
Volume 18, Issue 4, 182450 (1-17)

Majlesi Journal of Electrical Engineering (MJEE)

https://dx.doi.org/10.57647/j.mjee.2024.1804.50

Capability-driven framework to automate discovery of
bounded contexts in large-scale requirements engineering

Shohreh Ajoudanian1,2,∗ , Maryam Nooraei Abadeh 3

1Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
2Big Data Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
3Department of Computer Engineering, Abadan Branch, Islamic Azad University, Abadan, Iran.
∗Corresponding author: shajoudanian@pco.iaun.ac.ir

Original Research

Received:
15 June 2024
Revised:
20 July 2024
Accepted:
1 August 2024
Published online:
15 December 2024

© The Author(s) 2024

Abstract:
Large-scale requirement engineering needs automated precise and efficient capability modeling and
analyzing methods formally to interoperate with the evolving and goal-driven requirements. The
proposed capability-driven requirement engineering framework presents a two-layer framework for
the automation of requirements engineering. In the first layer, a meta-model is proposed to define
a fault-free model instantiating the requirements model, and thereby ensuring consistency in the
process of requirement execution and in the second layer the analysis algorithms are provided for
discovering and querying the boundaries and capabilities of the system at the abstract level. The
proposed capability-driven requirement framework offers the ability to specify, decompose, and
identify the requirement traces to execute the activities regarding available capacities and resources.
We also provide the applicability of the approach from various points of view including quality and
stability of bounded contexts, average precision, and query assessment. As a running example, we
highlight the essential role of electrical features in achieving seamless integration and operation,
encompassing power distribution, automation systems, energy efficiency, and safety measures. The
proposed capability-driven requirement framework is crucial for effective smart home engineering
in this context. The proposed structured, formal description of software requirement capabilities
may increase the precision and recall of module discovery mechanisms for large-scale software
engineering. An average precision of more than 93% is a significant achievement in the context of
information retrieval and evaluation.

Keywords: Requirement engineering; Smart Home; Software capability; Bounded context; Capability querying.

1. Introduction
Requirements Engineering (RE) is divided into five differ-
ent subprocesses, i. e. , requirements gathering / elicitation,
modeling, analysis, verification, and validation, and soft-
ware requirements management [1], as the first step of any
software development process. It is a systematic approach to
develop requirements through an iterative process of analyz-
ing a problem, documenting the resulting observations, and
verifying the preciseness of the comprehending obtained
requirements, and recently evolving according to changes
[2–4].
For large-scale systems, early capability extraction, model-
ing, linking, and discovery are fundamental to separating the
concerns while considering functional and non-functional

aspects. We define the capability of a system as the function-
ality or behavior of a program, components of a program,
or system using its features. Usually used in a comparative
manner, as ”the things a system can do according to its
features”.
Various approaches have been introduced to enrich RE by
considering non-functional requirements, e.g., goal-oriented
RE, capability-driven RE, and feature - oriented RE. Con-
ventional RE methods focus only on “what a system will
support” [5–7], but contemporary methods identify goals
and transform them through a syntactical structure. RE
needs new RE methods that aim to automatically extract
and analyze stakeholders’ needs using advanced tools e.
g. , natural language processing and information retrieval

https://dx.doi.org/10.57647/j.mjee.2024.1804.50
https://orcid.org/0000-0001-8798-787X
https://orcid.org/0000-0002-6221-7008
mailto:shajoudanian@pco.iaun.ac.ir

2/17 MJEE18 (2024) -182450 Ajoudanian et al.

processing to create the software according to the system’s
features.
The capability-driven requirements engineering [4, 8–10]
as presented in this work, is a part of RE since an activity
happens on the boundary between the developer’s technical
view and the business view of the stakeholder to find and
document requirements of the system in a way to precise
analysis, bound and discover its capabilities. The capability
is a fundamental concept in domains such as Enterprise In-
formation Systems and Service-Oriented Architecture. The
capability concept defines what an action (i. e. , a pro-
gram, a service, a business process, etc.) may do from a
functional perspective, from an abstract class of actions to
a very concrete and corresponds to a specific stakeholder
request [11]. IEEE has provided a compatible yet intricate
definition [12]; a software capability that the user needs to
attain an objective or to solve a problem. This term is linked
to the following software requirements: quality attributes,
functional requirements, design constraints, external inter-
face requirements, and performance requirements.
Analyzing the capabilities of a software and extracting
bounded contexts at the requirement level can define the
boundaries of the biggest possible functionalities that would
not have any conflicting models inside. This separation of
concerns at the requirement level provides enough modular-
ity to divide the project between different teams and on par-
allel teams working especially in agile and fast approaches.
If you cross the boundary, those conflicting models will
eventually lead to a crosscutting management approach at
the abstract level. In addition, in this paper, a running ex-
ample for representing delivery capabilities is discussed.
In the context of the IEEE Standard Glossary of Software
Engineering Terminology, a requirement refers to a condi-
tion or capability necessary for a user to solve a problem or
accomplish an objective. The proposed approach addresses
the challenges related to mining the capability (or capacity)
within a large volume of stakeholder requirements focusing
on a specific scope or context [13].
Recent research reflects the ongoing evolution and inno-
vation in requirement engineering and mining techniques,
driven by advancements in AI, data analytics, and a user-
centric approach. Keeping abreast of these trends is crucial
for organizations aiming to stay at the forefront of effective
software development [14–18].
This paper aims to explore techniques or approaches for
extracting and understanding the capabilities or capacities
expressed within stakeholder requirements, possibly in a
large dataset or extensive set of requirements. By address-
ing these challenges, developers may provide insights or
solutions to better understand and manage stakeholder re-
quirements.
Therefore, the signification of capabilities can be done at
numerous abstraction levels from the most abstract (with
only one action verb) to the most concrete one, which is
the precise need of an end-user, which current capability
modeling approaches cannot do. Moreover, we can interlink
capabilities to develop a hierarchical structure that enables
the refining of the detection process.
The proposed early contexts bounding clarifies, encapsu-

lates, and defines the specific capabilities of the requirement
model while ensuring that the various sub-domains will not
affect each other. We propose to detect context implicitly
defined within stakeholder’s requirement, and every context
defines boundaries.
In this paper, we use the smart home domain to show nu-
merous parts of our theoretical model. From the service
consumer viewpoint, it is much more important to func-
tion on consumable, concrete boundaries offers. We show
such concrete capability by proposing the output capability
format and current functionality descriptions necessitate
manual work to transfer to the level of service offer. Our
theoretical model intends to automate this step. The contri-
butions of our work are enumerated as follows:
• Early capabilities extraction and analysis in a formal way
from user requirement scenarios,
• Calculating the degree of similarity between user scenarios
to bounding them
• Exploration software capabilities using the proposed capa-
bility querying algorithm
• Presenting a new technique to the bounding of software
capabilities as a significant measure in separating the con-
cerns and modularization,
• Adopting changes. e.g., adding new functional modules
according to user scenarios.
From this point forward, the paper is arranged in this way:
The problem definition of the proposed approach is pre-
sented in section 2. Section 3 presents a detailed description
of the proposed method, and a running example is presented
in Section 4. Section 5 reports approach analysis, and Sec-
tion 6 presents related work. Finally, we will discuss lessons
learned, and risks to validity and will summarize the con-
clusions and directions for future work.

2. Problem statement by an example
Requirements engineering (RE) refers to the process of
defining, documenting, and maintaining requirements in the
engineering design process [19]. There are various model-
ing approaches to show system requirements, e.g., Unified
Modeling Language (UML), Systems Modeling Language
(SysML) requirement diagram [20], Architectural Analysis
and Design Language (AADL) [21] and Modeling and Anal-
ysis of Real-Time Embedded Systems (MARTE) profiles
[22] as general-purpose modeling approaches and Business
Objectives Model (BOM) [23] and MetaEdit+ as domain-
specific modeling (DSM) approaches. Usually, modeling
language provides modeling constructs to represent require-
ments and relate them to other modeling elements to intro-
duce an actual requirement node, which contains informa-
tion about requirements such as identifier, text, source, and
method of verification.
From the software system specification point of view, such
techniques exploit the standard extension mechanisms of
UML (i. e. , UML profiling). UML profiles enable software
engineers to add non-functional properties to the software
model, in addition to the functional ones in various man-
ners, e. g. , model-driven [24], agile [25, 26]. Requirements
are usually presented as graphs and tree hierarchies, par-
ticularly for the team-based design. As shown in Table 1,

