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Abstract:
Short-term electrical load forecasting plays a pivotal role in modern energy systems, addressing
the need for accurate predictions of electricity demand within a time frame ranging from a few
hours to a few days. Inaccurate predictions can lead not only to operational challenges but also
to economic and environmental consequences, highlighting the critical importance of short-term
electrical load forecasting in today’s energy landscape. This research aims to mitigate these issues
by developing an optimally configured Long Short-Term Memory (LSTM) model for short-term
electrical load forecasting in Tamil Nadu, specifically targeting the Villupuram region in India.
Although LSTM models are known for their effectiveness, achieving optimal performance in
short-term load forecasting requires a tailored approach. Hyperparameter optimization is essential
for configuring the LSTM model for this purpose, as manual or trial-and-error hyperparameter
tuning is time-consuming and computationally intensive. To address this challenge, this research
integrates the Cauchy-distributed Harris Hawks Optimization (Cd-HHO) method to optimally
configure the LSTM model. The Cd-HHO-optimized LSTM consistently achieves lower Mean
Squared Error (MSE) than other state-of-the-art methods, with MSE values of 0.7225 in the 2017
dataset, 0.974 in the 2018 dataset, and 0.116 in the 2019 dataset.

Keywords: Short-term electrical load forecasting; Long short-term memory; Cauchy-distributed harris hawks optimization;
hyperparameters tuning; Uncertainties in weather forecasts; Power system management; Villupuram region

1. Introduction
A stable and uninterrupted power supply is a fundamental
requirement for an electrical power generation system. Ad-
ditionally, these systems rely on ”load forecasting” to meet
load demand-a process that involves analyzing historical
data, behavior, trends, and other factors that impact load
to estimate future demand [1]. Accurate power load fore-
casts enable demand-side management (DSM) approaches
to effectively reduce electricity usage [2]. Inaccurate load
forecasts can compromise the security and reliability of
power systems, potentially leading to imbalanced genera-
tion planning, irregular power flows, and system congestion
[3]. Moreover, inaccurate load predictions could render
efforts to anticipate power demand futile. For power gener-
ation resources to produce the necessary amount of energy
for continuous and efficient operation, accurate short-term
load forecasting is essential [4].
The literature on computational intelligence methodologies

for energy load forecasting highlights the complexity of
demand patterns, which can be influenced by factors such
as climate, season, holidays, weekdays, as well as social ac-
tivities, economic factors, and power market policies. Over
50 research papers on this topic were reviewed. Since mete-
orological conditions significantly affect electrical energy
demand, these factors must be considered when forecasting
demand [5]. Developing a load forecasting model requires
incorporating meteorological parameters, particularly due
to the influence of high-energy-consumption devices, like
air conditioners, on load demand [6].
Traditional statistical algorithms are primarily limited by
the assumption of a linear relationship within time series
data; as a result, they struggle to predict power load when
dealing with irregular, non-linear trends, high noise, and
significant fluctuations. Additionally, the prediction error in
these systems can increase considerably when the original
data changes due to social or environmental influences [7].
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While artificial intelligence algorithms can address these is-
sues, they have certain limitations, such as a tendency to fall
into local optima, susceptibility to overfitting, and relatively
low convergence rates [8]. Neural network algorithms gen-
erally have slower learning speeds than traditional statistical
methods, as their optimized objective functions are often
highly complex. Furthermore, there is a significant risk of
training failures in neural networks [9]. Researchers sug-
gest that machine learning and hybrid approaches may be
effective tools for managing the non-linear characteristics
of load data [10].
The LSTM architecture includes a loop that allows it to
store past data for extended periods, making it highly effec-
tive for time series data. LSTM has been widely applied to
solve various time series challenges, such as well log gener-
ation [11], machine translation [12], and natural language
processing. It is considered the most effective model for
load forecasting, a common time series data problem [13].
To achieve optimal or state-of-the-art results with LSTM
networks, several hyperparameters-including the number of
recurrent units, network depth, dropout rate, and pre-trained
word embeddings-must be selected and optimized. The
difference between average and cutting-edge performance
is often determined by the choice of hyperparameters [14].
Manual selection based on user experience or traditional
random search are the two most common approaches for
selecting hyperparameters [15]. However, these methods
require extensive trial and error and are time-consuming.
An alternative is to use metaheuristic approaches, known
for their ability to find near-optimal solutions within a very
large search space, to achieve an ideal configuration for
energy forecasting models [16].
To compete with other optimizers, this paper proposes a
novel, nature-inspired optimization approach. The funda-
mental concept of the proposed optimizer is inspired by
the cooperative hunting tactics of Harris’ Hawks, one of
nature’s most strategic birds, known for pursuing evasive
prey (typically rabbits). While traditional HHO can find the
global optimal solution, it often requires numerous itera-
tions. The inclusion of Cauchy operators in the proposed
approach reduces the number of iterations needed, ensuring
an optimal solution in less time than conventional algo-
rithms [17].

