnosis methods.”.
Journal Of Vibroengineering, 23(1):26–48, 2021. DOI:
https://doi.org/10.21595/jve.2020.20178.
[2] B. Corley, J. Carroll, and A. Mc Donald. “Fault
detection of wind turbine gearbox using thermal network modelling and SCADA data
.”. Journal of Physics, 1618, 2020. DOI:
https://doi.org/10.1088/1742-6596/1618/2/022042.
[3] Y. Pan, R. Hong, J. Chen, J. Fen, and W.Wu.
“Performance degradation assessment of wind turbine gearbox based on maximum mean discrepancy
and multi-sensor transfer learning Structural.”.
Journal of Health Monitoring, 20(1):118–138, 2021.
DOI: https://doi.org/10.1177/147592172091907.
[4] Y. Yang, A. Liu, H. Xin, and J. Wang. “Fault early
warning of wind turbine gearbox based on multiinput support vector regression and improved ant
lion optimization.”. Journal of Wind Energy, 24:812–
832, 2021. DOI: https://doi.org/10.1002/we.2604.
[5] A. Bensalah, G. Barakat, and Y. Amara. “Electrical
generators for large wind turbine: trends and challenges.”. Journal of MDPI Energies, 15(18):6700,
2022. DOI: https://doi.org/10.3390/en15186700.
[6] Y.Y. Ji and G.J. Li. “Comparative study of axialflux switched reluctance machine with different
core materials.”. 2023 IEEE International Electric
Machines & Drives Conf, , 2022.
[7] G. Cakal and O. Keysan. “Axial flux generator
with novel flat wire for direct-drive wind turbines.”.
IET Renew Power Gener, 15:139–152, 2021. DOI:
https://doi.org/10.1049/rpg2.12011.
[8] M. A. Yazdi, S. A. Saied, and S. M. Mirimani. “Design
and construction of new axial-flux permanent magnet motor. ”. IET Electr. Power Appl, 14(12):
2389–2394, 2020. DOI: https://doi.org/10.1049/ietepa.2020.0126.
[9] J. Du, P. Lu, and De. Liang. “Optimal design of a
linear transverse-flux machine with mutually coupled windings for force ripple reduction. ”. IET
Electr. Power Appl., 12(2):271–280, 2018. DOI:
https://doi.org/10.1049/iet-epa.2017.0227.
[10] A. Nyitrai and M. Kuczmann. “Magnetic equivalent
circuit and finite element modeling of anisotropic
rotor axial flux permanent magnet synchronous
motors with fractional slot distributed winding.”.
IET Electr. Power Appl., 17(5):709–720, 2023. DOI:
https://doi.org/10.1049/elp2.12298.
[11] K. Wirtayasa and C. Y. Hsiao. “Performances comparison of axial-flux permanent magnet generators
for small-scale vertical-axis wind turbine.”. Alexandria Engineering Journal, 61:1201–1215, 2022. DOI:
https://doi.org/10.1016/j.aej.2021.06.074.
[12] F. Kutt, K. Blecharz, and D. Karkosinski. “Axialflux permanent-magnet dual-rotor generator for
a counter-rotating wind turbine.”. Journal
of MDPI Energies, 13(11):2833, 2020. DOI:
https://doi.org/10.3390/en13112833.
[13] R. Toto, H. S. Sudarsono, and S. Muhammad.
“Performance of axial generator for a small vertical axis wind turbine.”. Journal Europeen des ´
Systemes Automatis ` es´ , 56(2):237–243, 2023. DOI:
https://doi.org/10.18280/jesa.560208.[14] S. A. Ashrafzadeh, A. A. Ghadimi, A. Jabbari,
and M. R. Miveh. “Optimal design of a modular axial-flux permanent-magnet synchronous generator for gearless wind turbine applications.”.
Journal of Wind Energy, 27(3):1–19, 2023. DOI:
https://doi.org/10.1002/we.2887.
[15] R. Dorget and T. Lubin. “Non-linear 3-D
semi-analytical model for an axial flux reluctance mag- netic coupling.”. IEEE Trans.
En. Conv., 37(3):2037–2047, 2022. DOI:
https://doi.org/10.1109/TEC.2022.3153173.
[16] K. H. Kim and D. K. Woo. “Novel quasithree-dimensional modeling of axial flux inwheel motor with permanent magnet skew.”.
IEEE Access, 10:98842 – 98854, 2017. DOI:
https://doi.org/10.1109/ACCESS.2022.3206774.
[17] T. Okita and H. Harada. “3-D analytical
model of axial-flux permanent magnet machine with segmented multipole-halbach array.”. IEEE Access, 11:2078–2091, 2023. DOI:
https://doi.org/10.1109/ACCESS.2022.3233922.