2345-3796[https://dx.doi.org/10.57647/j.mjee.2024.1804.50]

https://dx.doi.org/10.57647/j.mjee.2024.1804.50

Ajoudanian et al. MJEE18 (2024) -182450 3/17

common requirement nodes in a hierarchy structure can be
organized to show the dependency between requirements.
Each node contains the requirement ID, description of a
requirement includes functionality and properties, link be-
tween requirements, level of the requirement, and bounded
domain. Regardless of the domain, the nodes will signify
distinct requirements. Some logical organizations are done
by domain, which may characterize requirements from dif-
ferent stakeholders, various requirement scenarios (mechan-
ical, electrical, or physical specifications), or requirements
external to the technical area (project staffing, project cost,
technical specifications, or project schedule requirements).
Today, most modern products and software systems are
considered complex systems, and extracting and analyzing
their capabilities as soon as possible can lead to productive
competitive marketing for software. Capabilities are activi-
ties that a software can do using its processes, persons, and
technology. In determining the capabilities of software, the
focus is on what the software is doing (or should do) re-
garding the performing quality. On the other hand, specific
capabilities for innovation and development of complex and
successful systems and systems are necessary for detecting
the actions that the stakeholders of your product can take
to get value from the product. This is more in line with the
use cases you want to solve for each stakeholder. Extract-
ing and mining the capabilities of complex software sys-
tems with a diverse range of functional and non-functional
units are essential to the domain-independent analysis of
software. Despite the importance of capability discovery,
current approaches do not model it properly as the early
phases of software development to continually handle the
ever-growing requirement scenarios in practice. In actual
settings, it is fairly difficult to model statically tangible
capabilities because concrete level delays in extracting all
likely explosions of capabilities, and for software projects,
developers cannot disclose the values of sensitive qualities
as part of the static function description. Developers need
to be involved in a capability property before disclosing the
actual value of a sensitive feature.
We provide an example related to smart home product de-
velopment. In the development of smart home products,
electrical engineering features prominently in ensuring the
successful integration and functionality of these advanced
systems. The expertise of electrical engineers is crucial
in designing and implementing the power distribution in-
frastructure, automation systems, energy-efficient measures,
sensor integration, IoT connectivity, and safety and security
systems that form the foundation of smart homes. Their

contributions enable the seamless operation and intercon-
nectivity of various devices, allowing homeowners to enjoy
the convenience, efficiency, and enhanced living experience
that smart home technology offers. Customer satisfaction
comprises comprehending, defining, assessing, and manag-
ing customer’s needs to satisfy his/her expectations. Con-
formance to the requirements is thus necessary to make sure
that the project’s output is up to the expectation. Defining
good requirements has a greater payoff, while not doing so
will result in a more intense penalty. In future work, with the
help of crowdsourcing, we will improve the requirements
gathering phase and the preprocessing, so we go on to im-
prove the quality. In this example, the customer-collected
requirements (See Table 2, although seen in this table, there
are just a few user requirements, the actual model holds
more than 250) are preprocessed with the requirement to-
kenization and capability tuple retrieval for extracting the
capabilities available in the requirements. Each capability is
added to the CARG (figure 1. a, c, e, and g) and the CARG
is arranged during the context bounding process with the
use of algorithm 2 (figure 1. b, d, f and h). figure 1.a shows
the extracted capabilities from Req1 in Table 2 that are
added to CARG and figure 3.b shows the arranged colored
CARG. Each color shows a bounded context. After adding
six available requirements in Table 5, as shown in figure 1.h,
according to the proposed algorithm (Algorithm 1) seven
contexts bounded are discovered. It considers a defined
similarity metric to create/update various bounded contexts.
The concepts provided in this paper define a solution to
answer questions such as:
RQ1. How is it possible to automatically perform early
discovery and analysis of software capabilities from user
requirement scenarios?
RQ2. How can a developer explore and evolve software
capabilities using automatic approaches?
RQ3. Can software capabilities be defined as a significant
measure in separating the concerns and modularization?

3. Proposed method
Assuming a broad variety of requirements for large systems,
the method proposed suggests the extraction and analy-
sis of system capabilities as a new solution for analyzing
these systems. The main objective of the framework is to
determine the bounds of the system requirements based
on extracted capabilities from the requirement scenarios as
soon as possible and with an early analysis. After extraction,
the software capabilities of a system in the proposed formal
graph, different analyses, and improvements in the graph

Table 1. The information about requirement data and relations.

Requirement fields Description and usage
Id Requirement Id

Text Description of a requirement includes functionality and properties
Trace Link between requirement
Refine Level of the requirement
Derive Hierarchy of a requirement

Domains Initial bounded context

2345-3796[https://dx.doi.org/10.57647/j.mjee.2024.1804.50]

https://dx.doi.org/10.57647/j.mjee.2024.1804.50

4/17 MJEE18 (2024) -182450 Ajoudanian et al.

Table 2. Requirements and capabilities Table.

Requirement
Capabilities

Figure no.
Action Properties

Req1:Set the smart temperature between Set smart temp between a and b Figure 1.a

a and b, support it in software and Support hardware and software

hardware, and notify temp via sms. Notify temp Via sms

Req2: Set smart light between Set smart light between a and b Figure 1.c

a and b, support in software and Support hardware and software

hardware notify light via sms or Email, Notify light Via sms or Email

and ship it in the afternoon. Ship time = afternoon

Req3: Produce a new toy product for children Produce a new toy product children age = 3 Figure 1.e

3 years old, price between 100 $to 150 $, Price between 100 $and 150 $

package in the pink box Notify light Via sms or Email

Package box color = pink
Req4: Produce a new tool for carpenter

above 50 years old with remains turned on
notification system via

Produce a new
tool product carpenter age ≥50

telephone call and deliver it
with at least 5 years supplier support
and price it between 600 $to 800 $.

Notify remains to
turn on via a telephone call

Deliver supplier support ≤5

Price between 600 $and 800 $
Req5.: Set smart windows to close the

window when the temperature is lower than
a and open the door when the temperature is

higher than b and notify closing
the window and opening

the door via a telephone call.

Set smart window
close the window when the temperature

is lower than a and open the door
the temperature is higher than b

Notify closing the window via telephone call

Notify opening the door via telephone call
Req6. Evaluation system to

include product name,photo, UPI Evaluation system
include = product name

and photo and UPI Figure 1.g

can be applied to analyze the boundaries of the system. The
boundaries of the system with a significant separation of the
concerns enable parallel teamwork and also outsourcing of
the system to be used for agile applications.
Figure 2 shows the steps of the proposed framework, which
are described in this section in detail. Also, Appendix A
lists the symbols used in the paper.

3.1 System input preparation

The system input can be considered as any type of require-
ment model while we consider the textual one. Named
Entity Recognition (NER) [25] will be used to identify the
who part in requirement model. NER can identify the names
of persons, organizations, locations, etc. As we will discuss
in the capability tuple retrieval section, we do not need to
who part in the requirement model and we will remove this
part.
The elements contained in what and why parts of a require-
ment are similar. Both contain goal and task elements. The
difference is that the what part has a capability element. The

contrast between goal, task, and capability lies in the level
of detail. In this stage, there is no need to categorize phrases
in terms of what or why. This is because, in some cases,
the what part can act as the why part [27]. The assignment
rules of these parts will be discussed in the “Capability tuple
retrieval” section. Identification of what and why parts are
carried out by tagging relevant phrases. Relevant phrases
are derived from various POS tag patterns from goals, tasks,
and capabilities. POS tagging patterns are derived from
various sources, for example, POS tag patterns from other
related studies or by doing manual tagging. According to
the list of POS label patterns, the phrases that are relevant
to the software functionality are collected. This includes
removing phrases that are not related to the software from
the list. This filtering process will be done by comparing it
with a dictionary of software functionality. The ability to
filter out relevant non-software phrases will also be tested
using appropriate machine learning algorithms. This is will
be candidates for what and why parts.
In the preprocessing, word tokenization on requirements is

2345-3796[https://dx.doi.org/10.57647/j.mjee.2024.1804.50]

https://dx.doi.org/10.57647/j.mjee.2024.1804.50

Ajoudanian et al. MJEE18 (2024) -182450 5/17

Figure 1. The running example bounding in the step-by-step refinement (Figure 2.a, 2.c, 2.e, and 2.g are the Unbounded
graphs and Figure 2.b, 2.d, 3.f, and 2.h are the Bounded capabilities which are shown in the colorful circles according to
the context).

Figure 2. The architecture of the proposed framework

2345-3796[https://dx.doi.org/10.57647/j.mjee.2024.1804.50]

https://dx.doi.org/10.57647/j.mjee.2024.1804.50

6/17 MJEE18 (2024) -182450 Ajoudanian et al.

performed and tuples of capability in the form of (Action,
Property) are constructed. The capability construction and
text extraction process for each requirement is an insignifi-
cant matter including the retrieval of verb and noun tokens.
For each requirement sentence, to extract property we used
all logical operation keywords as defined in the natural lan-
guage processing dictionary (e. g. , Greater than, Equal to,
Greater than or equal to, Less than) and also all synonyms
of them by using similar world detection functions the con-
struction of a corresponding capability tuple. Capability
tuples will be compiled from phrases (the what/why parts)
and properties previously collected. Some of the rules used
to identify capability tuples are shown in Table 3.

3.1.1 Tokenization

Without requirement tokenization techniques, a user sce-
nario might appear in the capability format, even though the
common unfamiliar users do not know the arguments. Text
preprocessing methods are important to provide the neces-
sary process for converting requirement text from natural
language to machine analyzable format while the keywords
of the capability (action and properties) can be extracted
and mined.
The requirement model will go through the pre-processing
which includes tokenizer, POS tagging, stop word removal,
and WordNet Lemmatization. We perform tokenization
based on the method proposed in [26] which specialized
using [28]. Before the process is carried out, punctuation,
numbers, and special characters in the document are re-
moved. The tokenizer is a process of converting a sequence
of characters into a sequence of words. The words are split
based on words break exist. Stop words are words that often
appear in text that need to be discarded. Lemmatization
(WordNet Lemmatization) is the process of grouping the
inflected forms of a word that have the same meaning so
they can be analyzed as a single item. Lemmatization was
chosen because it did not affect the meaning, especially
when the POS tagging process was later carried out. The
words in the document are marked using Parts of Speech
(POS) Tagging. POS tagging is the process of marking up a
word in a text as corresponding to a particular part of speech,
based on both its definition and its context. The words will
be tagged with nouns, verbs, adjectives, and others to find
out the sentence pattern.