2. Literature review
Azeem et al. [18] examine state-of-the-art approaches re-
cently used for electrical load forecasting, highlighting com-
mon practices, recent developments, and areas for improve-
ment. Their review explores the procedures, parameters,
and relevant sectors considered in load forecasting, provid-
ing a detailed analysis of the advantages, disadvantages,
and model error rates. To aid researchers in evaluating best
practices, the review also emphasizes the distinct features
of methods used across residential, commercial, industrial,
grid, and off-grid sectors.
Rui Wang et al. [19] propose an electric load forecasting
system that addresses the limitations of traditional fore-
casting models and achieves higher forecasting accuracy
than single-model optimization. This system integrates

various classical forecasting methods, hybrid optimization
algorithms, and data preparation techniques. Test results
indicate that the proposed hybrid model can more accurately
represent real values and has been effectively used for dis-
patch in smart grids.
Umar Javed et al. [20] provide a comprehensive analysis
of contemporary linear and non-linear parametric model-
ing methodologies aimed at ensuring stable and reliable
power system operations by addressing non-linearities in
electrical load data. Temporal and climatic characteristics
are identified as potential input factors in various model-
ing approaches, based on the results of exploratory data
analysis. Several advanced linear and non-linear parametric
techniques are evaluated for accuracy using real-time elec-
trical load and climatic data from Lahore, Pakistan.
To predict short-term load demand in a typical microgrid,
Usman Bashir Tayab et al. [21] developed a hybrid solution
that combines the best-basis stationary wavelet packet trans-
form with a Harris Hawk optimization-based feed-forward
neural network. The basis and weights of the neurons in
the feed-forward neural network are optimized using Harris
Hawk optimization. The proposed model, when compared
to other existing models, shows potential for estimating load
demand in the Queensland electric market.
Ibrahim Yazici et al. [22] proposed a method for short-
term load forecasting based on Video Pixel Networks and
one-dimensional Convolutional Neural Networks (CNNs).
Although CNNs are less commonly used in time series
forecasting compared to traditional models like LSTM and
GRU, they exhibit exceptional effectiveness in pattern ex-
traction. In this study, these models are employed to provide
forecasts for the next hour and the next 24 hours using ac-
tual power usage data. The proposed one-dimensional CNN
model outperforms others, with statistical tests showing a
mean absolute percentage error of 2.21% for 24-hour pre-
dictions. The CNN approach also performs well for 1-hour
forecasts, achieving a mean absolute percentage error of
approximately 1%. This study provides valuable insights
that can enhance prediction models used in the electrical
industry.
Ke Li et al. [23] introduce the CEEMDAN-1SE-LSTM
model for ultra-short-term power load forecasting in Chang-
sha, China, which is crucial for power dispatch and market
development. By decomposing and reconstructing power
load data while considering meteorological and holiday
factors, the model outperforms others, achieving RMSE,
MAE, and MAPE values of 62.102, 47.490, and 1.649%, re-
spectively. The research significantly enhances forecasting
accuracy, supports power dispatch in Changsha, and serves
as a valuable reference for other cities developing similar
models.
Due to the significant impact of climate change on power
usage and emerging trends in smart networks, medium- and
long-term electrical load forecasting has become increas-
ingly important. Navid Shirzadi et al. [24] investigated
this issue to compare and improve district-level models for
predicting electrical load demand. They used a variety of
techniques, including LSTM recurrent neural networks, ran-
dom forests, non-linear auto-regressive exogenous neural
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networks, support vector machines, and deep learning ap-
proaches. The results show that the deep learning model
provided more accurate load demand predictions than SVM
and RF, achieving an R-squared value of approximately
0.93−0.96 and a mean absolute percentage error of about
4−10%.
Wendi Li et al. [25] present HELP (Hyperparameter Ex-
ploration LSTM-Predictor), a random exploration approach
that combines probability-based exploration with LSTM-
based prediction. HELP is more efficient in discovering
superior hyperparameters with less time spent. Based on ex-
perimental data, HELP identifies hyperparameters for both
convolutional neural networks and generative adversarial
networks, yielding better outcomes and faster convergence.

