Document Type : Reseach Article

10.57647/j.mjee.2024.1802.37

Abstract

This study examines the behavior of carbon nanotube field effect transistors under ballistic conditions by analyzing the effect of gate (αG) and drain (αD) control coefficient modifications on the device’s diameter. The effect of αG and αD on the outcome of carbon nanotube field effect transistors (CNTFETs) has been thoroughly investigated, and the performance of the device has been evaluated using a variety of parameters for different diameters. In this CNTFET design, the lowest sub-threshold swing recorded is 60.7 mV/decade when using a lower CNT diameter which is 1 nm. The smaller value of sub-threshold swing is contributed by the highest value of gate control coefficient i.e. 0.98, which is desirable for a better ratio between the on- and off-currents and faster-switching device. Again, the maximum quantum capacitance obtained was 1.97×10−10 F/cm2, utilizing a smaller CNT diameter of 1 nm. The maximum value of quantum capacitance is supplied by the value of the gate control coefficient, which is 0.83. Also, the highest transconductance measured, with a greater CNT diameter of 5 nm, is 14.50 uS. With a gate control coefficient of 0.98, the quantum capacitance reaches its maximum value. Overall, the sub-threshold swing decreases as the gate control coefficient increases, while it increases as the drain control coefficient increases. Again, as the gate control coefficient increases, the value of quantum capacitance decreases with a smaller diameter, whereas the quantum capacitance of the device does not fluctuate significantly with a larger diameter. When the diameter changes, the drain control coefficient undergoes an analogous transformation. Furthermore, an increase in the gate control coefficient causes the transconductance to increase. However, when the drain control coefficient is increased along with a change in diameter, the transconductance value remains almost unchanged. Thus, the ideal values for both control coefficients can be determined in this manner to
ensure optimal performance.