3.1.2 Capability attributed requirement graph

In this section, a system requirement model transforms into
the proposed capability graph, the Capability Attributed
Requirement Graph (CARG) while the consistency to its
meta-model is preserved. The capability graph is defined
based on the attributed requirement graph; thus, each ca-
pability graph is an attributed requirement graph that con-
centrates on existing activities and resources. A Capability
Attributed Requirement Graph (CARG) consists of a set
of capabilities that each Capability is a set of Actions with
their Properties and maybe their constraints. Constraints
are a kind of Logical expressions which will appear in the
form of pre-conditions and post-conditions. There are some
bounded contexts in this graph that are the largest connected
semantically bound of a graph. As an example, consider
the requirement “Produce a new tool for a carpenter above
50 years old with remains turn on notification system via
telephone call and deliver it with at least five years supplier
support and price it between 600 $to 800 $”. It can be split
into actions (Produce a new tool product, Notify remains
to turn on, Deliver, Price) and QoS properties (Carpenter
age, via a telephone call, supplier support) and logical ex-
pressions (≥,≤, between) between them. In Section 4 a
complete case study is described in detail.
Definition 1 (Attributed Graph - AG). An attributed graph
is a tuple G = (N, A, E, λ), where N is a set of nodes, A rep-
resents an attribute set, E⊆ N× N is a set of edges, λ : N×
A→ R links an actual value to each pair of node attributes
as the property value (for functional and non-functional
attributes).
Definition 2 (Capability Attributed Requirement Graph
- CARG). A Capability-attributed requirement Graph is G
= (A, C, E, Cap), in which A is a set of action nodes and the
corresponding pre- and post-conditions; C is a connector
function that relates with each action node pair a1, a2 a
tuple C(a1, a2) = Connector Type(a1, a2): namely, XOR-
join, ORjoin, ANDsplit, XORsplit; ANDjoin, and ORsplit;
E represents a set of edges for interrelating all the graph
nodes; Cap is a function that associates with each action
node a tuple Cap(a)=(Action(a), Properties(a)) with each
activity node Properties(a) denotes a set of pairs (Property,
Value) that signifies the features set of the users or physical
resources that links a real value to each node-attribute pair.
Definition 3 (Action). A requirement must perform at least

Table 3. Rules used to identify capability tuples.

Rule Capability tuple

Ru1e 1: If aspects of who Removing the aspect of who part

and aspects of what can be Action = aspect of what

identified in the sentence. Properties = logical operation tuple

Rule 2: If aspects of what can be identified Action = aspect of what

without aspects of who in the sentence. Properties = logical operation tuple

Rule 3: If two or more aspects of what Action1 = aspect of what1, Action2 = aspect of what2, . . .

can be identified in the sentence. Properties1 = logical operation tuple1, Properties2 = logical operation tuple2, . . .

2345-3796[https://dx.doi.org/10.57647/j.mjee.2024.1804.50]

https://dx.doi.org/10.57647/j.mjee.2024.1804.50

Ajoudanian et al. MJEE18 (2024) -182450 7/17

an action that operationalizes the requirement according to
available capacity. Act(Cap(a)) is a function that gets as
input the capability of node a Cap(a) and returns as output
Action(a) of the Cap(a).
As two main parts of the proposed approach, we investigate
the CARG, to solve two problems (Querying, and context
bounding) which enables a better understanding of defined
capabilities or filtering the capabilities with common prop-
erties.

3.2 CARG processing
In this section, we define two problems and their solutions in
capability-driven requirement engineering including graph
querying and bounded context creating and updating. Con-
sidering a capability set CapSet and a new capability re-
quested for a requirement, the degree of similarity between
them is calculated based on the similarity of their attributes.

3.2.1 Similarity measurement
Many metrics have been developed to quantify the strength
of connections (or relationships) between two words.
Pointwise mutual information (PMI) [29] is a common
measure. PMI is a measure of the difference between
the actual co-occurrence frequency of two words and the
expected co-occurrence frequency of the words assuming
independence. Positive pointwise mutual information
(PPMI) is a variant of PMI that yields the PMI score if
the score is more than zero and zero otherwise. The best
co-occurrence-based measure has been reported to be PPMI
[30]. The definition of PPMI is as follows:

Pd(Capi.x) =
fd(Capi.x)

∑
n
i=1 fd(Capi.x)

(1)

Pd(Capi.x,Cap j.x) =
fd(Capi.x,Cap j.x)
∑

n
i=1 fd(Capi.x)

(2)

PMId(Capi.x,Cap j.x) = log
Pd(Capi.x,Cap j.x)

Pd(Capi.x)Pd(Cap j.x)
(3)

PPMId(Capi.x,Capi.x) = (4){
PMId(Capi.x)PMId(Cap j.x)> 0
0 otherwise

We customize this metric to measure relationships between
two capabilities. P d (Capi.x) is the probability of occurring
the capability Cap’s attribute and/or action, called Capi.x,
in a requirement document d in the preceding equations. f
d (Capi.x), the frequency of Cap.x occurring in the require-
ment document d) divided by the total number of words in
the all requirements can be used to estimate this likelihood.
The number of unique words in the requirement documents
is denoted by the letter n. The chance of two capabilities
Capi and Cap j appearing together in a sliding window in
a document in the corpus is given by P d (Capi.x,Cap j.x).
Given a document d, PMI d (Capi.x,Cap j.x) and PPMI d
(Capi.x,Cap j.x) are pointwise mutual information and posi-
tive pointwise mutual information between Capi and Cap j.
Then we use WordSimSE [31], to measure the word similar-
ity between various requirement documents. WordSimSE

express two words as vectors and then compute the similar-
ity between these two vectors to compute their similarity.
Each word is represented as a feature vector, with each ele-
ment representing the weight of that word’s co-occurrence
with other (contextual) words in the corpus. Our weighted
positive pointwise mutual information (WPPMI) is used
to calculate the co-occurrence weight, which is calculated
using Eq. 5.

WPPMId(Capi.x,Cap j.x) = (5)
W (Capg.x)×PMId(Capi.x,Cap j.x)

where:

W (Cap j.x) =

α (if j is a popular software tag)
β (if j is a nonpopular software tag)
γ (otherwise)

(6)
If the elements of capabilities Capi and Cap j do not ap-
pear together, the value of WPPMI d (Capi.x,Cap j.x) is 0.
W(ap j.x) is a weight parameter that is used to regulate the
contributions of various sorts of semantic anchor words.
Popular software tags, other software tags, and other terms
influenced by [31] are the three types of words we consider.
Software tags are generally software-specific keywords, and
as a result, they should be given more weight. Next, we
compute the cosine similarity of their sample vectors to
determine how similar two phrases are. WordSimSE [31] is
the abbreviation for the ultimate similarity score, which is
defined as:

WordsimSE(Capi.xCapi.x) = (7)

∑
n
k=1 WPPMId(Capi.x,Capk.x)WPPMId(Cap j.x,Capk.x)√

∑
n
k=1 WPPMId(Capi.x,Capk.x)

2
×

1√
∑

n
k=1 WPPMId(Cap j.x,Capk.x)

2

The total number of unique words in the corpus is denoted
by n in the preceding equation. Using this metric, it is
possible to find similar capabilities of a capability or the
bound which a new requested capability is belong to. This
is dependent completely on the attributes and related values
that outline every capability.
Problem 1 (Graph Bounding)
The goal of graph bounding is to find bounded context (Def-
inition 6) at the requirement level to define the boundaries
of the biggest possible functionalities that would satisfy
the corresponding stakeholders. The approach for graph
querying is shown in Algorithm 2.
Definition 6 (Bounded context). A bounded context is
a bound of G that meets structure cohesiveness (namely,
the nodes included in a bounded context are somehow con-
nected). Based on a common concept of structure cohesive-
ness, the least degree of all the nodes that show up in the
bounded context should be equal to or higher than k.
Algorithm 1 for a capability set CapSet and a new capability
Cap 1 finds similar capabilities or bounds to which Cap1
can belong. This is dependent completely on the attributes
and related values that outline every capability.

2345-3796[https://dx.doi.org/10.57647/j.mjee.2024.1804.50]

https://dx.doi.org/10.57647/j.mjee.2024.1804.50

8/17 MJEE18 (2024) -182450 Ajoudanian et al.