3. Proposed methodology
Demand response management is a key component that
helps reduce peak load and variation in electrical load, and
it depends on accurate load forecasting, making it essential
to all aspects of electric utility operations. Accurate elec-
trical load forecasting is crucial for managing the power
system and energy dispatch, which are vital for the suc-
cessful operation of the country’s economy and the daily
lives of its people. On the other hand, poor power load
predictions are ineffective. An inaccurate forecast can lead
to abnormal power system operation, causing power out-
ages in affected areas and ultimately resulting in significant
losses and disasters. This research aims to create a load
forecasting model using LSTM. To improve performance,
it incorporates hyperparameter adjustment, which is crucial
for effective training. However, a random search for hyper-
parameters can be time-consuming and may take a while
to converge due to the need to train deep neural networks
with numerous parameters for each selected hyperparame-
ter. The novelty of this research lies in the integration of
optimization techniques to identify the optimal hyperpa-
rameters for LSTM. Specifically, it combines the Cauchy
distribution as a parallel updating strategy with traditional
HHO to determine the optimal hyperparameters for LSTM.

3.1 Dataset description
In our research, we use real-time datasets of electrical load
consumption and weather information collected from a
230/110 KV auto substation in the Villupuram region of
Tamil Nadu, India. From 2017 to 2019, 96 samples per day
were taken from the aggregated electrical load data (repre-
senting the entire Villupuram region), recorded at 15-minute
intervals. The meteorological dataset includes information
on wind speed, rainfall, temperature, and humidity, which
was obtained from an official Indian government online
database portal and recorded at 15-minute intervals between
2017 and 2019. This study incorporates eight indepen-
dent variables: temperature, wind speed, humidity, rainfall,
groundwater level, day type, special days, and the season
of the corresponding year. Due to the influence of climatic
factors (wind speed, temperature, humidity, and rainfall)
on load demand, there is a strong interdependence between
these variables and thermal inertia. In turn, the power sys-
tem load demand is significantly affected by climatic factors.

Therefore, considering these factors is essential for develop-
ing an accurate short-term load forecasting model.

3.2 Recurrent Neural Network (RNN)
RNNs are extensively used for classification tasks. Gradi-
ent descent backpropagation can be employed to train the
network with new information. However, a disadvantage of
conventional training algorithms is their slow convergence
rate, making it difficult to find the global minimum of the er-
ror function, as gradient descent often gets trapped in local
minima. To optimize complex problems, nature-inspired
meta-heuristic algorithms offer derivative-free solutions.
Supervised machine learning techniques, which account
for all dependent features, enable classification with higher
accuracy and reduce the misclassification rate in load fore-
casting, which can occur as frequently as 20% of the time.
According to Fausett (1994), an RNN is an ANN with ar-
bitrary connections between neurons, typically fully con-
nected between neighbouring layers. The hidden state val-
ues of the hidden layer in the previous state hν(tm-1) and the
current data point x (tm) are the inputs that the network nodes
receive. As a result, by virtue of recurrent connections, in-
puts at time tm have an effect on the network’s future outputs.
A standard RNN with an input vector Iν = (Iν1, ..., IνT ) cal-
culates a hidden vector hν = (hν1, ...,hνT ) and an output
vector Oν = (Oν1, ...,OνT ) by iterating equation (1) and
(2) over tm = 1, . . . , T .

hν(tm) = AF(Wt(hx)x
(tm)+Wt(hh)hν

(tm−1)+blh) (1)

yν
(tm) = σ(Wt(hy)hν

(tm)+bly) (2)

where: bly and blh are vectors of biases, Wt(hx), Wt(hh)
and Wt(hy) are weights matrices of the input-hidden layer,
hidden-output layer and recurrent connections respectively.
An activation function is AF [24]. Conventional neural
networks are trained utilizing the back propagation over
time algorithm across a number of time steps.

3.3 Long term short term memory networks
RNNs from the 1980s are the foundation for LSTM net-
works. To address the vanishing and exploding gradient
issues in conventional RNNs, Hochreiter and Schmidhu-
ber developed the LSTM architecture [22]. Their design
allows information to be retained during processing and
uses feedback to track prior network states. Compared to
traditional RNNs, the LSTM model has shown exceptional
ability to learn long-term dependencies in real-world ap-
plications. As a result, LSTM models are widely used in
cutting-edge applications. Typically, the LSTM consists of
several memory blocks, each containing memory cells and
gates. The gates control the flow of information, while the
memory cells retain the network’s temporal state through
self-connections. Each memory block contains an input
gate, an output gate, and a forget gate. The output gate
regulates how cell activations are distributed throughout the
network. This study uses supervised learning procedures,
with 80% of the real-time monitoring database allocated for
training and 20% for testing. The architecture of the LSTM
cell is shown in Figs. 1 and 2.
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Figure 1. Flow diagram of LSTM in Load Forecasting.