Keywords

[1] P. Avouris and J. Chen. “Nanotube electronics
and optoelectronics.”. Materials Today, 9(10):pp.
46–54, 2006. DOI: https://doi.org/10.1016/s1369-
7021(06)71653-4.
[2] S. J. Wind, J. Appenzeller, and P. Avouris. “Lateral
scaling in carbon-nanotube field-effect transistors.”. Phys Rev Lett, 91(5), 2003. DOI:
https://doi.org/10.1103/PhysRevLett.91.058301.
[3] J. Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova,
H. Ust ¨ unel, S. Braig, et al. “ ¨ Electron-phonon
scattering in metallic single-walled carbon nanotubes.”. Nano Lett, 4(3):pp. 517–520, 2004. DOI:
https://doi.org/10.1021/nl035258c.
[4] P. L. Mceuen M. S. Fuhrer and H. Park. “Singlewalled carbon nanotube electronics.”. IEEE Transactions on Nanotechnology, 1(1):pp. 78–85, 2002.
DOI: https://doi.org/10.1109/TNANO.2002.1005429.
[5] K. Natori, Y. Kimura, and T. Shimizu.
“Characteristics of a carbon nanotube fieldeffect transistor analyzed as a ballistic nanowire
field-effect transistor.”. J Appl Phys, 97(3), 2005.
DOI: https://doi.org/10.1063/1.1840096.
[6] D. Rechem and S. Latreche. “Nanotube diameter effect on the CNTFET performances.”. 5th
International Conference: Sciences of Electronic,
Technologies of Information and Telecommunications,
TUNISIA: IEEE, , 2009.
[7] I. Khan, O. Morshed, and S. M. Mominuzzaman.
“Diameter optimization for highest degree of ballisticity of carbon nanotube field effect transistors.”.
Micro & Nano Lett, 14(6):pp. 590–594, 2019.
[8] A. Rahman, J. Guo, S. Datta, and M. S. Lundstrom.
“Theory of ballistic nanotransistors.”. IEEE Trans
Electron Devices, 50(9):pp. 1853–1864, 2003. DOI:
https://doi.org/10.1109/TED.2003.815366.
[9] F. Assad, Z. Ren, D. Vasileska, S. Datta, and
M. Lundstrom. “On the performance limits for
Si MOSFET’s: a theoretical study.”. IEEE Trans
Electron Devices, 47(1):pp. 232–240, 2000. DOI:
https://doi.org/10.1109/16.817590.
[10] K. Natori. “Ballistic metal-oxidesemiconductor field effect transistor.”. J
Appl Phys, 76(8):pp. 4879–4890, 1994. DOI:
https://doi.org/10.1063/1.357263.
[11] T. Sakamoto, H. Kawaura, T. Baba, and T. Iizuka.
“Characteristic length of hot-electron transport in
silicon metal-oxide-semiconductor field-effect transistors.”. Appl Phys Lett, 76(18):pp. 2618–2620, 2000.
DOI: https://doi.org/10.1063/1.126427.
[12] Y. Naveh and K. K. Likharev. “Modeling of 10-
nm-scale ballistic MOSFET’s.”. IEEE Electron
Device Letters, 21(5):pp. 242–244, 2000. DOI:
https://doi.org/10.1109/55.841309.
[13] Z. Ren, R. Venugopal, S. Datta, M. Lundstrom,
D. Jovanovic, and J. Fossum. “The ballistic nanotransistor: a simulation study.”. IEEE International Electron Devices Meeting. Technical Digest. IEDM, pages pp. 715–718, 2000. DOI:
https://doi.org/10.1109/IEDM.2000.904418.
[14] D. Akinwande, J. Liang, S. Chong, Y. Nishi, and
H. S. P. Wong. “Analytical ballistic theory of carbon nanotube transistors: experimental validation,
device physics, parameter extraction, and performance projection.”. J Appl Phys, 104(12):pp. 124514–
7, 2008. DOI: https://doi.org/10.1063/1.3050345.
[15] T. J. Kazmierski, D. Zhou, and B. M. Al-Hashimi.
“Efficient circuit-level modelling of ballistic CNT
using piecewise non linear approximation of mobile
charge density.”. IEEE Design, Automation and Test
in Europe, Germany, page pp. 146–151, 2008. URL
10.1109/DATE.2008.4484677.
[16] T. J. Kazmierski, D. Zhou, B. M. Al-Hashimi,
and P. Ashburn. “Numerically efficient modeling of CNT transistors with ballistic and nonballistic effects for circuit simulation.”. IEEE
Trans Nanotechnology, 9(1):pp. 99–107, 2010. DOI:
https://doi.org/10.1109/TNANO.2009.2017019.
[17] J. Guo, M. Lundstrom, and S. Datta.
“Performance projections for ballistic carbon nanotube field-effect transistors.”. Appl
Phys Lett, 80(17):pp. 3192–3194, 2002. DOI:
https://doi.org/10.1063/1.1474604.
[18] M. F. Nayan, S. Tahsin, and N.-R. Chowdhury. “Performance analysis of nanoscale
carbon nanotube field effect transistor considering the impacts of temperature and gate
dielectrics.”. 5th International Conference on
Advances in Electrical Engineering (ICAEE),
Bangladesh: IEEE, :pp. 60–65, 2019. DOI:
https://doi.org/10.1109/ICAEE48663.2019.8975565.[19] K. Aicha, R. Djamil, A. Chrifa, and Z. Mourad.
“On the DIBL reduction effect of short channel
carbon nanotube field effect transistors.”. International Journal of Electrical and Computer
Engineering, 6(4):pp. 1514–1521, 2016. DOI:
https://doi.org/10.11591/ijece.v6i4.8434.
[20] C. Zhao, D. Zhong, C. Qiu, J. Han, Z. Zhang,
and L. M. Peng. “Improving subthreshold swing
to thermionic emission limit in carbon nanotube network film-based field-effect.”. Appl
Phys Lett, 112(5):pp. 053102–5, 2018. DOI:
https://doi.org/10.1063/1.5017195.
[21] S. Luryi. “Quantum capacitance devices.”.
Appl Phys Lett, 52(6):pp. 501–503, 1988. DOI:
https://doi.org/10.1063/1.99649.
[22] A. Deyasi and A. Sarkar. “Analytical computation of electrical parameters in GAAQWT
and CNTFET with identical configuration using NEGF method.”. International Journal of
Electronics, 105(12):pp. 2144–2159, 2018. DOI:
https://doi.org/10.1080/00207217.2018.1494339.
[23] D. Rechem and S. Latreche. “Nanotube diameter effect on the CNTFET performances.”. 5th
International Conference: Sciences of Electronic,
Technologies of Information and Telecommunications,
TUNISIA : IEEE, 2009.
[24] M. F. Abdul Hadi, H. Hussin, M. Muhamad, and N. E.
Alias. “Analysis on the performance of CNTFET
devices based on the impact of CNT diameter
variation.”. International Conference on Electrical
and Computing Technologies and Applications,
ICECTA, Institute of Electrical and Electronics Engineers Inc., page pp. 148–151, 2022. DOI:
https://doi.org/10.1109/ICECTA57148.2022.9990297.
[25] A. K. Singh. “An analytical analysis of quantum
capacitance in nano-scale single-wall carbon nano
tube field effect transistor (CNTFET).”. International Journal of Nanoelectronics and Materials, 11
(3):pp. 249–262, 2018.
[26] A. M. Hashim, H. H. Ping, and C. Y. Pin.
“Characterization of MOSFET-like carbon nanotube field effect transistor.”. AIP Conference Proceedings, pages pp. 11–18, 2010. DOI:
https://doi.org/10.1063/1.3377796.