Document Type : Reseach Article
Abstract
generation generates power for local loads as well as sharing it to the main grid. The system may get islanded after the occurrence of fault. It is necessary to detect islanding earlier. It is necessary to detect islanding and provide trip signal earlier. Also, the oscillations should be damped out as early as possible to prevent instability. Harmonics are injected due to the introduction of a disturbance signal hence; total harmonic distortion should be as minimum as possible. Here
adaptive network-based fuzzy inference system is used for the CEGRE LV system for the purpose of islanding detection and anti-islanding protection. An active oscillatory disturbance signal is injected in controller. Generally, proportional integral controller and fuzzy logic controller are used for anti-islanding protection. But an adaptive network-based fuzzy inference system can be used for earlier detection of islanding and also it gives better performance than a proportionalintegral controller and fuzzy logic controller. System analysis is discussed by comparing Adaptive network-based fuzzy interference system performance with proportional gain controller and fuzzy logic controller by considering zero power mismatch condition. The simulation results of this proposed method is evaluated by using MATLAB Software.
Keywords
“Fast islanding detection for distribution system including pv using multi-model decision
tree algorithm.”. Majlesi Journal of Electrical Engineering, 14(4):pp. 29–38, 2020. DOI:
https://doi.org/10.29252/MJEE.14.4.29.
[2] O. Oyinlolu Ayomidotun, O. Oghenewvogaga,
A. . Olusola, A. Babatunde, O. Uchenna Nnaemeka, O. John Obiajulu, O. Paul Kehinde, and
O. Matthew Olabisi. “Impact of the penetration of renewable energy on distributed generation systems.”. Majlesi Journal of Electrical Engineering, 16(4):pp. 1–12, 2022. DOI:
https://doi.org/10.30486/mjee.2022.696513.
[3] R. Rahmani, S. H. H. Sadeghi, and S. A. Hosseini.
“An adaptive protection scheme for distribution
networks with distributed generation sources in
various operational modes.”. Majlesi Journal of
Electrical Engineering, 14(1):pp. 107–118, 2020.
[4] M. Mahmoud, M. Elshahed, and M. Elsobki. “The
impact of distributed energy resources on the reliability of smart distribution system.”. Majlesi Journal
of Electrical Engineering, 12(4):pp. 1–14, 2018.
[5] M. Tabasi and P. Asgharian. “Short-term scheduling of restructured distribution networks with
demand response using symbiotic organism
search (sos) algorithm.”. Majlesi Journal of
Electrical Engineering, 12(1):pp. 23–30, 2018. DOI:
https://doi.org/https://mjee.isfahan.iau.ir/article 696285.html.
[6] Gh. Shahgholiyan and M. H. Rezaei. “Fault location
scheme in distribution systems with distributed
generations using neural networks.”. Majlesi Journal of Electrical Engineering, 4(2):pp. 57–62, 2010.
DOI: https://doi.org/10.1234/MJEE.V4I2.333.
[7] Z. Mi and F. Wang. “Power equations and nondetection zone of passive islanding detection and
protection method for grid connected photovoltaic
generation system.”. Pacific-Asia Conference on
Circuits, Communications and Systems, 2009. DOI:
https://doi.org/10.1007/978-3-031-58607-1 6.
[8] “IEEE draft standard for interconnecting distributed resources with electric
power systems amendment 1.”. IEEE
P1547a/D3, 55(3):pp. 3241–3251, 2014. DOI:
https://doi.org/docs/fy04osti/34875.
[9] F. Noor, R. Arumugam, and M. Vaziri.
“Unintentional islanding and comparison of
prevention techniques.”. in Proceedings of the 37th
Annual North American Power Symposium, 2005.
DOI: https://doi.org/10.1109/NAPS.2005.1560507.
[10] M. J. Mukarram and S. V. Murkute. “Sandia frequency shift method for anti islanding protection
of a grid tied photovoltaic system.”. IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), 2020. DOI:
https://doi.org/10.1109/SCEECS48394.2020.156.
[11] O. Arguence, F. Cadoux, B. Raison, and L. De Alvaro. “Impact of power regulations on unwanted
islanding detection.”. IEEE Transactions on Power
Electronics, 33(10):pp. 8972–8981, 2018. DOI:
https://doi.org/10.1109/TPEL.2017.2781903.
[12] S. Raza, H. Mokhlis, H. Arof, J. A. Laghari,
and H. Mohamad. “A sensitivity analysis of
different power system parameters on islanding detection.”. IEEE Transactions on Sustainable Energy, 7(2):pp. 461–470, 2016. DOI:
https://doi.org/10.1109/TSTE.2015.2499781.[13] G. Hernandez Gonzalez and R. Iravani. “Current
injection for active islanding detection of
electronically interfaced distributed resources.”. IEEE Transactions on Power
Delivery, 21(3):pp. 1698–1705, 2006. DOI:
https://doi.org/10.1109/TPWRD.2006.876980.
[14] M. Dietmannsberger, F. Grumm, and D. Schulz.
“Simultaneous implementation of lvrt capability
and anti-islanding detection in three phase inverters connected to low voltage grids.”. IEEE Transactions on Energy Conversion, 32(2):pp. 505–515, 2017.
DOI: https://doi.org/10.1109/TEC.2017.2662059.
[15] X. Wang and W. Freitas. “Impact of positive feedback anti islanding methods on small
signal stability of inverter-based distributed
generation.”. IEEE Transactions on Energy
Conversion, 23(3):pp. 923–931, 2008. DOI:
https://doi.org/10.1109/TEC.2008.926066.