3.4 Cauchy distributed-Harris hawks optimization (Cd-
HHO)

This strategy is inspired by the prey investigation, surprise
pounce, and various attacking techniques used by Harris
hawks. With the correct formulation, it can be applied to
solve any optimization problem, as it is population-based
and gradient-free. The primary objective is to enhance
electrical load forecasting performance by optimizing the
LSTM classifier’s hyperparameters using the Cd-HHO al-
gorithm. The research framework considers factors such as
batch size and the number of hidden neurons. The Cd-HHO
technique aims to minimize the Root Mean Square Error
(RMSE) of the electrical load forecasting model iteratively,
stopping once the halting criteria are met. It begins with
an initial set of solutions (the hyperparameters), which are
randomly generated.

3.4.1 Exploration phase
HHO is inspired by the behavior of Harris’ hawks, which
can track and identify their prey using their keen vision,
even when the prey is difficult to spot. The hawks wait,
observe, and scan the arid terrain in search of prey, some-
times for many hours. In HHO, the Harris’ hawks, which
represent potential solutions, are evaluated at each stage to
determine if they are the expected prey or close to it. The
hawks in HHO employ one of two strategies to wait for
prey: they perch at random locations. If we assume the
same probability p for each perching strategy, they either
perch based on the positions of other family members (so
they can attack the rabbit nearby), as shown in equation (3)
for the condition of p < 0.5, or they perch on random tall
trees (random locations inside the group’s home range), as
shown in equation (3) for the condition of p ≥ 0.5.

S(i+1) =


Srand(i)− rm1|Srand(i)−2rm2S(i)| p ≥ 0.5
(Srabbit(i)−Sm(i))−

rm3(lb+ rm4(ub− lb)) p < 0.5
(3)

where rm1, rm2, rm3, rm4, and p are random values inside
(0,1), which are updated in each iteration; S(i+ 1) is the
position vector of the hawks in the next iteration; Srabbit(i) is
the position of the rabbit; S(i) is the current position vectors

Figure 2. RNN-LSTM layer model.

of the hawks; and ub and lb. Srand(i) is a hawk randomly
chosen from the current population, and Sm is the average
position of the current population of hawks. Show the upper
and lower bounds of the variables. Using the equation (4),
the hawks’ average location is determined.

Sm(i) =
1
n

n

∑
i=1

Sl(i) (4)

where Sl(i) denotes the positions of each hawk in iteration
i and n is the total number of hawks. There are a number
of ways to determine the average location, but we used the
simplest rule.

3.4.2 Fitness computation
LSTM networks serve as the fitness function, evaluating
and returning the electrical load forecasting results with the
lowest RMSE. The fitness function is computed using equa-
tion (5). Once the minimum objective function is reached
and the corresponding hyperparameters are adjusted, the
process is optimized. The separation, alignment, and cohe-
sion coefficients are calculated to update the position and
velocity of the agents following the fitness evaluation.

RMSE =

√
∑

n
i=1(Pi −Ai)2

n
(5)

3.4.3 Exploration to exploitation transition
The Cd-HHO algorithm can switch between exploratory
and exploitative behaviors depending on the prey’s ability
to escape. As the prey attempts to flee, it loses a significant
amount of energy. To simulate this, equation (6) is used to
model the prey’s energy.

EN = 2EN0

(
1− i

MI

)
(6)

Where EN denotes the prey’s escape energy, the highest
amount of iterations is MI, and EN0 represents the prey’s
energy at its beginning state.
In Cd-HHO, EN0 fluctuates at random during each repeti-
tion within the range (-1, 1). When EN0’s value falls from 0
to -1, the rabbit is physically weakened; when it rises from
0 to 1, the rabbit is physically strengthened. Throughout the
iterations, there is a diminishing tendency in the dynamic
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escape energy EN. As a result, the suggested technique
performs the exploration phase, and when |EN| ≥ 1, the
algorithm attempts to take advantage of the solutions’ close
proximity during the exploitation phases. When the escape
energy |EN| < 1, the hawks scout out potential rabbit hid-
ing places in various locations. In other words, when |EN|
< 1, exploitation occurs, and when |EN| ≥ 1, exploration
occurs.

