Document Type : Reseach Article

10.57647/j.mjee.2024.180349

Abstract

A tandem solar cell consisting of three cells is designed and simulated by the Solar Cell Capacitor Simulator (SCAPS) program. The bandgap of the top cell absorber (Cs2AgBi0.75Sb0.25Br6) is 1.8 eV, the middle cell absorber (CH3NH3PbI3) has a bandgap of 1.55 eV), and a single-crystal silicon cell (with 1.12 eV bandgap) is selected as the bottom cell. Each of these cells were simulated and optimized separately. To improve current density in the middle cell, CuSCN is chosen as the holetransport layer (HTL). Power conversion efficiencies (PCE) of individual Cs2AgBi0.75Sb0.25Br6, MAPbI3, and Si cells are 14.32%, 25.09%, and 25.22%, respectively. which are quite close to the results published in the literature. Consequently, the tandem structure of these cells is simulated and the optimal thicknesses for the absorber layers (as required by the current-matching condition) in a two-terminal (2T) monolithic structure is calculated. The optimized thicknesses of Cs2AgBi0.75Sb0.25Br6 and MAPbI3 absorber layers in the tandem configuration are 300 and 550 nm, respectively. The transmitted spectra of the top and middle cells are obtained using the Matlab software. Subsequently, the SCAPS numerical simulation for the 2T tandem structure gave an enhanced power conversion efficiency (PCEs) of 38.9%.