Algorithm 1
Input: Graph CARG, Capability C1 with Action A1

Output: Capabilities OrderList: the set of discovered capabilities
1.Begin

2.Candidates of the Capabilities (Cands), Neighbors (Nei);
3.Integer i;

4.Cands = RamdomSelection(n, CARG.E);
5.OrderedList = Order(Cands);

6.while (i ≤ it and Wordsi(OrderedList(0), C1) ≤ 1) do
7. i= i+ 1;

8. for each (CN ∈ Cands and ¬ CN.Visited) do
9. CN.Visited = True;

10. Nei = getNei(CN, CARG);
11. foreach (NC ∈ Nei) do

12.if SimScore (CN, C1) then
13. Cands.Add(NC);

14. OrderedList = Order(Cands);
15. end
16. end
17. end
18. end

19. return OrderedList;
20. end

Problem 2 (Bounded Context Discovery)
The aim of another class of solutions is to find a bounded
context according to a capability query request. Given a
CARG, G = (A, C, E, Cap, Cond), a capability request C1∈
A, returns the largest bound similar to C 1. This definition
and corresponding algorithm are inspired by research on the
community detection problem. The proposed method must
first define K partitions as bounded contexts. Because the
distances between the first K capabilities are greater than
Eps, the algorithm considers them to be the centers of the
K-bounded contexts. The technique progressively divides
the requirement documents for subsequent capabilities to
avoid the scalability problem of scanning the whole search
space for the newly inserted capability’s neighborhood. The
method creates/updates bounded contexts in this partition
based on the incremental clustering algorithm [32] after
allocating the new capability to its nearest partition. The
method then combines the dense bounded contexts of vari-
ous clusters gradually depending on a specified similarity
measure to create/update the final bounded contexts. The
suggested technique for constructing and updating bounded
contexts is described in Algorithm 1 inspired by [33].
In bounded contexts, the incremental DBSCAN method
[32] is inspired to update clusters of capabilities. A dense
area is a collection of capabilities that may either consti-
tute a final bounded context or be a portion of one. The
incremental insertion module of DBSCAN (incAdd) is used
to locate a bounded context at the closest partition that a
capability may join. The deletion module (incDel) is used
to remove old capabilities from their old dense regions.
According to [32], the threshold value is considered to
merge bounds with the shortest distance in the current clus-
tering until all similar capabilities are included in a single
cluster. In the analysis section, the performance algorithms

are evaluated from various viewpoints including the quality
and stability of bounded contexts.

4. Analysis and results
In this section, we analyze our approach from four points
of view including quality and stability of bounded contexts,
average precision, and query assessment.
In the first and the second problems, the goal is to find
an ordered list of capabilities similar to the query capabil-
ity of a user, a bounded context according to a capability
query request, and in the third problem, the graph is context-
bounded. In all three problems, the quality of capability
modeling is the main issue. For this purpose, the CARG
effectiveness metric is introduced. The results are accept-
able. The challenge we face in computing this metric is
finding the right threshold value. Another experiment is on
the time cost of discovering bounds. This time was accept-
able on our domains with a large number of requirements
and capabilities. Another issue that was important for us is
despite the many changes at the system development time,
how the changes can affect on discovering the right bounded
context.
As the test data, by crawling GitHub, we were able to col-
lect 3,925 requirement scenarios (in text format) and then
prepared 1, 105 requirement documents that were chosen
based on the domain similarity to construct the capability
graph. These requirements are in four category domains:
Online collaboration system with 201 requirements and 16
discovered bounds, Smart home online store with 254 re-
quirements and 21 discovered bounds, open-source search
engine system with 350 requirements and 14 discovered
bounds, and Smart grid software solutions with 300 re-
quirements and 24 discovered bounds. With an Online
collaboration system, we mean the systems enable users to

2345-3796[https://dx.doi.org/10.57647/j.mjee.2024.1804.50]

https://dx.doi.org/10.57647/j.mjee.2024.1804.50

Ajoudanian et al. MJEE18 (2024) -182450 9/17

Algorithm 2
Input: Graph CARG, new Capability NewCap, Bound centers
Output: Create/Update the bound after insertions of NewCap

1. Begin
2: CapSet← List of bounded capabilities that may change their centers

3: D← List of updated dense regions
4: For each NewCap do

5: c← nearest centers WordsimSE (pi, bound centers)
6: CapSet← update centers (NewCap, c)

7: Add NewCap to CapSet
8: end for

9: For each ri in CapSet do
10: cn← ri.new center

11: co ri.old center
12: Apply incDel to remove ri from co

13: Apply incAdd to insert ri to cn
14: Add updated dense regions to D (step 11 and 12)

15: end for
16: For each di in D do

17: For each dj in D and i ̸= j do
18: If inter connectivty (di,dj) > threshold

19: merge(di,dj)
20: end if

21: end for
22: end for

23. End

work together openly. Especially, users may assess, share,
make artifacts, network, and perform tasks. Users can share
”items” through these systems, such as structured or textual
knowledge, services, and products.

4.1 Bounded context assessment

In this section, we assess our bounded context from two
points of view: quality and stability of bounded contexts.
Measuring bounded context quality is an important issue
because our method was unsupervised. There are no com-
monly recognized best suitable measures in practice. Be-
cause there is no expert-specified knowledge about bounds,
internal clustering quality identification measures are used
in our approach. In these measures, the goodness of a
bounded context is evaluated by considering how well the
bounds are separated and how compact the bounds are. One
of the most important internal cluster quality measures is
the silhouette coefficient [34]. For a data set, D, of n objects,
suppose D is partitioned into k bounded context, B1, . . . ,

Bk. For each object o ∈ D, we calculate a (o) as the average
distance between o and all other objects in the bound to
which o belongs (Eq. 8). Similarly, b(o) is the minimum
average distance from o to all bounded context to which o
does not belong (Eq. 9). Formally, suppose o ∈ Ci (1 ≤ i ≤
k); then

α(o) =
Σo′∈Ci,o̸=o′dist(o,o′)

|Ci|−1
(8)

and

b(o) = minC j:1≤ j≤k, j ̸=i

{
∑o′∈Cj

dist(o,o′)

|C j |

}
(9)

The silhouette coefficient of o is then defined as Eq. 10.

s(o) =
b(o)−a(o)

max{a(o),b(o)}
(10)

The value of the silhouette coefficient is between -1 and 1.
The value of a(o) reflects the compactness of the bounded
context to which o belongs. The smaller the value, the more
compact the bound. The value of b(o) captures the degree

Table 4. The results of bounded context assessment.

No. of % of correctness of No. of found Time cost
requirement s(o) the number of (ms)

found bounds
Online collaboration system 201 0.90 99 16 5

Smart home online shop 254 0.89 97.4 21 8
large enterprise 350 0.78 90 14 4

Smart grid software solutions 300 0.95 97 24 9

2345-3796[https://dx.doi.org/10.57647/j.mjee.2024.1804.50]

https://dx.doi.org/10.57647/j.mjee.2024.1804.50

10/17 MJEE18 (2024) -182450 Ajoudanian et al.

to which o is separated from other bounds. The larger b(o)
is, the more separated o is from other bounds. Therefore,
when the silhouette coefficient value of o approaches 1, the
bound containing o is compact and o is far away from other
bounds, which is the preferable case. The silhouette co-
efficient of four experiment domains is calculated and the
results shown in Table 4 indicate that the compactness and
separation of the bounds are acceptable.
Another issue is bounded context assessing is bounded
context stability. Bounded context obtained from several
datasets sampled from the same underlying distribution as
D should be similar or stable. In this measure, the best
number of bounds is judged. In this paper, a bootstrapping
approach is used [35]. This approach involves the genera-
tion of several “fake” data sets by sampling patterns with
replacement in E (bootstrapping). For each number, K, of
clusters, a measure of stability of the K-cluster partitions
over the bootstrap samples is used to characterize the sig-
nificance of the K-cluster partition for the original data set.
The value of K which provides the most stable partitions is
the estimate of the number of clusters in E. The bounded
context stability of four experiment domains is calculated
and the percentage of correctness of several found bounds
and number of found bounds is shown in Table 4 which
indicates our bounding context is stable.
As another experiment, we calculate the time of bound dis-
covery (figure 3 and 4). In this experiment, we wanted to
show the time cost of the proposed approach in discovering
bounds with a large number of requirements and certainly a

Figure 3. The results for bounded context assessment in
terms of s(o).

Figure 4. The results for bounded context assessment in
terms of time (ms).

large number of capabilities. The results are quite accept-
able as Table 4.

4.2 Average precision (AP) of the approach
This metric aims to assess the precision of the suggested
capability retrieval method. We adopted the word expan-
sion method proposed in [36] to include capabilities whose
similarities to the original capability are larger than a given
threshold (0.9). Then, to confirm the performance of capa-
bility retrieval (defined in Eq. 11), we applied the average
Top-5 precision indicator. The value of K was set from 1 to
5 in this work.

Precisionk(Ri) =
|Rel(Ri)∩Rankk(Ri)|
|Rankk(Ri)|

(11)

where Ri is the ith user requirement, RankK (Ri) is the Top-
K bounds returned (the 1st returned K bounds), and Rel(Ri
) is a set of relevant requirements with Ri (i.e., answers to
the ith user requirement). We compute the average of Top-5
discovered bounds precision for 20 selected requirements
for each case study which results are shown in figure 5.
According to the results, the Top-1 Top-5 precisions are
decreasing while the larger bound of similarity is selected.
It is possible to detect the best bounds of a requirement
using this metric. For the large enterprise system, the Top-4
and Top-5 are the same while for others by increasing K,
the Top-K bounds decrease, so provide lower precision in
bounded concerns.
The problems related to retrieving distinct sub-domains
from a requirement model can generally be classified into
context detection and context search. The solution enables
an automatic approach to how and why a context is formed.
Our results show that the approach is effective and effi-
cient in retrieving the contexts from requirement models
in various domains. More tightly-connected vertices with
similar contexts or backgrounds show a better bounderiza-
tion. So, developers can focus on the particular capabilities
or activities in a domain in the evolution and maintenance
phases.