[16] H. Karimi, A. Yazdani, and R. Iravani. “Negative
sequence current injection for fast islanding detection of a distributed resource unit.”. IEEE Transactions on Power Electronics, 23(1):pp. 298–307, 2008.
DOI: https://doi.org/10.1109/TPEL.2007.911774.
[17] D. D. Reigosa, F. Briz, C. B. Charro, and J. M.
Guerrero. “Islanding detection in three phase
and single phase systems using pulsating high frequency signal injection.”. IEEE Transactions on
Power Electronics, 30(12):pp. 6672–6683, 2015. DOI:
https://doi.org/10.1109/ECCE.2014.6954177.
[18] S. Murugesan and V. Murali. “Disturbance injection based decentralized identification of accidental islanding.”. IEEE Transactions on Industrial Electronics, 67(5):pp. 3767–3775, 2020. DOI:
https://doi.org/10.1109/TIE.2019.2917361.
[19] V. Murugesan. “Decentralized unintentional islanding identification for converter interfaced
multiple dgs.”. IEEE Transactions on Industrial Informatics, 17(7):4512–4520, 2021. DOI:
https://doi.org/10.1109/TII.2020.3020073.
[20] S. Murugesan and Murali. “Active unintentional
islanding detection method for multiple pmsg
based dgs.”. IEEE Transactions on Industry
Applications, 56(5):pp. 4700–4708, 2020. DOI:
https://doi.org/10.1109/TIA.2020.3001504.
[21] R. Nale, M. Biswal, and N. Kishor. “A transient
component based approach for islanding detection
in distributed generation.”. IEEE Transactions on
Sustainable Energy, 10(3):pp. 1129–1138, 2019. DOI:
https://doi.org/10.1109/TSTE.2018.2861883.
[22] S. D. Kermany, M. Joorabian, S. Deilami, and M. A. S.
Masoum. “Hybrid islanding detection in microgrid
with multiple connection points to smartgrids using fuzzy neural network.”. IEEE Transactions on
Power Systems, 32(4):pp. 2640–2651, 2017. DOI:
https://doi.org/10.1109/TPWRS.2016.2617344.
[23] A. Pigazo, M. Liserre, R. A. Mastromauro, V. M.
Moreno, and A. Dell’Aquila. “Wavelet based
islanding detection in grid connected pv systems.”. IEEE Transactions on Industrial Electronics, 56(11):pp. 4445–4455, 2009. DOI:
https://doi.org/10.1109/TIE.2008.928097.
[24] B. K. Chaitanya, A. Yadav, and M. Pazoki. “An
advanced signal decomposition technique for islanding detection in dg system.”. IEEE Systems Journal, 15(3):pp. 3220–3229, 2021. DOI:
https://doi.org/10.1109/JSYST.2020.3017157.
[25] A. F. Hoke, A. Nelson, S. Chakraborty, F. Bell,
and M. McCarty. “An islanding detection
test platform for multi inverter islands using
powerhill.”. IEEE Transactions on Industrial
Electronics, 65(10):pp. 7944–7953, 2018. DOI:
https://doi.org/10.1109/TIE.2018.2801855.
[26] M. S. Almas and L. Vanfretti. “Rthil implementation of hybrid synchrophasor and goose based
passive islanding schemes.”. IEEEPower and Energy Society General Meeting (PESGM), 2016. DOI:
https://doi.org/10.1109/PESGM.2016.7741310.
[27] M. Grebla, J. R. A. K. Yellajosula, and H. K. Hidalen.
“Adaptive frequency estimation method for rocof
islanding detection relay.”. IEEE Transactions on
Power Delivery, 35(4):pp. 1867–1875, 2020. DOI:
https://doi.org/10.1109/TPWRD.2019.2956200.
[28] D. Pal, B. K. Panigrahi, and S. Kewat. “A
hybrid method for islanding detection of inverter interfaced distributed generators utilizing superimposed component of d axis voltage.”.
IEEE Energy Conversion Congress and Exposition (ECCE), page pp. 1020–1025, 2019. DOI:
https://doi.org/10.1109/ECCE.2019.8912941.
[29] P. Kotsampopoulos, D. Lagos, N. Hatziargyriou,
M. O. Faruque, G. Lauss, O. Nzimako, P. Forsyth,
M. Steurer, F. Ponci, A. Monti, V. Dinavahi, and
K. Strunz. “A benchmark system for hardware in the loop testing of distributed energy
resources.”. IEEE Power and Energy Technology
Systems Journal, 5(3):pp. 94–103, 2018. DOI:
https://doi.org/10.1109/JPETS.2018.2861559.
[30] P. K. Ganivada and P. Jena. “Frequency disturbance triggered d axis current injection scheme
for islanding detection.”. IEEE Transactions on
Smart Grid, 11(6):pp. 4587–4603, 2020. DOI:
https://doi.org/10.1109/TSG.2020.2995191.
[31] N. Priyadarshi, S. Padmanaban, P. Kiran Maroti,
and A. Sharma. “An extensive practical investigation of fpso-based mppt for grid integrated pv system under variable operating conditions with anti islanding protection.”. IEEE Systems Journal, 13(2):pp. 1861–1871, 2019. DOI:
https://doi.org/10.1109/JSYST.2018.2817584. [32] D. Pal and B. K. Panigrahi. “Small signal stability analysis oriented design of hybrid anti islanding protection technique based
on active disturbance injection.”. IEEE Systems Journal, 16(1):pp. 1448–1459, 2022. DOI:
https://doi.org/10.1109/JSYST.2021.3050468