3.4.4 Exploitation phase
In the initial phase, Harris’ hawks carry out a surprise
pounce on their intended prey. However, the prey often
attempts to escape dangerous situations. As a result, var-
ious pursuit strategies emerge in real-life scenarios. Four
potential ways to model the attacking phase are proposed
in the Cd-HHO, based on the prey’s escape behavior and
the hawks’ pursuit tactics. The prey continually tries to
evade perilous situations. Assume PSE represents the like-
lihood that a prey would either escape (PSE < 0.5) or not
successfully flee (PSE ≥ 0.5) before a surprise pounce. Re-
gardless of what the prey does, the hawks will perform
either a forceful or gentle siege to capture it. Depending on
the amount of energy the prey has stored, the hawks will
encircle it from different directions, either softly or strongly.
In fact, the hawks approach their prey slowly to increase
their chances of delivering a sudden, fatal strike. Over time,
as the prey becomes exhausted, the hawks will intensify
their siege strategy to quickly capture the weakened victim.
This method is imitated by the EN option, which enables the
Cd-HHO to switch between soft and strong besiege strate-
gies. The soft besiege takes place in this case when |EN| ≥
0.5, but the severe besiege occurs when |EN| < 0.5.

3.4.5 Soft besiege
The rabbit still has enough energy when PSE ≥ 0.5 and
|EN| ≥ 0.5 and it tries to flee by making a series of erro-
neous jumps at random, but ultimately is unable to. The
Harris’ hawks gradually circle the rabbit in these attempts to
exhaust it before making the surprise pounce. Equation (7)
- Equation (8) following rules serve as a model for this
behaviour:

S(i+1) = ∆S(i)−E| jSrabbit(i)−S(i)| (7)

∆S(i) = Srabbit(i)−S(i) (8)

Where j = 2(1− r5) is the random jump strength of the
rabbit during the fleeing process, r5 is a random value in-
side (0, 1), and ∆S(i) is the dissimilar between the rabbit’s
position vector and the current location in iteration i. The
j number changes randomly with each cycle to mimic the
erratic character of rabbit locomotion.

3.4.6 Hard besiege
When PSE ≥ 0.5 and |EN| < 0.5, the prey is so exhausted
and it has a low escaping energy Furthermore, the Harris’
hawks hardly circle their chosen prey before making their fi-
nal surprise pounce. In this case, the equation (9) is utilized
to update the current positions.

S(i+1) = Srabbit(i)−EN|∆S(i)| (9)

3.4.7 Soft besiege with progressive rapid dives
The rabbit has sufficient energy to effectively flee while
|EN| ≥ 0.5 but PSE < 0.5, and a mild besieged is still
present before the surprise pounce. Compared to the pre-
vious approach, this method is more logical. Levy flights
are employed in the Cd-HHO method to mathematically
describe the leapfrog movements and prey-escaping pat-
terns. These flights mimic the erratic, sudden, and rapid
dives hawks make around escaping prey, as well as the
zigzagging, deceptive movements that prey animals use
when fleeing. Hawks conduct multiple quick, coordinated
dives around their prey while gradually adjusting their po-
sition and direction in response to the prey’s evasive ma-
neuvers. Observations of competitive behaviors in nature
further support this mechanism. In non-destructive foraging
conditions, these flight-based behaviors have been shown
to be the most effective searching strategies for predators
and foragers. Additionally, LF-based patterns have been
observed in the chasing behaviors of animals like sharks
and monkeys. Consequently, Levy flight-based motions are
utilized in this stage of the Cd-HHO approach.
Based on actual hawk behavior, we hypothesized that hawks
gradually select the best dive when attempting to catch prey
in a competitive context. Therefore, we proposed that hawks
may assess (or decide) their next course of action based on
the following rule in equation (10) in order to carry out a
modest siege:

NM = Srabbit(i)−EN| jSrabbit(i)−S(i)| (10)

Then, to determine whether the dive will be successful,
they compare the potential outcome of the movement with
that of the previous dive. If the outcome seems unlikely,
they begin to dive irregularly, abruptly, and quickly as they
approach the rabbit, especially when they observe that the
prey is becoming more cunning. The following rule in
equation (11) was used to model their dives based on levy
flight patterns.

FM = NM+ rν
∗LF(ps) (11)

Equation (12) is used to determine this, where ps is the
problem’s dimension, rν is a random vector of size 1 × ps,
and LF is the Levy flight function.

LF(s)= 0.01∗ k1∗σ

|k2|
1
β

;σ =

 Γ(1+β )× sin
(

∏β

2

)
Γ

(
1+β

2

)
×β ×2

(
β−1

2

)


(
1
β

)

(12)
Where β is a default constant set to 1.5 and k1 and k2 are
random numbers inside of (0,1). Equation (13), then, can be
used to establish the ultimate plan for updating the hawks’
positions during the gentle besiege phase.