4.3 Queries assessment
A detailed time analysis for the proposed method described
in the provided text requires access to specific implemen-
tation details and algorithmic complexities of the referred
techniques in Table 5. Since the specific complexities are
not mentioned, it is not possible to provide a precise time
complexity analysis.
However, it is possible to provide a general overview of
the time complexity considerations for the main steps de-
scribed:
• Defining K partitions: The time complexity of this step
depends on the number of desired partitions (K) and the
size of the input data. Typically, this step involves iterating
over the data once and assigning each capability to a parti-
tion, resulting in a time complexity of O(N), where N is the
number of capabilities.
• Identifying centers of bounded contexts: This step in-
volves selecting the first K capabilities as the centers of the
bounded contexts. As it requires iterating over the first K

2345-3796[https://dx.doi.org/10.57647/j.mjee.2024.1804.50]

https://dx.doi.org/10.57647/j.mjee.2024.1804.50

Ajoudanian et al. MJEE18 (2024) -182450 11/17

Table 5. The results for queries assessment.

No. of queries Avg. Time cost (ms)
Online collaboration system 39 2.9

Smart home online shop 53 3.4
large enterprise 88 7.1

Smart grid software solutions 107 12.4

Figure 5. The average precision of Top-5 discovered bounds.

capabilities, the time complexity is O(K).
• Progressive division of requirement documents: The time
complexity of this step depends on the number of subse-
quent capabilities and the size of the requirement documents.
If the division involves scanning the entire requirement doc-
uments for each subsequent capability, the time complexity
could be O(M * N), where M is the number of subsequent
capabilities and N is the size of the requirement documents.
• Creating/Updating bounded contexts: The time complex-
ity of this step depends on the implementation details of
the incremental clustering algorithm and the number of ca-
pabilities being allocated to their nearest partitions. The
complexity will vary based on the specific algorithm used.
• Combining dense bounded contexts: The time complexity
of this step depends on the number of dense bounded con-
texts and the similarity measure used. If merging involves
comparing all pairs of dense contexts, the time complexity
could be O(D2), where D is the number of dense bounded
contexts.
• Incremental DBSCAN for updating clusters: The time
complexity of this step depends on the implementation de-
tails of the incremental DBSCAN algorithm and the number
of capabilities being added or removed. The complexity
will vary based on the specific algorithm used.
It’s important to note that the specific complexities and
efficiency of the incremental clustering and DBSCAN al-
gorithms are critical factors in determining the overall time
complexity of the proposed method.

4.4 Discussion

The proposed framework, in response to RQ1, takes a set
of user requirements as input, builds the corresponding

attributed capability configurable graph conformed to the
proposed meta-model, and, in response to RQ2, outputs a ca-
pability aware domain for querying and discovering (using
Algorithm 1), as well as bounding and updating software
capabilities (using Algorithm 2) at the early stage of the de-
velopment process. The resultant capabilities (in response
to RQ3) can be utilized during the RE phase to modularize
requirements for a variety of purposes, such as outsourcing
software projects to a parallel team.
Extracting and mining the capabilities of complex soft-
ware systems with a broad variety of functional and non-
functional elements is the major finding of this case study.
Despite the significance of capability discovery, the sug-
gested technique models it appropriately in the early stages
of software development in order to continuously manage
the ever-growing requirement contexts in practice.
Various threshold values are taken into account to merge
bounds with the shortest distance in the present bounding
until all comparable capabilities are grouped together in a
single bound. Choosing the optimal value for merging to
bound is a practical experiment based on domain features
in assessing bound separation and appropriate distance be-
tween any two bounds, or distance between bound centers.
These measure quite a well-defined concept of separation.
There are also different software entity similarity criteria
that may be used in clustering evaluation, as well as an
overview of suitable clustering algorithms and clustering
methodologies. Later in the literature, several determin-
istic and intelligence-based techniques to solving the re-
modularization problem as a clustering problem were pre-
sented and will be addressed in future studies. Finally, the
limitations of this research are discussed in the different

2345-3796[https://dx.doi.org/10.57647/j.mjee.2024.1804.50]

https://dx.doi.org/10.57647/j.mjee.2024.1804.50

12/17 MJEE18 (2024) -182450 Ajoudanian et al.

mapping study steps.
Threats to selection and data extraction consistency. In
this paper, as the test data, by crawling GitHub, we collect
requirement scenarios, and then prepare 1105 requirement
documents selected based on the domain similarity to con-
struct the capability graph. However, research has shown
that volunteers do not have the same characteristics as the
general population (e. g. , [37]). As the first threats to
external validity, the real requirements that a user enters in
a particular domain may have little impact on the results
because of the frequency of focus on the particular context
and so on.
Threats to the quality of the used tokenization algorithm.
The quality of the requirement tokenization and capability
tuple retrieval algorithm can affect the results and lead to
more precise synthesis and results. Our method calculates
employs merely the lexical expansion with domain-specific
semantic expansion. Choosing the right domain can also
influence the results of the algorithm.
Threats due to immaturity of work and lack of them in
this field. Being new in the field makes the analysis harder
and limits comparability between different analysis results.
Threats to set a similarity threshold for different do-
mains. Setting a similarity threshold for different domains
is a threatening work. This measure enables determining
the degree of similarity between two capabilities (regarding
them as structured entities).

5. Related works
RE needs to precisely determine “WHAT” the system
should do and also how to do it. Various methods are used
for different RE processes through the system goals, for
example, knowledge acquisition for automated specifica-
tions (KAOS) method [38], GOIG method, NFR frame-
work, i∗ framework, AGORA method [39], and some
other methods e.g. the pattern-based method [40], hybrid
methods [41], [42], [43] and the differential method [44].
AND/OR graph is employed in GORE to model functional
and non-functional requirements of the software. Several
AND/OR graphs have been created in the GORE. Kaiya
et al. [4]suggested the AGORA goal graph, for the subse-
quent activities: “(i) establishing initial goals as customer’s
needs, (ii) decomposing and refining goals into sub-goals
(iii) choosing and adopting goals from the alternatives of
the decomposed goals, (iv) detecting and resolving con-
flicts on goals”. To model the non-functional and functional
goals, Mohammad et al. [40] developed a FAGOSRA graph
. Fuzzy contribution values and fuzzy preference matrices
in this graph are linked to the graph nodes. The softgoal in-
terdependency graph was made to model the non-functional
requirements. Kaiya et al. [39] found that goal-oriented
methods such as GRL, i∗, and KAOS are the top-down ap-
proaches for decomposing and refining the stakeholders’
needs by satisfying the customer’s needs. The AND/OR
graph was the resultant structure. The developers indicated
that current goal-oriented methods do not support these
activities: “(i) selecting the goals to be decomposed (ii)
prioritizing and solving the conflict of goals and the con-
flict of stakeholders on a goal (iii) choosing and adopting a

goal out of the alternatives of the goals as a requirements
specifications (iv) analyzing the impact when requirements
change, and (v) improving the quality of the artifacts de-
veloped by the method”. Sadiq and Jain provide methods,
such as AGORA, i∗, GRL, and KAOS to be used for the
choosing and prioritization of the software requirements in
fuzzy settings [45].
The suggested technique in [46] uses the textual semantics
of software functional requirements (FRs) to infer probable
quality restrictions enforced in the system. Specifically, we
perform a systematic study of a variety of word similarity
approaches and clustering techniques to produce semanti-
cally coherent clusters of FR terms.
Natural Language Processing Requirements Engineering
(NLP4RE) applies NLP techniques, tools, and resources
to different requirements documents in a wide range of re-
search. Different linguistic processing tasks like detecting
language problems, defining core domain principles, and
creating ties between specifications in terms of traceability
occur at different RE stages. As a survey and systematic
study [47] in this field, the authors provide systematic search
results as follows:
NLP4RE has amassed a large number of publications and
attracted widespread attention from diverse communities
having only been evaluated using an experiment or an ex-
ample application.
According to the information provided in [47], The selected
studies also suggested 130 new methods to enable a va-
riety of linguistic research activities, 140 NLP strategies
(e.g. POS tagging and tokenization), 66 NLP methods (e.
g. Stanford CoreNLP and GATE), and 25 NLP instruments
(WordNet and British National Corpus) from the reviewed
articles.
However, most novel NLP strategies and tools are not com-
monly used; NLP technologies, on the other hand, are fre-
quently used as general-purpose software analysis tech-
niques. In this paper, we propose using NLP as a tool to
automate the requirement analysis phase in software engi-
neering.
Some mining methods have been designed to analyze the
software requirements, e. g. , [48], [49], [50] and [51] as
a recent survey in this area. In [48], a design theory based
on two design principles is proposed for systems of require-
ment mining: (1) using retrieved and imported knowledge,
and (2) automatic requirement mining. This theory enables
requirements engineers to find and organize requirements
in natural language, and to assess the viability of the arti-
fact and the conceptual reliability of the proposed design.
Natural language processing methods were used in [49] for
automatic generation of developing Parametric Property-
Based Requirements from semi-structured and unstructured
specifications. A mechanical ring was designed through
our approach. the A technique was proposed in [50] to
build a body of different kinds of incoherence as well as
a categorization for defining patterns to mine incoherent
requirements.
There are some works in extracting domain models [52],
[53] or software features [54] from Natural-Language re-
quirements. In [55], authors presented an automated ap-

