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Abstract:
The new pattern of user traffic generation in recent years and the variety of traffic services including data,
voice and video have led to a large load in the access of cellular networks. One of the promising solutions in
the field of reducing this traffic load is data offloading, which is based on exploiting the unused bandwidth of
wireless technologies overlapping with the cellular network. As a widespread technology, Wi-Fi networks
have been proposed as a suitable solution for data offloading in cellular networks. Considering the effect
of access points (APs) on the performance of Wi-Fi networks, deploying APs can affect the efficiency and
cost of Wi-Fi-based data offloading. This issue is the main research part of the current paper. In this paper,
an optimization problem is proposed to find the best location for the Wi-Fi APs, providing the maximum
performance metric for offloading. Two optimization algorithms are proposed to solve the problem: the Krill
Herd Algorithm (KHA) and the Greedy algorithm. The evaluation results indicate that the feature of global
optima in the exploration phase of the KHA algorithm leads to finding a better location of the APs than the
Greedy algorithm.
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1. Introduction

The number of smart mobile devices (SMD) is increasing
exponentially. More than 5 billion people in the world
currently use smartphones and there are nearly 11 billion
mobile connections. IoT-connected devices will be around
42 billion in 2025, generating 80 zettabytes of data. Internet
usage is experiencing a significant growth in coverage and
consumption annually. Cisco [1] predicts access to 66%
of the world’s population. The same reports predict that
the number of IP-based devices will triple by 2025. This
increase in Internet consumption and the number of con-
nected devices along with the variety of online services on
the Internet creates a significant volume of data traffic [2].
Bandwidth limitation in wireless networks is one of the
main challenges of this increase in data traffic. Therefore,
the bandwidth management of wireless networks seems
to be a critical issue, and one of the effective solutions
in this field without reducing the quality of service (QoS)
is data offloading [3]. With the help of data offloading,

mobile operators will be able to provide seamless connec-
tivity while maintaining the quality of service to users by
exploiting complementary wireless technologies [4]. In this
technique, in the overlapping areas of mobile and comple-
mentary wireless technology, the unused bandwidth of the
former is exploited by the latter, which leads to improved
network performance in the data traffic of cellular networks
[5]. One of the complementary wireless technologies is
Wi-Fi networks, which are widely established and have
significant coverage with cellular networks in urban and do-
mestic areas. In addition, smartphones equipped with Wi-Fi
technology, as well as the cheapness of Internet through
Wi-Fi compared to mobile Internet, are other advantages of
this technology as a complementary wireless technology to
mobile networks. It seems that the deployment of access
points (APs) is a very important point in data offloading
using Wi-Fi networks. The investment and maintenance
cost of APs along with their impact on improving various
network performance indicators are important issues in net-
work design. The location of AP deployment is effective in
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improving network service quality. Choosing the right place
for the optimal deployment of APs is one of the important
activities in strategic planning for the maximum coverage
of fifth-generation networks and even higher. Locating APs
is a multi-criteria decision-making process, which includes
both quantitative and qualitative deployment criteria. Due to
the complexity of positioning in fifth-generation networks,
traditional positioning methods cannot be used effectively.
In this paper, we propose two optimization algorithms: the
Krill herd algorithm (KHA) and the Greedy algorithm to
find the best location of APs in an offloading scenario. The
main contributions of this paper are the following:

1. The problem of Wi-Fi APs in data offloading is pro-
posed in the context of an optimization problem.

2. A new optimization solution method is applied to the
problem: Krill herd algorithm (KHA).

3. The comparison of the KHA and existing solution
method (Greedy) is performed in different situations
of networks.

The rest of the paper is organized as follows: Section 2
presents the related works. A system model based on the
Greedy algorithm is described in section 3. In Section 4,
an evaluation of the proposed algorithm will be presented.
Section 5 concludes the paper and presents the future direc-
tions.