Keywords

[1] T. Islam, R. Jani, A. F. Islam, K. Shorowordi,
S. Chowdhury, S. S. Nishat, and S. Ahmed.
“Investigation of CsSn0.5Ge0.5I3-on-Si tandem solar device utilizing SCAPS simulation.”. IEEE
J. Trans. Electron Devices, 68(618), 2021. DOI:
https://doi.org/10.1109/TED.2020.3045383.
[2] S. Sarker, T. Islam, A. Rauf, H.A. Jame, R. Jani,
S. ISLAM, S.S. Nishat, K. Shorowordi, and
S. Ahmed. “A SCAPS simulation investigation of non-toxic MAGeI3-on-Si tandem solar device utilizing monolithically integrated (2-
T) and mechanically stacked (4-T) configurations.”. Sol. Energy, 225(471), 2021. DOI:
https://doi.org/10.1016/j.solener.2021.07.057.
[3] G. Conibeer. “Third-generation photovoltaics.”. Mater. Today, 10(42), 2007. DOI:
https://doi.org/10.1016/S1369-7021(07)70278-X.
[4] L. Lin, P. Li, L. Jiang, Z. Kang, Q. Yan, H. Xiong,
S. Lien, P. Zhang, , and Y. Qiu. “Boosting efficiency up to 25% for HTL-free carbon-based perovskite solar cells by gradient doping using SCAPS
simulation.”. Sol. Energy, 215(328), 2021. DOI:
https://doi.org/10.1016/j.solener.2020.12.059.
[5] L.A. Frolova, A.I. Davlethanov, N.N. Dremova,
I. Zhidkov, A.F. Akbulatov, E.Z. Kurmaev, S.M. Aldoshin, K.J. Stevenson, and P.A. Troshin. “Efficient
and stable MAPbI3-based perovskite solar cells
using polyvinylcarbazole passivation.”. J. Phys.
Chem. Lett, 11(16):pp. 6772, 2020. DOI:
https://doi.org/10.1021/acs.jpclett.0c01776.
[6] J. P. Mailoa, C. D. Bailie, E. C. Johlin, E. T. Hoke,
A. J. Akey, W. H. Nguyen, M. D. McGehee, and
T. Buonassisi. “ A 2-terminal perovskite/silicon
multijunction solar cell enabled by a silicon tunnel
junction.”. Appl. Phys. Lett, 206(121105), 2015. DOI:
https://doi.org/10.1063/1.4914179.
[7] S. Albrecht, M. Saliba, J. P. Correa Baena, F. Lang,
L. Kegelmann, M. Mews, L. Steier, A. Abate,
J. Rappich, L. Korte, R. Schaltmann, M. Khaja
Nazeeruddin, A. Hagfeldt, M. Gratzel, and B. Rech. ¨
“Monolithic perovskite/siliconheterojunction tandem solar cells processed at low temperature.”. Energy Environ. Sci, 9(81), 2016. DOI:
https://doi.org/10.1039/C5EE02965A.
[8] J. Werner, C. H. Weng, A. Walter, L. Fesquet, J.P. Seif,
S. De Wolf, B. Niesen, and C. Ballif. “efficient monolithic perovskite/silicon tandem solar cell with cell
area>1 cm2
.”. J. Phys. Chem. Lett, 7(161), 2016.
DOI: https://doi.org/10.1021/acs.jpclett.5b02686.
[9] H. Shen, S. T. Omelchenko, D. A. Jacobs, S. Yalamanchili, Y. Wan, D. Yan, P. Phang, t. Doung, Y. Yin,
C. Samundsett, J. Peng, N. Wu, T. P. White, G. Andersson, N. S. Lewis, and K. R. Catchpole. “In situ
recombination junction between p-Si and TiO2 enables high-efficiency monolithic perovskite/Si tandem cells. ”. Sci. Adv, 4(eaau9711), 2018. DOI:
https://doi.org/10.1126/sciadv.aau9711.
[10] K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin,
R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna,
S. Sofia, D. Harwood, W. Ma, F. Moghadam, H.J.
Sanith, T. Buonassisi, Z. C. Holan, S. F. Bent,
and M.D. McGehee. “23.6%-efficient monolithic
perovskite/silicon tandem solar cells with improved stability.”. Nat. Energy, 2:pp. 17009, 2017.
DOI: https://doi.org/10.1038/nenergy.2017.9.
[11] K. A. Bush, S. Manzoor, K. Frohna, Z. J. Yu,
J. A. Raiford, A. F. Palmstrom, H. P. Wang,
R. Prasanna, S. F. Bent, Z. C. Holman, and
M.D. “McGehee, minimizing current and voltage losses to reach 25% efficient monolithic twoterminal perovskite–silicon tandem solar cells.”.
ACS. Energy Lett, 3:pp. 2173, 2018. DOI:
https://doi.org/10.1021/acsenergylett.8b01201.
[12] F. Sahli, B. A. Kamino, J. Werner, M. Brauninger, ¨
B. Paviet-Salomon, L. Barraud, R. Monnard, J. P.
Seif, A. Tomasi, Q. Jeangros, A. Hessler-Wyser,
S. De Wolf, M. Despeisse, S. Nicolay, B. Niesen,
and C. Ballif. “Improved optics in monolithic perovskite/silicon tandem solar cells with a
nanocrystalline silicon recombination junction.”.
Adv. Energy Mater, page pp. 1701609, 2017. DOI:
https://doi.org/10.1002/aenm.201701609.
[13] F. Sahli, J. Werner, B. A. Kamino, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding,
J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros,
B. Niesen, and C. Ballif. “Fully textured monolithic
perovskite/silicon tandem solar cells with 25.2%
power conversion efficiency.”. Nat. Mater, 17(820),
2017. DOI: https://doi.org/10.1038/s41563-018-0115-
4.
[14] J. Xu, C. C. Boyd, Z. J. Yu, A. F. Palmstrom, D. J.
Witter, B. W. Larson, R. M. France, J. Werner, S. P.
Harvey, E. J. Wolf, W. Weigand, S. Manzoor, M. F.
A. M. v. Hest, J. J. Berry, J. M. Luther, Z. C. Holman,
and M. D. McGehee. “Triple-halide wide–band gap
perovskites with suppressed phase segregation for
efficient tandems.”. Science, 367(1097), 2020. DOI:
https://doi.org/10.1126/science.aaz5074. [15] F. E. Cherif and H. Sammouda. “Optoelectronic
simulation and optimization of tandem and multijunction perovskite solar cells using concentrating
photovoltaic systems.”. Energy Rep, 7.
[16] J. Madan, Shivani, R. Pandey, and R. Sharma.
“Device simulation of 17.3% efficient
lead-free all-perovskite tandem solar
cell.”. Sol. Energy, 197(212), 2020. DOI:
https://doi.org/10.1016/j.solener.2020.01.006.
[17] A. Kumar, Sh. D. Saurabh, and H. Sharma.
“Perovskite-CIGS materials based tandem solar cell with an increased efficiency of 27.5%.
mater.”. Today. Proceedings, 45(5047), 2021. DOI:
https://doi.org/10.1016/j.matpr.2021.01.565.
[18] Y. Raoui, H. Ez-Zahraouy, N. Tahiri, O. E. Bounagui,
S. Ahmad, and S. Kazim. “Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts: simulation study.”. Sol. Energy, 193(948), 2019. DOI:
https://doi.org/10.1016/j.solener.2019.10.009.
[19] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie,
K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsa, H. Uzo, and K.Yamamoto. “Silicon heterojunction solar cell with interdigitated back
contacts for a photoconversion efficiency over
26%.”. Nat. Energ, 2(17032), 2017. DOI:
https://doi.org/10.1038/nenergy.2017.32.
[20] M. Aamir, M. Sher, and J. Akhtar. “Synthesis
of lead free hybrid copper halide perovskite
nanosheets: structural and optical properties.”.
Results in Optics, 13(100562), 2023. DOI:
https://doi.org/10.1016/j.rio.2023.100562.
[21] J. Zhao, M. Hou, Y. Wang, R. Wang, J. Zhang,
H. Ren, G. Hou, Y. Ding, Y. Zhao, and X. Zhang.
“Strategies for large-scale perovskite solar cells realization.”. Organic Electronics, 122(106892), 2023.
DOI: https://doi.org/10.1016/j.orgel.2023.106892.
[22] A. Agresti, F. Giacomo, S. Pescetelli, and
A. Carlo. “Scalable deposition techniques
for large-area perovskite photovoltaic
technology: A multi-perspective review.”.
Nano Energy, 122(109317), 2024. DOI:
https://doi.org/10.1016/j.nanoen.2024.109317.