S(i+1) =

{
NM if F(NM)< F(S(i))
FM if F(FM)< F(S(i))

(13)

where NM and FM are obtained using equation (10) and
(11).
To be clear, during some cycles, this image also records and
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displays the position history of LF-based leapfrog move-
ment patterns. The coloured dots represent the LF-based
patterns’ location footprints in one trial before the Cd-HHO
arrives at the FM site. Only the best position NM or FM
will be chosen as the next location in each stage. All search
agents are used in this method.

3.4.8 Hard besiege with progressive rapid dives
The rabbit has the energy to escape when |EN| < 0.5 and
PSE < 0.5, resulting in the construction of a hard besiege
until the use of a surprise pounce to capture and kill the
prey. In this step, the prey is placed on the same side of
the hawks as it was in the gentle besiege, but this time the
hawks are making an effort to shorten the gap between their
usual location and the fleeing prey. Due to the hard besiege
condition shown in equation (14), the subsequent rule is put
into effect.

S(i+1) =

{
NM if F(NM)< F(S(i))
FM if F(FM)< F(S(i))

(14)

Where, NM and FM are obtained using new rules in equa-
tion (15) and (16).

NM = Srabbit(i)−EN| jSrabbit(i)−Sm(i)| (15)

FM = NM+ rν ×LF(ps) (16)

where Sm(i) is obtained using equation (4).

3.4.9 Cauchy distribution
The Cauchy distribution, also known as the Lorentz distribu-
tion, is a continuous probability distribution. By refining the
accuracy of the candidate solution to within a few percent
of the global solution during each iteration of the evolution
process, it is possible to enhance the searchability of an op-
timization process. Initially generated candidate solutions
can then move to better positions as the process progresses.
In this research, the Cauchy distribution method is modified
at the end of the updating process, in addition to conven-
tional updating methods, to further improve searchability
and convergence speed.
The Cauchy distribution function is defined in the following
equation (17):

y =
1
π

arctan
(

γ

g

)
+

1
2

(17)

According to the following equation (18), the corresponding
density function is described,

fCauchy(0,g) =
1
π

(
g

g2 + γ2

)
(18)

where, g = 1 is the scaling parameter, y is a number uni-
formly distributed between [0, 1], and γ = tan (π(y - 1
/2)). Therefore, the Cauchy distribution is an effectively
operating mutation applied to enhance searchability and
convergence speed [26].

3.4.10 Termination
The process of this method will terminate once an optimal
solution is found based on the objective function or fitness
function. If not, the algorithm will continue. Additionally,
the operation of the algorithm will be suspended once the
allowed number of iterations is exceeded. Moreover, if
the algorithm is unable to find the fitness value of the best
solution after many iterations, it will be discontinued.

4. Result and discussion
Electrical load forecasting is a crucial step in ensuring opti-
mal and profitable electricity market operation. The devel-
oped model is evaluated based on performance metrics and
compared to other single and hybrid deep learning models.
For the purpose of load prediction, the research uses MAT-
LAB 2021a. By improving scheduling and management
practices, load forecasting aims to minimize the difference
between generation and demand, as well as reduce elec-
tricity losses. The performance of the proposed method is
assessed using Mean Squared Error (MSE), RMSE, Skew-
ness, Mean Absolute Percentage Error (MAPE), and Coef-
ficient of Variation (CV ).
Figs. 3 to 5 (Tables 1 to 3) below illustrate how the model’s
performance compares to actual values. It is evident that the
proposed method outperforms other comparable strategies
for the 2017, 2018, and 2019 datasets in terms of achieving
the closest load predictions to actual values. The results
highlight the importance of fine-tuning the LSTM’s hyper-
parameters for load forecasting and demonstrate that the
proposed technique outperforms conventional algorithms.
Integrating the Cauchy distribution in the updating process
enhances the searchability and convergence speed of the
traditional HHO algorithm, enabling candidate solutions to
move toward better positions during this process.

Figure 3. Actual vs technique wise model performance for the year 2017.
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Table 1. Evaluation of different models for predicting short-term electrical load in 2017.

Techniques MSE RMSE MAPE Skew CV
ANN [20] 10.3041 3.21 1.905 0.000932 5.797

LSTM 6.0025 2.45 1.454 0.000414 3.391
LSTM-GA 4.5369 2.13 1.264 -0.00027 2.631
LSTM-PSO 3.4225 1.85 1.098 0.000178 1.940
LSTM-HHO 1.5625 1.25 0.742 -5.50E-05 0.902

LSTM-Cd-HHO 0.7225 0.85 0.504 1.73E-05 0.412

Figure 4. Actual vs technique wise model performance for the year 2018.

