Document Type : Reseach Article

10.57647/j.mjee.2024.180340

Abstract

Providing reliable and sufficient power to the client is essential. Power quality is determined by the consistency of frequency and tie-line power between control regions. Thus, the importance of Load Frequency Control in an electrical network cannot be overstated. In this work, a PID controller using the Grey Wolf Optimization algorithm is employed to help with frequency management in a multi-area power network. A reheated turbine power system with five area is controlled by the PID controller. The experimental data showed a comparison between GWO-PID, Genetic Algorithm-based PID, Particle Swarm Optimization-based PID, and Firefly Algorithm-based PID. With a 1% step load variation, the findings confirmed the efficiency of using the integral time absolute error (ITAE) performance index. GA, PSO, and FA can’t keep up with the GWO-based PID controller when it comes to optimising an integrated power system. Simulation results reveal that GWO has the shortest settling time for frequency variations, as well as the lowest undershoot, overshoot, and ITAE values. To evaluate the robustness of GWO-PID, sensitivity analysis is done by modifying the system parameters like turbine and governor time constant in the range of ±10% from their nominal values.
 

Keywords

[1] A.J. Wood and B.F. Wollenberg. “Power Generation,
Operation, and Control.”. J. Wiley & Sons, 1996.
[2] O.I. Elgerd and C.E. Fosha. “Optimum MegawattFrequency Control of Multiarea Electric Energy
Systems.”. IEEE Transactions on Power Apparatus and Systems, PAS-89(4):556–563, 1970. DOI:
https://doi.org/10.1109/TPAS.1970.292602.
[3] N. Ram Babu, S.K. Bhagat, L.C. Saikia, T. Chiranjeevi, R. Devarapalli, and F.P. Garc´ıa Marquez. ´
“A Comprehensive Review of Recent Strategies on Automatic Generation Control/Load Frequency Control in Power Systems.”. Arch Computat Methods Eng, 30(1):543–572, 2023. DOI:
https://doi.org/10.1007/s11831-022-09810-y.
[4] S.K. Bhagat, N.R. Babu, L.C. Saikia, T. Chiranjeevi,
R. Devarapalli, and F.P. Garc´ıa Marquez. “ ´ A Review
on Various Secondary Controllers and Optimization Techniques in Automatic Generation Control.”.
Arch Computat Methods Eng, 30:3081–3111, 2023.
DOI: https://doi.org/10.1007/s11831-023-09895-z.
[5] C. Ismayil, R. Sreerama Kumar, and T.K. Sindhu.
“Automatic generation control of single area
thermal power system with fractional order PID (PIλD
µ
) controllers.”. IFAC Proceedings Volumes, 47(1):552–557, 2014. DOI:
https://doi.org/10.3182/20140313-3-IN-3024.00025.
3rd International Conference on Advances in Control
and Optimization of Dynamical Systems (2014).
[6] N. Saini and J. Ohri. “Load Frequency Control of Multi-area Thermal Power System Using
Grey Wolf Optimization.”. In S. Suhag, C. Mahanta, and S. Mishra, editors, Control and Measurement Applications for Smart Grid, page 347–357.
Springer Nature Singapore, Singapore, 2022. DOI:
https://doi.org/10.1007/978-981-16-7664-2 28.
[7] Y. Arya. “Automatic generation control
of two-area electrical power systems via
optimal fuzzy classical controller.”. JFranklin Inst., 355(5):2662–2688, 2018. DOI:
https://doi.org/10.1016/j.jfranklin.2018.02.004.
[8] R.K. Sahu, T.S. Gorripotu, and S. Panda. “Automatic
generation control of multi-area power systems
with diverse energy sources using Teaching Learning Based Optimization algorithm.”. Eng. Sci.
