Document Type : Reseach Article
Abstract
For transformer-less operation, a wind energy generating system (WEGS) with an 8.5 kW wind turbine and a 6.6 kW Z-source inverter (ZSI) is modelled. A closed-loop control technique is employed at the load side of the WEGS to obtain a constant voltage with a fluctuating load at the output side of the system. The ZSI is used with a proportional-integral (PI) controller for closed-loop control since it is the least complicated controller to operate and tune. As an effect of
ZSI’s nonlinear nature, PI controllers cannot be used directly with this system. The primary focus of this study is the optimization of stabilized PI coefficients (Kp, Ki). PI tuning for closed-loop ZSI is taken care of with the use of particle swarm optimization (PSO), the sine-cosine algorithm (SCA), and the opposition-based sine-cosine algorithm (OB-SCA). The OB-SCA provides superior closed-loop ZSI stability when used with WEGS. MATLAB is used for both the design and
simulation of the system. The results demonstrate that the proposed controller can precisely regulate the AC output voltage of ZSI with WEGS.
Keywords
Saha, and Snehasish Dey. “Review on the development scenario of renewable energy in
different country.”. Energy Management and Renewable Resources (IEMRE), :pp. 44–45, 2021. DOI:
https://doi.org/10.1109/IEMRE52042.2021.9386748.
[2] N. Anthony Richard and P. Navghare Seema. “An
Insight to distributed generation of electrical energy from various renewable sources.”. International Conference on Energy Efficient Technologies
for Sustainability (ICEETS), :pp. 341–344, 2016. DOI:
https://doi.org/10.1109/ICEETS.2016.7583777.
[3] H. I. Faten Ayadi, Colak. Ilhami, and IIhan. Garip.
“Targets of countries in renewable energy.”. International Conference on Renewable Energy Research
and Applications (ICRERA), :pp. 394–398, 2020. DOI:
https://doi.org/10.1109/ICRERA49962.2020.9242765.
[4] M. M. Bajestan, H. Madadi, , and M. A. Shamsinejad.
“Control of a new stand-alone wind turbine-based
variable speed permanent magnet synchronous
generator using quasi-Z-source inverter.”. Electr.
Power Syst. Res., 177:pp. 106010, 2019. DOI:
https://doi.org/10.1016/j.epsr.2019.106010.
[5] O. Ellabban and H. Abu-Rub. “Z-source Inverter: topology improvements review.”. IEEE
Ind. Electron. Mag., 10:pp. 6–24, 2016. DOI:
https://doi.org/10.1109/MIE.2015.2475475.
[6] A. S. Siddhartha, G. Carl, others, and A. Azeez
Najath. “Modeling, design, control, and implementation of a modified Z-source integrated
PV/Grid/EV DC charger/inverter.”. IEEE Trans.
Ind. Electron., 65:pp. 5213–5220, 2018. DOI:
https://doi.org/10.1109/TIE.2017.2784396.
[7] Y. P. Siwakoti, F. Z. Peng, F. Blaabjerg, P. C. Loh,
G. E. Town, and S. Yang. “Impedance-source networks for electric power conversion part ii: review of control and modulation techniques.”. IEEE
Trans. Power Electron., 30:pp. 1887–1906, 2015. DOI:
https://doi.org/10.1109/TPEL.2014.2329859.
[8] R. M. Malathi R. “Comparison of PV based
embedded Z-source inverter fed three phase induction motor with PI controller and PID controller based closed loop systems.”. , 2017. DOI:
https://doi.org/10.1109/AEEICB.2017.7972400.
[9] G. Shiva, K. Hrishikes, and R. I. Raj. “Closed
loop voltage mode control of impedance
source inverter (ZSI).”. Int. Conf. Emerg.
Trends VLSI, Embed. Syst. Nano Electron.
Telecommun. Syst. ICEVENT, , 2013. DOI:
https://doi.org/10.1109/ICEVENT.2013.6496528.
[10] S. Kumaravel, V. Thomas, S. K. Tripathy, and
S. Ashok. “Performance analysis of a Z-Source
inverter with controller for autonomous system application.”. IEEE 7th Int. Conf. Power
Energy, PECon, :pp. 355–359, 2018. DOI:
https://doi.org/10.1109/PECON.2018.8684183[11] A. R. Yılmaz, B. Erol, A. Delibas¸ı, and B. Erkmen. “Design of gain-scheduling PID controllers
for Z-source inverter using iterative reductionbased heuristic algorithms.”. Simul. Model.
Pract. Theory., 94:pp. 162–176, 2019. DOI:
https://doi.org/10.1016/j.simpat.2019.02.005.
[12] O. ¨ Ozkara and A. Karaarsalan. “ ¨ Continuous time
least square PI control method for quasi-Z source
inverter.”. Teh. Vjesn., 30:pp. 1088–1095, 2023. DOI:
https://doi.org/10.17559/TV-20221104195058.
[13] R. A. Krohling and J. P. Rey. “Design of optimal disturbance rejection PID controllers using genetic algorithms.”. IEEE Trans. Evol. Comput., 5:pp. 78–82,
2001. DOI: https://doi.org/10.1109/4235.910467.
[14] J. S. Chiou, S. H. Tsaia, and M. T. Liu. “A PSObased adaptive fuzzy PID-controllers.”. Simul.