2345-3796[https://dx.doi.org/10.57647/j.mjee.2024.1804.50]

https://dx.doi.org/10.57647/j.mjee.2024.1804.50

Ajoudanian et al. MJEE18 (2024) -182450 13/17

proach based on Natural Language Processing for extracting
domain models from unrestricted requirements. The main
technical contribution of their approach is in extending the
existing set of model extraction rules. Authors in [56] con-
ducted a systematic literature review for feature extraction
approaches from NL requirements for reuse in SPLE.
In their study [57], the authors have rigorously explored
a range of architectural scenarios on database transaction
failures and resilience within the realm of microservices
at an enterprise scale. Their research specifically zeroes
in on the resilience of transactions in microservices across
defined bounded contexts.
In the paper referenced as [58], the authors introduce a
structured method for Software Architecture Reconstruction
(SAR) specifically tailored to software systems built using
Microservice Architecture (MSA). This approach utilizes
a suite of modeling languages designed for model-driven
MSA engineering, enabling the precise capture of architec-
tural details within models tailored to specific viewpoints.
As a result, the application of this method results in the
creation of detailed reconstructions including models of the
domain, technology stack, services, and operations specific
to the microservice architectures under analysis. Further,
they meticulously analyzed a curated set of input files to
extract domain concepts. These identified domain concepts,
encapsulated within bounded contexts, are then documented
within the reconstruction domain models using a bespoke
Domain Data Modeling Language.
In [27], the researchers have proposed a methodology that
analyzes an application’s source code to generate recom-
mendations for structuring microservices. This proposed
technique involves the extraction of specific keywords suc-
ceeded by a Breadth First Search traversal guided by pre-
defined rules. By employing this structured approach, the
methodology effectively decomposes a monolithic applica-
tion into multiple clusters, wherein the predominant number
of components within each cluster share a common business
domain.
The method introduced in [59] takes an automated stance
in segmenting microservices, leveraging graph clustering
paired with combinatorial optimization strategies to strike
an optimal balance between maximizing internal coherence
and minimizing external dependencies.
In [60], the authors have detailed an innovative meta-
modeling strategy, named the Software Pattern MetaModel
(SoPaMM). This approach is designed to synchronize the
requirements specification with the testing phase by em-
ploying requirement patterns alongside test patterns. The
primary ambition of the authors is to identify recurring mo-
tifs within system requirements that can be cataloged and
repurposed in subsequent projects.
The capability definition, discovering, and managing are im-
portant various domains for business processes, enterprise
information systems as well as service-oriented architecture
e. g. , [55], [61], [56], and [13]. While, according to the
best knowledge of the author, there is no similar work that
tackles the concept of capability as a first-class entity of soft-
ware functionally in a domain-independent RE approach.
Also, the approaches to explicitly discovering, bounding

querying the software capabilities at the requirement engi-
neering phase via analyzing informal user requirements.

6. Future direction
The paper proposes a framework that in response to RQ1
takes as input a set of user requirements, builds the cor-
responding attributed capability configurable graph con-
formed with the proposed meta-model, and in response to
RQ2 outputs a capability-aware domain for querying and
discovering, (using Algorithm 1), and bounding and updat-
ing the software capabilities (using Algorithm 2) at the early
phase of the development process. The resulting capabil-
ities (in response to RQ3) can be used at the RE phase to
modular the requirements for various goals e.g., outsourc-
ing the software projects as the parallel team working. The
framework has been evaluated using real-world software
scenarios that have been manually collected and annotated
within GitHub. The evaluation was done considering three
main dimensions: precision, time, and cohesiveness rate of
discovered bounds before and after changes. Results show
that the approach is promising to reach a certain level of
maturity to facilitate the RE in software settings. As future
work, we propose the following extensions: planning to
examine more relations that may be valuable for the capa-
bility descriptions graph, planning to provide the required
environment for tracing and transformation of the graph to
analysis and design phases, and establishing a maintenance
mechanism for the trained model to automatically extract
the domains of requirements with enough accuracy and
precision. Finally, we will extend the approach to define
various semantic relations among capabilities. Capability
holders may quickly and simply describe new capabilities
using these relations by recycling earlier definitions.

7. Conclusion
An original meta-model was presented in this paper for
defining capabilities. This model has many advantages;
it has functional and business characteristics, which are
specified in consumers’ requests and typical desires. The
meta-model may handle capabilities at different levels of
abstraction in the same manner. Furthermore, this model
builds relationships among capabilities at different levels of
abstraction. Above all, the model offers the needed declara-
tive specification to vigorously create concrete capabilities.
Also, we discussed the idea of early integration of capa-
bilities in requirement engineering to be used for creating
a capability-driven development process. The considered
method for requirement analysis in this paper applies tok-
enization based on the method proposed which keeps nouns,
verbs, and logical conditions, and removes stop words to
filter out the capability records in an output file according
to the conditions described in the user requirement in any
format which may be defined as feedback, user’s mails, or
Twitter, or sensors, or even from user stories.

8. APPENDIX A
Table 6 shows the used symbols in the paper and the
corresponding meanings.

2345-3796[https://dx.doi.org/10.57647/j.mjee.2024.1804.50]

https://dx.doi.org/10.57647/j.mjee.2024.1804.50

14/17 MJEE18 (2024) -182450 Ajoudanian et al.

Table 6. Symbols and meaning.

Symbol Meaning
G = (N, A, E, λ) Definition 1

A Set of actions
C Connector function

input: nodes a1, a2
output: ANDsplit, ANDjoin, ORsplit, ORjoin, XORsplit, and XORjoin

E Set of edges
Cap Capability function

Input: node a
Output: (Action(a), Properties(a))

Cond Condition function
Input: node a

Output: a set of pre and post conditions of node a
Act(Cap(a)) Action function

Input: capability of node a Cap(a)
Output: Action(a) of the Cap(a)

Prop(Cap(a)) Property function
Input: capability of node a Cap(a)

Output: Properties(a) of the Cap(a)
ActionSet All actions in a CARG

PropertySet All properties in a CARG
CapSet=(ActionSet, PropertySet) The set of tuples (ActionSet, PropertySet)

Wordsim SE similarity function

Authors contributions
All authors have contributed equally to prepare the
paper.

Availability of data and materials
The data that support the findings of this study
are available from the corresponding author upon
reasonable request.

Conflict of interests
The authors declare that they have no known com-
peting financial interests or personal relationships
that could have appeared to influence the work
reported in this paper.

Open access
This article is licensed under a Creative Commons
Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as
you give appropriate credit to the original author(s)
and the source, provide a link to the Creative
Commons license, and indicate if changes were
made. The images or other third party material in
this article are included in the article’s Creative
Commons license, unless indicated otherwise in
a credit line to the material. If material is not
included in the article’s Creative Commons license
and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will

need to obtain permission directly from the OICC
Press publisher. To view a copy of this license, visit
https://creativecommons.org/licenses/by/4.0.

References
[1] P. Loucopoulos and V. Karakostas. “System require-

ments engineering.”. McGraw-Hill, Inc., 1995. DOI:
https://doi.org/10.1049/ic:20050-131.

[2] G. Kotonya and I. Sommerville. “Requirements en-
gineering: processes and techniques.”. Wiley Pub-
lishing, 1998.

[3] I. Sommerville. “Software engineering,9th Edi-
tion.”. Mater. Today, 10(42), 2007. DOI:
https://doi.org/ISBN-10137035152, 2011.

[4] P. Loucopoulos and E. Kavakli. “Enterprise mod-
elling and the teleological approach to require-
ments engineering.”. International Journal of Co-
operative Information Systems, 4(01):pp. 45–79, 1995.
DOI: https://doi.org/10.1142/s0218843095000032.

[5] A. Van Lamsweerde. “Requirements engineering:
From system goals to UML models to software.”.
Chichester, UK: John Wiley and Sons, 2009. DOI:
https://doi.org/10.1109/icse.2003.1201266.

[6] J. Siddiqi. “ Requirement engineering: The emerg-
ing wisdom.”. IEEE Software, (2):pp. 15, 1996. DOI:
https://doi.org/10.1109/ms.1996.506458.

2345-3796[https://dx.doi.org/10.57647/j.mjee.2024.1804.50]

https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1049/ic:20050-131
https://doi.org/ISBN-10137035152, 2011
https://doi.org/10.1142/s0218843095000032
https://doi.org/10.1109/icse.2003.1201266
https://doi.org/10.1109/ms.1996.506458
https://dx.doi.org/10.57647/j.mjee.2024.1804.50

Ajoudanian et al. MJEE18 (2024) -182450 15/17

[7] M. N. Abadeh. “Knowledge-enhanced software re-
finement: leveraging reinforcement learning for
search-based quality engineering..”. Automated
Software Engineering, 31(2):pp. 57, 2024. DOI:
https://doi.org/10.1007/s10515-024-00456-7.

[8] S. Berzisa, G. Bravos, T. C. Gonzalez, U. Czubayko,
S. Espana, J. Grabis, M. Henkel, L. Jokste, J. Kam-
pars, H. Koc, and J. C. Kuhr. “Capability driven
development: an approach to designing digi-
tal enterprises.”. Business and Information Sys-
tems Engineering, 57(1):pp. 15–25, 2015. DOI:
https://doi.org/10.1007/978-3-319-90424-5-13.