Technol. an Int. J., 19(1):113–134, 2016. DOI:
https://doi.org/10.1016/j.jestch.2015.07.011.
[9] K. Jagatheesan, B. Anand, S. Samanta, N. Dey,
A.S. Ashour, and V.E. Balas. “Design of a
proportional-integral-derivative controller for an
automatic generation control of multi-area power
thermal systems using firefly algorithm.”. IEEE/-
CAA J. Autom. Sin., 6(2):503–515, 2019. DOI:
https://doi.org/10.1109/JAS.2017.7510436.
[10] A. Bagheri, A. Jabbari, and S. Mobayen. “An intelligent ABC-based terminal sliding mode controller for load-frequency control of islanded microgrids.”. Sustain. Cities Soc., 64:102544, 2021. DOI:
https://doi.org/10.1016/j.scs.2020.102544.
[11] J. Guo. “Application of full order sliding mode
control based on different areas power system with
load frequency control.”. ISA Trans., 92:23–34, 2019.
DOI: https://doi.org/10.1016/j.isatra.2019.01.036.
[12] S. Prasad, S. Purwar, and N. Kishor. “Load
frequency regulation using observer based nonlinear sliding mode control.”. Int. J. Electr.
Power Energy Syst., 104:178–193, 2019. DOI:
https://doi.org/10.1016/j.ijepes.2018.06.035.
[13] V.A. Nishchitha and M. Pattnaik. “Load Frequency
Control of a Four-Area Interconnected ThermalHydro-Nuclear-Wind Power System with NonLinearity using Fuzzy Logic PID Controller.”.
International Journal of Engineering Research &
Technology (IJERT), 10(04):543–547, 2021. DOI:
https://doi.org/10.17577/IJERTV10IS040319.
[14] P. Dash, L.C. Saikia, and N. Sinha. “Automatic
generation control of multi area thermal
system using Bat algorithm optimized PDPID cascade controller.”. Int. J. Electr.
Power Energy Syst., 68:364–372, 2015. DOI:
https://doi.org/10.1016/j.ijepes.2014.12.063.
[15] H. Shabani, B. Vahidi, and M. Ebrahimpour. “A robust PID controller based on imperialist competitive algorithm for load-frequency control of power
systems.”. ISA Trans., 52(1):88–95, 2013. DOI:
https://doi.org/10.1016/j.isatra.2012.09.008.
[16] G. Magdy, G. Shabib, A.A. Elbaset, T. Kerdphol,
Y. Qudaih, H. Bevrani, and Y. Mitani. “Tustin’s technique based digital decentralized load frequency
control in a realistic multi power system considering wind farms and communications delays.”.
Ain Shams Eng. J., 10(2):327–341, 2019. DOI:
https://doi.org/10.1016/j.asej.2019.01.004.
[17] R.K. Khadanga, A. Kumar, and S. Panda. “A
novel modified whale optimization algorithm
for load frequency controller design of a twoarea power system composing of PV grid and
thermal generator.”. Neural Computing and
Applications, 32(12):8205–8216, 2020. DOI:
https://doi.org/10.1007/s00521-019-04321-7.
[18] A. Fathy and A.G. Alharbi. “Recent Approach Based
Movable Damped Wave Algorithm for Designing
Fractional-Order PID Load Frequency Control Installed in Multi-Interconnected Plants with Renewable Energy.”. IEEE Access, 9:71072–71089, 2021.
DOI: https://doi.org/10.1109/ACCESS.2021.3078825.
[19] A.M. Ersdal, L. Imsland, and K. Uhlen. “Model
Predictive Load-Frequency Control.”. IEEE
Trans. Power Syst., 31(1):777–785, 2016. DOI:
https://doi.org/10.1109/TPWRS.2015.2412614.
[20] M. Elsisi, M.A.S. Aboelela, M. Soliman, and
W. Mansour. “Model Predictive Control of TwoArea Load Frequency Control Based Imperialist Competitive Algorithm.”. TELKOMNIKA Indones. J. Electr. Eng., 16(1):75–82, 2015. DOI:
https://doi.org/10.11591/telkomnika.v15i3.8856.
[21] J. Yang, X. Sun, K. Liao, J. Yang, Z. He, and L. Cai.
“Model predictive control-based load frequency