Table 2. Evaluation of different models for predicting short-term electrical load in 2018.

Techniques MSE RMSE MAPE Skew CV
ANN [20] 8.703 2.95 1.609 0.00057 4.516

LSTM 5.382 2.32 1.265 -0.000276 2.871
LSTM-GA 3.803 1.95 1.063 0.000164 1.983
LSTM-PSO 2.126 1.458 0.795 -6.86E-05 1.129
LSTM-HHO 1.020 1.01 0.551 2.28E-05 0.535

LSTM-Cd-HHO 0.974 0.987 0.538 2.13E-05 0.511

Figure 5. Actual vs technique wise model performance for the year 2019.

Table 3. Evaluation of various models for predicting short-term electrical load in 2019.

Techniques MSE RMSE MAPE Skew CV
ANN [20] 7.508 2.74 1.483 -0.00043 3.977

LSTM 4.623 2.15 1.164 -0.00021 2.441
LSTM-GA 3.764 1.94 1.050 0.000154 1.946
LSTM-PSO 2.205 1.485 0.804 -6.89E-05 1.160
LSTM-HHO 0.888 0.942 0.510 1.76E-05 0.461

LSTM-Cd-HHO 0.116 0.34 0.184 8.27E-07 0.060
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4.1 Mean Square Error (MSE)
MSE is calculated utilizing the average, or more precisely
the mean, of errors squared from data relating to a function.
MSE measures how close the model forecasted electrical
load values to a set of actual load values. In the following
equations (19) to (23) Ai and Pi are the actual and the fore-
casted values through the models (employed techniques)
correspondingly. Whereas n refers the number of times the
summation iteration happens.

MSE =
1
n

n

∑
i=1

|Pi −Ai|2 (19)

The comparison of MSE values for various techniques
in short-term electrical load forecasting across the years
2017, 2018, and 2019 reveals distinctive performance
patterns. In 2017, ANN exhibited the highest MSE at
10.3041, while LSTM-GA, LSTM-PSO, LSTM-HHO, and
LSTM-Cd-HHO progressively achieved lower MSE val-
ues, with LSTM-Cd-HHO showcasing the best performance
at 0.7225. Similarly, in 2018 and 2019, LSTM-Cd-HHO
consistently outperformed other methods, demonstrating
significantly lower MSE values (0.974 and 0.116, respec-
tively). Notably, traditional ANN displayed higher MSE
values compared to LSTM-based techniques, and among the
LSTM variants, LSTM-Cd-HHO consistently exhibited su-
perior accuracy in short-term load forecasting. These results
underscore the efficacy of LSTM-Cd-HHO as a technique
that consistently achieves lower prediction errors across
multiple years, making it a promising approach for enhanc-
ing the accuracy of short-term electrical load forecasting.

4.2 Root Mean Square Error (RMSE)
RMSE, sometimes referred to as root mean square deviation,
is one of the most frequently used methods to assess the
accuracy of forecasts. It measures the deviation of the
model’s predicted load values from the actual load values
using Euclidean distance.

RMSE =

√
∑

n
i=1(Pi −Ai)2

n
(20)

Examining the RMSE values for various techniques em-
ployed in short-term electrical load forecasting over the
years 2017, 2018, and 2019 reveals distinctive trends. In
2017, ANN exhibited the highest RMSE at 3.21, while
LSTM-GA, LSTM-PSO, LSTM-HHO, and LSTM-Cd-
HHO progressively achieved lower RMSE values, with
LSTM-Cd-HHO demonstrating the best performance at
0.85. Similarly, in 2018 and 2019, LSTM-Cd-HHO con-
sistently outperformed other methods, showcasing signif-
icantly lower RMSE values (0.85 and 0.34, respectively).
The traditional ANN consistently displayed higher RMSE
values compared to LSTM-based techniques. Among the
LSTM variants, LSTM-Cd-HHO consistently exhibited
superior accuracy in short-term load forecasting, indicat-
ing its effectiveness in minimizing prediction errors across
the three years. These results emphasize the reliability of
LSTM-Cd-HHO as a technique that consistently achieves
lower RMSE values, highlighting its potential for enhanc-
ing the accuracy of short-term electrical load forecasting
models.