[9] M. H. Danesh, P. Loucopoulos, and E. Yu. “Dynamic
capabilities for sustainable enterprise IT–a mod-
eling framework. ”. International Conference on
Conceptual Modeling, Springer, pages pp. 358–366,
2015. DOI: https://doi.org/10.1007/978-3-319-25264-
3-26.

[10] P. Loucopoulo, C. Stratigaki, M. H. Danesh,
G. Bravos, D. Anagnostopoulos, and G. Dimitrakopou-
los. “Enterprise capability modeling: concepts,
method, and application.”. International Conference
on Enterprise Systems (ES), pages pp. 66–77, 2015.
DOI: https://doi.org/10.1109/es.2015.14.

[11] P. Oaks, A. H. Ter Hofstede, and D. Edmond.
“Capabilities: Describing what services can do.”.
International Conference on Service-Oriented Com-
puting,Springer, pages pp. 1–16, 2003. DOI:
https://doi.org/10.1007/978-3-540-24593-3-1.

[12] I. s. Standards Board. “IEEE Recommended Prac-
tice for Software Requirements Specications.”.
IEEE Standard, 830:pp. 04–09, 2000. DOI:
https://doi.org/10.1109/ieeestd.1998.88286.

[13] W. Derguech, S. Bhiri, S. Hasan, and E. Curry.
“Using formal concept analysis for organizing
and discovering sensor capabilities.”. The Com-
puter Journal, 58(3):pp. 356–367, 2015. DOI:
https://doi.org/10.1093/comjnl/bxu088.

[14] J. Dabrowski, E. Letier, A. Perini, and A. Susi.
“Mining and searching app reviews for require-
ments engineering: Evaluation and replication
studies.”. Information Systems, 114:pp. 102181, 2023.
DOI: https://doi.org/10.1016/j.is.2023.102181.

[15] T. Cardona, E. A. Cudney, R. Hoerl, and J. Sny-
der. “Data mining and machine learning re-
tention models in higher education.”. Jour-
nal of College Student Retention: Research, The-
ory and Practice, 25(1):pp. 51–75, 2023. DOI:
https://doi.org/10.1177/1521025120964920.

[16] L. Wijerathna, A. Aleti, T. Bi, and A. Tang.
“Mining and relating design contexts and de-
sign patterns from Stack Overflow.”. Empiri-
cal Software Engineering, 27(1):pp. 8, 2021. DOI:
https://doi.org/10.1007/s10664-021-10034-0.

[17] P. Sangaroonsilp, H. K. Dam, M. Choetkiertikul,
C. Ragkhitwetsagul, and A. Ghose. “A taxon-
omy for mining and classifying privacy require-
ments in issue reports.”. Information and Soft-
ware Technology, 157:pp. 107162, 2023. DOI:
https://doi.org/10.1016/j.infsof.2023.107162.

[18] W. Abdeen, X. Chen, and M. Unterkalmsteiner. “An
approach for performance requirements verifica-
tion and test environments generation.”. Require-
ments Engineering, 28(1):pp. 117–144, 2023. DOI:
https://doi.org/10.1007/s00766-022-00379-3.

[19] R. S. Wahono. “Analyzing requirements engineer-
ing problems.”. IECI Japan Workshop, 2003.

[20] M. Hause. “The SysML modelling lan-
guage.”. Fifteenth European Systems Engi-
neering Conference, 9:pp. 1–12, 2006. DOI:
https://doi.org/10.1049/ic:20050131.

[21] P. H. Feiler, D. P. Gluch, and J. J. Hudak. “The ar-
chitecture analysis and design language (AADL):
An introduction.”. Carnegie-Mellon Univ Pitts-
burgh PA Software Engineering Inst, 2006. URL
10.21236/ada455842.

[22] O. MARTE. “UML profile for modeling and analy-
sis of real-time and embedded systems (MARTE).”.
ed: OMG, 2011. DOI: https://doi.org/10.1016/c2012-
0-13536-5.

[23] B. SISO. “Guide for base object model (BOM) use
and implementation. SISO.”.

[24] S. Bernardi, J. Merseguer, and D. C. Petriu.
“Model-driven dependability assessment of soft-
ware systems.”. Springer, 2013. DOI:
https://doi.org/10.1007/978-3-642-39512-3.

[25] B. Mohit. “Named entity recognition.”. Nat-
ural language processing of semitic languages:
Springer, pages pp. 221–245, 2014. DOI:
https://doi.org/10.1007/978-3-642-45358-8-7.

[26] E. Brill. “A simple rule-based part of speech tag-
ger.”. Proceedings of the third conference on Applied
natural language processing. Association for Compu-
tational Linguistics., pages pp. 152–155, 1992. DOI:
https://doi.org/10.3115/1075527.1075553.

[27] S. Rochimah and B. Nuralamsyah. “Decomposing
monolithic to microservices: keyword extraction
and BFS combination method to cluster mono-
lithic’s classes.”. Jurnal RESTI, 7(2):pp. 263– 270,
2023. DOI: https://doi.org/10.29207/resti.v7i2.4866.

[28] I. K. Raharjana, D. Siahaan, and C. Fatichah. “User
story extraction from online news for software re-
quirements elicitation: A conceptual model.”. 16th
International Joint Conference on Computer Science
and Software Engineering (JCSSE), pages pp. 342–
347, 2019.

2345-3796[https://dx.doi.org/10.57647/j.mjee.2024.1804.50]

https://doi.org/10.1007/s10515-024-00456-7
https://doi.org/10.1007/978-3-319-90424-5-13
https://doi.org/10.1007/978-3-319-25264-3-26
https://doi.org/10.1007/978-3-319-25264-3-26
https://doi.org/10.1109/es.2015.14
https://doi.org/10.1007/978-3-540-24593-3-1
https://doi.org/10.1109/ieeestd.1998.88286
https://doi.org/10.1093/comjnl/bxu088
https://doi.org/10.1016/j.is.2023.102181
https://doi.org/10.1177/1521025120964920
https://doi.org/10.1007/s10664-021-10034-0
https://doi.org/10.1016/j.infsof.2023.107162
https://doi.org/10.1007/s00766-022-00379-3
https://doi.org/10.1049/ic:20050131
10.21236/ada455842
https://doi.org/10.1016/c2012-0-13536-5
https://doi.org/10.1016/c2012-0-13536-5
https://doi.org/10.1007/978-3-642-39512-3
https://doi.org/10.1007/978-3-642-45358-8-7
https://doi.org/10.3115/1075527.1075553
https://doi.org/10.29207/resti.v7i2.4866
https://dx.doi.org/10.57647/j.mjee.2024.1804.50

16/17 MJEE18 (2024) -182450 Ajoudanian et al.

[29] R. M. Fano. “Transmission of information: A
statistical theory of communications.”. Ameri-
can Journal of Physics, 29(11):pp. 793–794. DOI:
https://doi.org/10.1119/1.1937609.

[30] J. A. Bullinaria and J. P. Levy. “Extracting se-
mantic representations from word co-occurrence
statistics: A computational study.”. Behavior
research methods, 39(3):510–526, 2007. DOI:
https://doi.org/10.3758/bf03193020.

[31] Y. Tian, D. Lo, and J. Lawall. “Automated con-
struction of a software-specific word similarity
database.”. Software Evolution Week-IEEE Con-
ference on Software Maintenance, Reengineering,
and Reverse Engineering (CSMR-WCRE), pages pp.
44–53, 2014. DOI: https://doi.org/10.1109/csmr-
wcre.2014.6747213.

[32] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and
X. Xu. “Incremental clustering for mining in a data
ware housing.”. University of Munich Oettingenstr,
67.

[33] A. M. Bakr, N. M. Ghanem, and M. A. Ismail.
“Efficient incremental density-based algorithm for
clustering large datasets.”. Alexandria Engineer-
ing Journal, 54(4):pp. 1147–1154, 2015. DOI:
https://doi.org/10.1016/j.aej.2015.08.009.

[34] J. Han, M. Kamber, and J. Pei. “Data Mining: Con-
cepts and Techniques.”. Morgan Kauffman, 2011.
DOI: https://doi.org/10.1109/icmira.2013.45.

[35] A. K. Jain and J. Moreau. “Bootstrap technique
in cluster analysis.”. Pattern Recognition, 20(5):
547–568, 1987. DOI: https://doi.org/10.1016/0031-
3203(87)90081-1.

[36] R.-H. Li, L. Qin, J. X. Yu, and R. Mao. “Influential
community search in large networks.”. Proceedings
of the VLDB Endowment, 8(5):pp. 509–520, 2015.
DOI: https://doi.org/10.14778/2735479.2735484.

[37] R. L. Rosnow and R. Rosenthal. “The vol-
unteer subject revisited.”. Australian Journal
of Psychology, 28(2):pp. 97–108, 1976. DOI:
https://doi.org/10.1080/00049537608255268.

[38] A. Van Lamsweerde, A. Dardenne, B. Delcourt, and
F.Dubisy. “The KAOS project: Knowledge acqui-
sition in automated specification of software.”. in
Proc. of the AAAI Spring Symposium Series, Design
of Composite Systems, 1991:pp. 59–62, 1991.

[39] H. Kaiya, H. Horai, and M. Saeki. “AGORA:
Attributed goal-oriented requirements analysis
method.”. Proceedings IEEE joint international con-
ference on requirements engineering.