2. Related works
According to the research [1], existing systems are classi-
fied into small mobile data offloading, Wi-Fi data offload-
ing, opportunistic data offloading, and data offloading in
heterogeneous networks. In addition, it takes a complete
classification of the technologies dependent on mobile data
and examines the merits and disadvantages of different so-
lutions. On the other hand, the authors divide common
techniques into two groups based on their obligations to
content delivery: delayed, delayed transfer. In addition,
they discuss technical and efficient items in each region. In
[5] the author analyzes the status of data offloading during
work and according to the position. The issue of data of-
floading in heterogeneous networks is also investigated in
[6], in which the authors divide the available techniques
into two main groups: strategies based on structure and non-
structure. Subsequently, the technical factors are discussed
in different situations. The authors [7] have developed a
new framework for the mirroring of data on the Internet.
In the study of Lee et al. [8], the mathematical framework
for analyzing mobile traffic has been suggested by several
data items in a realistic environment for delayable tolerable
networks (DTNs). In this study, the authors confirmed that
the data was not of the same type or size of the same content.
They have also emphasized the design of efficient schemes
of offloading, taking into account the various demands and
interests of mobile data. According to their research, de-
layed tolerant networks are limited due to issues such as
storage and battery capacity for opportunistic communi-
cations. Research analysis or simulations based on actual
tracking have been approved for the system performance in

human and vehicle environments.
In another study [9], the limits of Wi-Fi capacity have been
investigated. This study is based on tracking experiments
and simulations and they indicate the efficiency of delayed
and non-delayed categories. However, this simulation ig-
nores the impact of network load change and network band-
width. Although their implementation is specific to the
device and the test, it offers a good perspective on offload-
ing. The results have shown that most of the offloading
will be delayed and improved by delayed energy efficiency.
These simulations have been done for limited and long de-
lays with the time-offloading scheme.
The authors in [10] proposed a reinforcement learning
method for cost-effective data simultaneously in terms of
cost and energy. However, this implementation is based
on the issue of Wi-Fi only from the perspective of mo-
bile users. Exploration methods of multiple mobile users
for further implementation remain. Authors have shown
that reinforcement-based learning algorithm performs better
when the model is unknown. The results have shown that
the possibility of completion of the transfer is more aware
of the delay. Existing energy and costs are reduced by using
dynamic programming-based reinforcement learning imple-
mentation.
Zhou et al. in [11] consider the economic dimensions of
Wi-Fi-based warranty. Their study has shown the effect
of using Wi-Fi for data and multiple pricing-based income
dimensions. The authors have used traffic demand param-
eters and the willingness to pay, the possibility of Wi-Fi
connectivity and the relationship with the main station to
analyze the results of delayed and without delay. The results
are shown with specific device-based databases for optimal
economic reflection in implementation. In [12], a mecha-
nism of incentives for optimal mobile traffic is proposed.
The main objective of this study is to the balance between
traffic congestion and users’ satisfaction in delayed tolerant
applications in Wi-Fi networks. In addition to the delay
tolerance, the potential of users is also intended to design an
incentive mechanism. This framework has minimized the
cost of incentive distribution using the winning strategy on
the mobile network. The authors have also considered relia-
bility, personal rationality, and low-complexity algorithms.
In another study conducted by Hui Yan et al. [13], data was
used for the Unmanned Aerial Vehicle (UAV) network of
communication and the Internet of Things. In this study,
two metrics of fairness and service quality are considered,
which are provided using a dynamic and motivational-based
optimization framework. The simulation results indicate
the superiority of the proposed optimization model in terms
of service quality, energy efficiency and throughput.
Nevertheless, none of the existing works considered an effi-
cient APs deployment when dynamic traffic is imposed by
the users. In this paper, we employ two optimization algo-
rithms to find the best locations of APs in order to maximize
the offloading metric.