Model. Pract. Theory., 26:pp. 49–59, 2012. DOI:
https://doi.org/10.1016/j.simpat.2012.04.001.
[15] P. B. De Moura Oliveira. “Modern heuristics review for PID control systems optimization: A
teaching experiment.”. Proc. 5th Int. Conf. Control Autom. ICCA’05, :pp. 828–833, 2005. DOI:
https://doi.org/10.1109/icca.2005.1528237.
[16] M. N. Ab Wahab, S. Nefti-Meziani, and A. Atyabi.
“A comprehensive review of swarm optimization algorithms.”. PLoS One, 10, 2015. DOI:
https://doi.org/10.1371/journal.pone.0122827.
[17] Y. F. Zou, J. Zhao, and Z. M. Gao. “Guaranteed
convergence sine cosine algorithm.”. ACM Int.
Conf. Proceeding Ser., :pp. 986–990, 2021. DOI:
https://doi.org/10.1145/3501409.3501586.
[18] W. Long, T. Wu, X. Liang, and S. Xu. “Solving
high-dimensional global optimization problems
using an improved sine cosine algorithm.”. Expert Syst. Appl., 123:pp. 108–126, 2019. DOI:
https://doi.org/10.1016/j.eswa.2018.11.032.
[19] S. Gupta and K. Deep. “Improved sine
cosine algorithm with crossover scheme
for global optimization.”. KnowledgeBased Syst., 165:pp. 374–406, 2019. DOI:
https://doi.org/10.1016/j.knosys.2018.12.008.
[20] Y. P. Siwakoti, F. Z. Peng, F. Blaabjerg, P. C. Loh, , and
G. E. Town. “Impedance-source networks for electric power conversion part i: A topological review.”.
IEEE Trans. Power Electron., 30:pp. 699–716, 2015.
DOI: https://doi.org/10.1109/TPEL.2014.2313746.
[21] S. Kumari and R. K. Mandal. “Effectivness
of space vector PWM in three-phase inverter.”. Int. Conf. Emerg. Front. Electr. Electron. Technol. ICEFEET., :pp. 2–6, 2020. DOI:
https://doi.org/10.1109/ICEFEET49149.2020.9187000.
[22] M. T. Islam and S. I. Ayon. “Performance analysis of
three-phase inverter for minimizing total harmonic
distortion using space vector pulse width modulation technique.”. ICCIT 2020 − 23rd Int. Conf.
Comput. Inf. Technol. Proc., :pp. 14–17, 2020. DOI:
https://doi.org/10.1109/ICCIT51783.2020.9392687.
[23] S. K. Baksi and R. K. Behera. “Reduced CMV
SVPWM scheme for three-level Z-source
NPC inverter for PV grid integration.”. Int.
Conf. Power Electron. Energy., :pp. 1–6, 2023. DOI:
https://doi.org/10.1109/ICPEE54198.2023.10060515.
[24] S. Mirjalili. “SCA: a sine cosine algorithm
for solving optimization problems.”. KnowledgeBased Syst., 96:pp. 120–133, 2016. DOI:
https://doi.org/10.1016/j.knosys.2015.12.022.
[25] M. Wang and G. Lu. “A modified sine cosine
algorithm for solving optimization problems.”.
IEEE Access, 9:pp. 27434–27450, 2021. DOI:
https://doi.org/10.1109/ACCESS.2021.3058128.
[26] P. C. Chiu, A. Selamat, O. Krejcar, and K. K.
Kuok. “Hybrid sine cosine and fitness dependent optimizer for global optimization.”. IEEE
Access, 9:pp. 128601–128622, 2021. DOI:
https://doi.org/10.1109/ACCESS.2021.3111033.
[27] S. Oshnoei, A. Oshnoei, A. Mosallanejad, , and
F. Haghjoo. “Novel load frequency control
scheme for an interconnected two-area power
system including wind turbine generation and
redox flow battery.”. Int. J. Electr. Power
Energy Syst., 130:pp. 107033, 2021. DOI:
https://doi.org/10.1016/j.ijepes.2021.107033.
[28] S. Padmanaban and others. “A novel modified sinecosine optimized MPPT algorithm for grid integrated PV system under real operating conditions.”. IEEE Access, 7:pp. 10467–10477, 2019. DOI:
https://doi.org/10.1109/ACCESS.2018.2890533.
[29] M. Abd Elaziz, D. Oliva, and S. Xiong. “An
improved opposition-based sine cosine algorithm for global optimization.”. Expert
Syst. Appl., 90:pp. 484–500, 2017. DOI:
https://doi.org/10.1016/j.eswa.2017.07.043.
[30] E. Cuevas, D. Oliva, D. Zaldivar, and G. Pajares. “Opposition-based electromagnetism-like
for global optimization.”. Int. J. Innov. Comput. Inf. Control., 8:pp. 8181–8198, 2012. DOI:
https://doi.org/10.48550/arXiv.1405.5172.
[31] A. Taheri, J. A. Bolaghi, and M. H. Babaei.
“LC-Z-source inverter design and control.”. Chinese J. Electron., 29, 2020. DOI:
https://doi.org/10.1049/cje.2020.03.014.