[40] S. Ghaedi Heidari and S. Ajoudanian. “Automatic
pattern-based consistency checking in model refac-
toring: introducing a formal behavioral preserv-

ing method.”. Innovations in Systems and Soft-
ware Engineering, 20(1):pp. 65–84, 2024. DOI:
https://doi.org/10.1007/s11334-022-00525-8.

[41] A. Afrin and M. Sadiq. “An integrated approach
for the selection of software requirements us-
ing fuzzy AHP and fuzzy TOPSIS method.”. in
2017 International Conference on Intelligent Com-
puting, Instrumentation and Control Technologies
(ICICICT), pages pp. 1094–1100, 2017. DOI:
https://doi.org/10.1109/icicict1.2017.8342722.

[42] M. Sadiq and S. Nazneen. “Elicitation of soft-
ware testing requirements from the selected
set of software’s requirements in GOREP.”.
International Journal of Computational Systems
Engineering, 5(3):pp. 152–160, 2019. DOI:
https://doi.org/10.1504/ijcsyse.2019.10022447.

[43] S. Khan, C. W. Mohammad, and M. Sadiq.
“Generating patterns and sub-Patterns of pairwise
comparison matrices for the selection of software
requirements.”. International Conference on Ad-
vances in Computing, Communication Control and
Networking (ICACCCN), pages pp. 91–97, 2018. DOI:
https://doi.org/10.1109/icacccn.2018.8748860.

[44] M. Nooraei Abadeh and M. Mirzaie. “DiffPageRank:
an efficient differential PageRank approach
in MapReduce.”. The Journal of Super-
computing, 77(1):pp. 188–211, 2021. DOI:
https://doi.org/10.1007/s11227-020-03265-3.

[45] M. Sadiq, T. Hassan, and S. Nazneen. “AHP-
GORE-PSR: Applying analytic hierarchy pro-
cess in goal oriented requirements elicitation
method for the prioritization of software require-
ments.”. 3rd International Conference on Com-
putational Intelligence and Communication Tech-
nology (CICT), pages pp. 1–5, 2017. DOI:
https://doi.org/10.1109/ciact.2017.7977366.

[46] A. Mahmoud and G. Williams. “Detecting, classify-
ing, and tracing non-functional software require-
ments.”. Requirements Engineering, 21(3):pp. 357–
381, 2016. DOI: https://doi.org/10.1007/s00766-016-
0252-8.

[47] L. Zhao, W. Alhoshan, A. Ferrari, K. J. Letsholo, M. A.
Ajagbe, E. V. Chioasca, and R. T. Batista-Navarro.
“Natural Language Processing (NLP) for Require-
ments Engineering: A Systematic Mapping Study.”.
ACM Computing Surveys (CSUR), 54(3):pp. 54, 2004.
DOI: https://doi.org/10.48550/arXiv.2004.01099.

[48] H. Meth, B. Mueller, and A. Maedche. “Designing a
requirement mining system.”. Journal of the Asso-
ciation for Information Systems, 16(9):pp. 799, 2015.
DOI: https://doi.org/10.17705/1jais.00408.

2345-3796[https://dx.doi.org/10.57647/j.mjee.2024.1804.50]

https://doi.org/10.1119/1.1937609
https://doi.org/10.3758/bf03193020
https://doi.org/10.1109/csmr-wcre.2014.6747213
https://doi.org/10.1109/csmr-wcre.2014.6747213
https://doi.org/10.1016/j.aej.2015.08.009
https://doi.org/10.1109/icmira.2013.45
https://doi.org/10.1016/0031-3203(87)90081-1
https://doi.org/10.1016/0031-3203(87)90081-1
https://doi.org/10.14778/2735479.2735484
https://doi.org/10.1080/00049537608255268
https://doi.org/10.1007/s11334-022-00525-8
https://doi.org/10.1109/icicict1.2017.8342722
https://doi.org/10.1504/ijcsyse.2019.10022447
https://doi.org/10.1109/icacccn.2018.8748860
https://doi.org/10.1007/s11227-020-03265-3
https://doi.org/10.1109/ciact.2017.7977366
https://doi.org/10.1007/s00766-016-0252-8
https://doi.org/10.1007/s00766-016-0252-8
https://doi.org/10.48550/arXiv.2004.01099
https://doi.org/10.17705/1jais.00408
https://dx.doi.org/10.57647/j.mjee.2024.1804.50

Ajoudanian et al. MJEE18 (2024) -182450 17/17

[49] R. Pinquie, P. Veron, F. Segonds, and N. Croue.
“Natural Language Processing of Requirements for
Model-Based Product Design with ENOVIA/CA-
TIA V6.”. IFIP International Conference on Product
Lifecycle Management,Springer, pages pp. 205–215,
2015. DOI: https://doi.org/10.1007/978-3-319-33111-
9-19.

[50] P. Saint-Dizier. “Mining incoherent require-
ments in technical specifications: Analysis
and implementation.”. Data and Knowledge
Engineering, 117:pp. 290–306, 2018. DOI:
https://doi.org/10.1016/j.datak.2018.05.006.

[51] D. Janssens. “Natural language processing in re-
quirements elicitation and requirements analysis:
a systematic literature review.”. ACM Computing
Surveys, 54(3), 2019.

[52] C. Arora, M. Sabetzadeh, L. Briand, and F. Zim-
mer. “Extracting domain models from natural-
language requirements: approach and industrial
evaluation.”. Proceedings of the ACM/IEEE 19th In-
ternational Conference on Model Driven Engineering
Languages and Systems, pages pp. 250–260, 2016.
DOI: https://doi.org/10.1145/2976767.2976769.

[53] C. Arora, M. Sabetzadeh, and L. C. Briand.
“An empirical study on the potential useful-
ness of domain models for completeness check-
ing of requirements.”. Empirical Software En-
gineering, 24(4):pp. 2509–2539, 2019. DOI:
https://doi.org/10.1007/s10664-019-09693-x.

[54] H. Sadeghi and S. Ajoudanian. “Optimized feature
selection in software product lines using discrete
bat algorithm.”. International Journal of Compu-
tational Intelligence and Applications, 21(1), 2022.
DOI: https://doi.org/10.1142/s1469026822500031.

[55] K. Karlapalem, H. P. Yeung, and P. C. Hung.
“CapBasED- A M S- framework for capability-

based and event-Driven Activity Management Sys-
tem.”. CoopIS, 95:pp. 205–219, 1995.

[56] S. Bhiri, W. Derguech, and M. Zaremba. “Modelling
capabilities as attribute-featured entities.”. Interna-
tional Conference on Web Information Systems and
Technologies. Springer, pages pp. 70–85, 2012. DOI:
https://doi.org/10.1007/978-3-642-36608-6-5.

[57] S. Jung, J. Yoo, and S. Malek. “A systematic co-
engineering of safety and security analysis in re-
quirements engineering process.”. International
Journal of Critical Infrastructure Protection, 43, 2023.
DOI: https://doi.org/10.1016/j.ijcip.2023.100642.

[58] F. Rademacher, S. Sachweh, and A. Zündorf. “A
modeling method for systematic architecture re-
construction of microservice-based software sys-
tems.”. Lecture Notes in Business Information
Processing. Springer. Cham., 387, 2020. DOI:
https://doi.org/10.1007/978-3-030-49418-6-21.

[59] G. Filippone, N. Qaisar Mehmood, M. Autili,
F. Rossi, and M. Tivoli. “From monolithic to
microservice architecture: an automated ap-
proach based on graph clustering and com-
binatorial optimization.”. IEEE 20th Interna-
tional Conference on Software Architecture (ICSA),
L’Aquila, Italy, pages pp. 47–57, 2023. DOI:
https://doi.org/10.1109/ICSA56044.2023.00013.

[60] T.N. Kudo, R. d. F. Bulcão-Neto, and V. V. G. Neto
and. “Aligning requirements and testing through
metamodeling and patterns: design and evalua-
tion.”. Requirements Eng, 28:97–115, 2023. DOI:
https://doi.org/10.1007/s00766-022-00377-5.

[61] W. Derguech and S. Bhiri. “Modelling, interlink-
ing and discovering capabilities.”. ACS Interna-
tional Conference on Computer Systems and Ap-
plications (AICCSA), pages pp. 1–8, 2013. DOI:
https://doi.org/10.1109/aiccsa.2013.6616444.

2345-3796[https://dx.doi.org/10.57647/j.mjee.2024.1804.50]

https://doi.org/10.1007/978-3-319-33111-9-19
https://doi.org/10.1007/978-3-319-33111-9-19
https://doi.org/10.1016/j.datak.2018.05.006
https://doi.org/10.1145/2976767.2976769
https://doi.org/10.1007/s10664-019-09693-x
https://doi.org/10.1142/s1469026822500031
https://doi.org/10.1007/978-3-642-36608-6-5
https://doi.org/10.1016/j.ijcip.2023.100642
https://doi.org/10.1007/978-3-030-49418-6-21
https://doi.org/10.1109/ICSA56044.2023.00013
https://doi.org/10.1007/s00766-022-00377-5
https://doi.org/10.1109/aiccsa.2013.6616444
https://dx.doi.org/10.57647/j.mjee.2024.1804.50

	Introduction
	Problem statement by an example
	Proposed method
	System input preparation
	Tokenization
	Capability attributed requirement graph

	CARG processing
	Similarity measurement

	Analysis and results
	Bounded context assessment
	Average precision (AP) of the approach
	 Queries assessment
	Discussion

	 Related works
	Future direction
	Conclusion
	APPENDIX A