3. System model
Consider a cellular network as shown in figure 1 including
a cellular BS in the center and a number of cellular users
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Figure 1. System model.

with the ability to connect Wi-Fi and cellular at the same
time. We have Nov users which are located uniformly in
the cell. For every user i can provide a random value of
traffic ti (0 < ti < 1). Suppose that n j number of users
under the coverage of one Access Point j (APj) and they
create a traffic of Tj (Tj = ∑ ti) where 1 < j < M and M
is the maximum number of APs located in the cell area
without any overlapping. Now, the problem is how to locate
K number of APs. For this purpose, we need to define a
metric of offloading. The proposed metric is throughput
ratio which is the ratio of average throughput provided for
Wi-Fi and cellular users and it can be expressed as:

β
K =

SK
W

SK
C

(1)

Where SK
W and SK

C denote the average user Wi-Fi throughput
and the average user cellular throughput when K number of
APs are deployed and they can be expressed as follows:

SK
W =

∑
K
j=1 SAPj

∑
K
j=1 nD

k
(2)

SK
C =

SC

NC
=

SC

Nov −∑
K
j=1 nD

k
(3)

Where SAPj and SC denote the throughput of APj and the cel-
lular bandwidth respectively. To analyze the Wi-Fi through-
put of APj, we use the Markov chain model in [14] which
provides DCF mechanism modeling. In the following of
this section, we will apply the optimization algorithm to
find the best location of the K number of APs provided the
required performance metric.
Moreover, we need a metric to evaluate the performance of
offloading mobile data traffic to Wi-Fi access points (APs).
The offloading ratio (γK) is defined as the ratio of the total
offloaded traffic (ωo f f l) to the total traffic generated with-
out offloading (ωov). This metric provides a quantitative
measure of the effectiveness of a Wi-Fi deployment strategy

in reducing cellular network load. It can be expressed as

γ
K =

ωo f f l

ωov
=

∑
K
j=1 T D

j

∑
Nov
i=1 Ti

(4)

3.1 Optimization problem
To achieve the maximum performance of offloading through
the Wi-Fi APs’ deployment, we need to define an optimiza-
tion problem according to the metric of Eq. 1. The problem
formulation including the objective function and related
constraints can be defined as follows:

OF = max(β K) (5)

Subject to:
|SK

C −SK
W |> 0

√
(xi − x j)2 +(yi − y j)2 > R

i, j = 1...K(i ̸= j)

Where xi, x j, yi and y j are the coordinates of APi and APj.
In the next section, the optimization algorithms for solving
the Eq. 14 will be presented.

3.2 Optimisation algorithms
To solve the optimization problem of Eq. 4, we will apply
a new optimization algorithm: Krill herd algorithm (KHA)
[15]. Then, we will compare the results with a basic algo-
rithm (e.g. Greedy algorithm [16]) which is applied to the
system model.

3.2.1 Krill herd algorithm (KHA)
This algorithm was introduced as the bio-inspired optimiza-
tion algorithm to solve optimization problems. In this algo-
rithm, two phases including exploration and exploitation are
used for random and local search, respectively. In KHA, the
objective function is defined as the distance of food from
each krill individual and the highest density of the herd by
the three main actions including movement induced by other
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krill individuals, foraging activity, and random diffusion.
Based on this, the Lagrangian model of the Krill herd in the
n-dimensional search space will be as follows:

dX − i
dt

= Ni +Fi +di (6)

Where Ni is movement induced by other krill individuals,
Fi is foraging activity and di is random diffusion.
The first section is the movement induced by other krill
individuals which is found by the following expression:

Nnew
i = Nmax ×αi +ωn ×Nold

i (7)

Where αi = α local
i + α

target
i In these equations, Nmax is the

maximum induced speed, ωn is the inertia weight of the
motion induced in the range [0, 1], ×Nold

i is the last
motion induced, α local

i is the local effect provided by the
neighbors and α

target
i is the target direction effect provided

by the best krill individual.
To find α local

i the following equations are used:
α local

i = ∑
NN
j=1 Xi j ×Ki j

Xi j =
X j−Xi

∥X j−Xi∥+ε

Ki j =
Ki−K j

Kworst−Kbest

(8)

Where Xi and X j are the positions for i and j krill, Ki and K j
are the objective function value for i and j krill, Kworst and
Kbest are the worst and best value for the objective function
and NN is the number of neighborhoods.
To find α

target
i the following equations are used:

α
target
i =Cbest ×Ki,best ×Xi,best (9)