control for power systems with wind-turbine generators.”. IET Renew. Power Gener., 13(15):2871–2879,
2019. DOI: https://doi.org/10.1049/iet-rpg.2018.6179.
[22] N.R. Babu and L.C. Saikia. “Automatic generation control of a solar thermal and dish-stirling
solar thermal system integrated multi-area system incorporating accurate HVDC link model using crow search algorithm optimised FOPI Minus
FODF controller.”. IET Renew. Power Gener., 13(12):
2221–2231, 2019. DOI: https://doi.org/10.1049/ietrpg.2018.6089.
[23] A. Dokht Shakibjoo, M. Moradzadeh, S.Z.
Moussavi, A. Mohammadzadeh, and L. Vandevelde. “Load frequency control for multiarea power systems: A new type-2 fuzzy
approach based on Levenberg–Marquardt algorithm.”. ISA Trans., 121:40–52, 2022. DOI:
https://doi.org/10.1016/j.isatra.2021.03.044.
[24] A. Demiroren and H.L. Zeynelgil. “GA application to optimization of AGC in three-area
power system after deregulation.”. Int. J. Electr.
Power Energy Syst., 29(3):230–240, 2007. DOI:
https://doi.org/10.1016/j.ijepes.2006.07.005.
[25] S.K. Sinha, R.N. Patel, and R. Prasad. “Application
of GA and PSO Tuned Fuzzy Controller
for AGC of Three Area Thermal- ThermalHydro Power System.”. Int. J. Comput.
Theory Eng., 2(2):1793–8201, 2010. DOI:
https://doi.org/10.7763/IJCTE.2010.V2.146.[26] S.S. Dhillon, J.S. Lather, and S. Marwaha. “Multi
Area Load Frequency Control Using Particle
Swarm Optimization and Fuzzy Rules.”. in Procedia Computer Science, Elsevier, 57:460–472, 2015.
DOI: https://doi.org/10.1016/j.procs.2015.07.363.
[27] N.K. Bahgaat, M.I. El-Sayed, M.A.M. Hassan, and
F.A. Bendary. “Load Frequency Control in Power
System via Improving PID Controller Based on
Particle Swarm Optimization and ANFIS Techniques.”. Int. J. Syst. Dyn. Appl., 3(3):1–24, 2014.
DOI: https://doi.org/10.4018/ijsda.2014070101.
[28] N. Saini and J. Ohri. “Optimal Load Frequency
Control of a Multi-Area Power System with
Dead Band Effect and Generation Rate Constraints.”. Majlesi J. Electr. Eng., 17(1), 2023. DOI:
https://doi.org/10.30486/mjee.2023.1970197.0.
[29] N.R. Babu and L.C. Saikia. “Optimal location of
accurate HVDC and energy storage devices in
a deregulated AGC integrated with PWTS considering HPA-ISE as performance index.”. Eng.
Sci. Technol. an Int. J., 33:101072, 2022. DOI:
https://doi.org/10.1016/j.jestch.2021.10.004.
[30] M. Raju, L.C. Saikia, and N. Sinha. “Automatic
generation control of a multi-area system using ant lion optimizer algorithm based PID
plus second order derivative controller.”. Int. J.
Electr. Power Energy Syst., 80:52–63, 2016. DOI:
https://doi.org/10.1016/j.ijepes.2016.01.037.
[31] E. C¸ elik, N. Ozt ¨ urk, and E.H. Houssein. “ ¨ Influence
of energy storage device on load frequency
control of an interconnected dual-area thermal
and solar photovoltaic power system.”. Neural Comput. Appl., 34:20083–20099, 2022. DOI:
https://doi.org/10.1007/s00521-022-07558-x.
[32] K. Naidu, H. Mokhlis, and A.H.A. Bakar.
“Multiobjective optimization using weighted
sum Artificial Bee Colony algorithm for
Load Frequency Control.”. Int. J. Electr.
Power Energy Syst., 55:657–667, 2014. DOI:
https://doi.org/10.1016/j.ijepes.2013.10.022.
[33] N. Saini and J. Ohri. “Load frequency control in
three-area single unit power system considering
non-linearities effect.”. Cybern. Phys., 12(1):60–69,
2023. DOI: https://doi.org/10.35470/2226-4116-2023-
12-1-60-69.
2345-377X[https://doi.o