4.3 Mean Absolute Percentage Error (MAPE)
One of the most popular methods for evaluating forecast
accuracy is the MAPE statistic, which offers the advantages
of scale independence and interpretability. It is the aver-
age of the percentage errors, reflecting how accurately the
forecasted load values compare with the actual load values.

MAPE =
∑

n
i=1 |

Pi−Ai
Ai

|
n

×100 (21)

Analyzing the MAPE values for various techniques uti-
lized in short-term electrical load forecasting across the
years 2017, 2018, and 2019 reveals notable trends. In
2017, ANN exhibited the highest MAPE at 1.905, while
LSTM-Cd-HHO achieved the lowest at 0.504. Similarly, in
2018 and 2019, LSTM-Cd-HHO consistently outperformed
other methods, displaying substantially lower MAPE values
(0.538 and 0.184, respectively). Traditional ANN consis-
tently demonstrated higher MAPE values in comparison
to LSTM-based techniques. Among the LSTM variants,
LSTM-Cd-HHO consistently exhibited superior accuracy
in short-term load forecasting, showcasing its efficacy in
minimizing percentage errors across the three years. These
results emphasize the reliability of LSTM-Cd-HHO as a
technique consistently yielding lower MAPE values, under-
lining its potential to enhance the precision of short-term
electrical load forecasting models.

4.4 Coefficient of Variance (CV )
The coefficient of variation (CV ), also known as the standard
deviation to mean ratio, indicates the degree of variance
relative to the population mean. The dispersion increases as
the CV rises.

CV =

√
∑

n
i=1(Pi−Ai)2

n−1

Ā
×100 (22)

Analyzing the CV values for various techniques employed
in short-term electrical load forecasting over the years 2017,
2018, and 2019 reveals important insights into the stabil-
ity and consistency of each method’s forecasting errors.
In 2017, ANN exhibited the highest CV at 5.797, indicat-
ing a higher relative variability in errors, while LSTM-Cd-
HHO demonstrated the lowest CV at 0.412, signifying a
more stable and consistent performance. Similarly, in 2018
and 2019, LSTM-Cd-HHO consistently outperformed other
methods, displaying substantially lower CV values (0.511
and 0.06, respectively). The decreasing trend in CV values
across the years for LSTM-Cd-HHO suggests a consistent
improvement in stability and reliability. Traditional ANN
consistently showed higher CV values compared to LSTM-
based techniques. Among the LSTM variants, LSTM-Cd-
HHO consistently exhibited superior stability in short-term
load forecasting, emphasizing its effectiveness in providing
more consistent and reliable predictions.

4.5 Skew
The skew error is a high-dimensional distribution error that
shows the distribution of predicted values relative to actual
values. If its value lies between -0.5 and 0.5, this range is
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considered acceptable.

Skew =
∑

n
i=1(Pi −Ai)

3/n
SD3 (23)

where SD refers the standard distribution
Analyzing the Skewness values for various techniques em-
ployed in short-term electrical load forecasting over the
years 2017, 2018, and 2019 provides insights into the distri-
bution characteristics of forecasting errors. In 2017, ANN
demonstrated a positive skewness of 0.000932, indicating a
slightly right-skewed distribution, while LSTM-Cd-HHO
showed a smaller positive skewness of 1.73E-05, suggest-
ing a nearly symmetrical distribution. Similarly, in 2018
and 2019, LSTM-Cd-HHO consistently displayed skewness
values close to zero, indicating a relatively symmetric dis-
tribution of errors. The other techniques, including LSTM,
LSTM-GA, LSTM-PSO, and LSTM-HHO, also exhibited
skewness values around zero, suggesting a balanced distri-
bution of errors over the three years. These skewness values
offer insights into the shape of the error distribution for each
technique, contributing to a comprehensive understanding
of their forecasting performance.

5. Conclusion
This research addresses key challenges in short-term
electrical load forecasting, a critical aspect of modern
energy management. It emphasizes the importance of
accurate short-term predictions, ranging from a few hours
to a few days, due to their operational, economic, and
environmental impacts. Focused on Villupuram, Tamil
Nadu, India, the study developed a customized LSTM
model for forecasting regional electricity demand. Recog-
nizing that standard LSTM configurations can be inefficient
for this purpose, the research employed hyperparameter
optimization, specifically using the Cauchy-distributed
Cd-HHO approach, to effectively fine-tune the model. This
innovative optimization significantly improved forecasting
accuracy, achieving lower MSE, RMSE, MAPE, and CV
scores over three years (2017− 2019) compared to other
advanced methods. The optimized LSTM model not only
enhances academic knowledge but also provides a practical
and precise solution for real-world short-term electrical
load prediction applications.
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