Where Cbest is the effective coefficient of the krill individual.
The second section is a foraging activity which is found by:

Fi =Vf ×βi +ω f ×Fold
i (10)

Where βi = β
f ood

i + β best
i . In these relations, Vf is the for-

aging speed, ω f is the inertia weight of the foraging motion
in the range [0, 1], Fold

i is the last foraging motion, β
f ood

i is
the food attractive and β best

i is the effect of the best fitness
of the ith krill so far.
To find β

f ood
i and β best

i the following equations are intro-
duced: {

β
f ood

i =C f ood ×K f ood
i ×X f ood

i

β best
i = Ki,best ×Xi,best

(11)

Where C f ood is the food coefficient.
The third section is related to random diffusion. This section
is used to avoid local optimum (like mutation in GA). This
activity is modeled by:

Di = Dmax × (1− I
Imax

)×δ (12)

Where Dmax is the maximum diffusion, δ is the random
directional vector, I and Imax are current and maximum
iterations.

So, by finding dXi
dt , the current position of krill I means Xi

is obtained:

Xi(t +∆t) = Xi(t)+∆t × dXi

dt
(13)

Where,

∆t =Ct

NV

∑
j=1

(UB j −LB j) (14)

UB and LB are the upper and lower bounds of variables.
Figure 2 indicates the operation of the KHA method when
it is applied to the proposed optimization problem. The
first step is the initialization of the KHA method using the
random numbers. Then the objective function of Eq. 4 is
calculated. In the next step, three actions of associated
movements are performed. The new positions of the krills
are updated according to Eq. 12. After checking the last
iteration, the process is finished and the results are measured
or it goes to the calculation of Eq. 4 in step 2.

Figure 2. The flowchart of the KHA method.
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3.2.2 Greedy algorithm
This algorithm was implemented for APs’ deployment in
an offloading scenario in [17]. In this algorithm, a grid-
based greedy approach [16] has been proposed in which
the area of the cell is divided to a grid of S×S. The first
it calculates the number of users in each grid. Note that
according to the coverage range of Wi-Fi APs, two neighbor
grids should not overlap together. Therefore, this condition
should be satisfied that the distance between two neighbor
APs is more than two Wi-Fi coverage ranges. Then, the
grids are sorted by the number of users. The first AP is
placed in the grid with the most users and this placement
continues until the K number of APs are placed. This means
that in each new placement, Wi-Fi throughput and cellular
throughput are calculated, and as the number of K increases,
the ratio between these two throughputs is compared, and
the corresponding throughput ratio will be obtained.

4. Evaluation results

In this section, the evaluation of the proposed algorithms
for finding the best location of K number of APs. For Wi-Fi
networks, IEEE 802.11n standard has been used and LTE
is the cellular network. Table 1 summarizes the setting pa-
rameters of the simulation required for the Markov chain
model in [28] and the LTE parameters. For evaluation, we
measure two metrics: 1) Throughput ratio: The ratio of
Wi-Fi throughput to cellular throughput; and 2) Offloading

ratio: The ratio of Wi-Fi traffic (offloaded) to cellular traffic.
In the first scenario, we consider a constant value of APs
(K = 3) when the number of users varies from 100 to 1000.
Then we apply the KHA and Greedy algorithms. To evalu-
ate the impact of grid dimension, two models of grids are
used: 4×4 and 16×16. Figure 3a indicates that the perfor-
mance of KHA is better than the Greedy algorithms. The
reason is the accuracy of KHA in finding the locations with
high traffic load. The fixed pattern of grid-based greedy
algorithms leads to throughput ratio degradation. However,
smaller grids (16×16) can provide higher performance than
larger ones (4×4). Generally, the throughput ratio reduces
with the increase in user numbers due to higher collisions.
This leads to performance degradation in all algorithms.
However, the offloading ratio increases with an increase
in the user’s number (figure 3b). The reason is the larger
number of users provides more traffic and consequently
more offloaded traffic leading to a higher offloading ratio.
The KHA algorithm provides a higher offloading ratio than
the Greedy algorithm for different numbers of users due
to the higher accuracy of the KHA algorithm in finding
the location providing a larger traffic load. Similar to the
throughput ratio, a smaller grid size (16×16) can provide a
better offloading ratio than a larger grid size (4×4). Since
the smaller grid size is capable of finding a more accurate
traffic load for placement of the APs.
In the second scenario, the number of users is constant (Nov
= 1000) and the algorithms are applied for different num-

Table 1. Setting parameters of Wi-Fi and LTE.

Parameters Values Parameters Values

BS cell radius 1000 m ACK(µs) 32.23

LTE capacity (Mbps) 56.4 PLCP (µs) 16.67

SIFS (µs) 10 MAC header (bits) 272

DIFS (µs) 28 Single date rate (Mbps) 7.2

RTS (µs) 38.89 CWmin (SlotTime) 15

CTS (µs) 32.23 CWmax (SlotTime) 1023

(a) (b)

Figure 3. The Offloading metrics for 3 APs (K = 3) and different number of users.
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(a) (b)

Figure 4. The Offloading metrics for 1000 users and different number of APs.

bers of APs. Figure 4a indicates the throughput ratio when
different numbers of APs are employed. The throughput
ratio metric of the KHA algorithm is higher than the Greedy
algorithm. The KHA algorithm features provide the capabil-
ity of finding the best locations having the larger traffic load
leading to a higher throughput ratio. As the number of APs
increases, the performance of KHA in the throughput ratio
can be more considerable. For instance, the performance
of the throughput ratio is mostly similar when the number
of APs is smaller than 5 (K<5). However, the difference
between the performance of algorithms is more when the
number of AP is greater than 5 (K>5). It means that finding
the primary locations (K<5) is similar for all algorithms.
However, the algorithm efficiency can be more specified for
a greater number of APs (K≥5). In the Greedy algorithm,
the small grids provide higher performance in comparison
to the large grids. The reason is that more accuracy of
smaller grids in finding the best locations. Similarly, the
offloading ratio of the KHA algorithm is higher than the
Greedy algorithm (figure 4b) and the pattern follows the
throughput ratio for different numbers of APs.
The main reason for the superiority of KHA is that the
local optima are performed using the exploitation phase
(which is similar to the Greedy algorithm) and it also investi-
gates other spaces randomly in the search space (exploration
phase), which leads to the global optima.

5. Conclusion
In this paper, we have proposed a KHA algorithm to find
the best locations of APs in a Wi-Fi-based data offload-
ing. For this purpose, a single optimization problem for
maximizing the throughput ratio was defined and then the
proposed algorithm was applied. In order to evaluate the
efficiency of the proposed solution to the existing research
work, the results of the KHA method are compared to the
Greedy algorithm [17]. The evaluation of the KHA method
and comparison to the Greedy algorithms are performed
based on two metrics: throughput ratio and offloading ratio.
The first metric determined the ratio of the average user’s
throughput in the offloaded part to the cellular part and the
second metric measured the ratio of offloaded traffic to the

total traffic. The similarity of finding the location with a
larger traffic load to the KHA problem (searching for food
from each krill) leads to the high efficiency of this algorithm
in solving our problem. The evaluation results were per-
formed in two offloading scenarios: 1) constant number of
APs (K = 3) and different number of users and 2) Constant
number of users (Nov = 1000) and different number of APs.
Two metrics of throughput ratio and offloading ratio were
measured in these two scenarios. The general pattern in the
two scenarios is similar. The throughput ratio of the KHA
algorithm is better than the Greedy algorithm due to KHA’s
capability to find the best location having the largest traffic
load. In the Greedy algorithm, the smaller grid size (16×16)
provides higher performance metrics in comparison to the
larger ones (4×4). Both KHA and Greedy algorithms op-
erate similarly in the phase of exploitation phase leading
to local optima. However, the operation of global random
searching of KHA (exploration phase) results in a higher
performance in comparison to the Greedy algorithm. For
future research works, the simultaneous optimization of two
parameters, the Wi-Fi to cellular throughput ratio and the
offloaded traffic rate can be considered in order to minimize
the number of APs.
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