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Abstract:
Nine switch converters (NSCs) are power electronic devices that utilize nine power switches to convert
electrical energy from one form to another. These converters are commonly used in various applications
within the power industry. In fact, this type of converter is a multi-port power electronic device that consists
of two three-phase terminals and a DC link, similar to the twelve-switch back-to-back (BTB) converter.
However, it distinguishes itself by reducing the number of active switches by 25%. Nine switch converters
offer several advantages over traditional converters. They can provide improved efficiency, reduced harmonic
distortion and enhanced control capabilities. Additionally, they can handle higher power levels and operate at
higher frequencies, making them suitable for a wide range of power industry applications. Furthermore, they
are cost-effective, compact, and adaptable to higher power levels. By distributing voltage and current across
fewer switches, the overall stress on individual components is reduced, which can enhance the lifespan and
reliability of the converter. This paper summarizes the various utilizations of NSCs in modern power systems
and briefly reviews the related challenges and future prospects.
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1. Introduction

The power electronic converter (PEC) technology plays a
crucial role in integrating new low-carbon technologies by
connecting two or more energy systems. Its initial purpose
was to facilitate an interface between a source and a load,
but as technology has advanced, it now allows energy to
flow in both directions. This means that some power con-
verters need to be able to operate in both directions [1–3]. In
various applications, the output of the PEC can either be a
regulated or adjustable magnitude of direct current or a con-
stant or adjustable frequency of alternative current with an
adjustable magnitude. The PEC’s input and output sides are
independent of each other and can be either single-phase or
three-phase. Generally, power flows from the source side to
the load side. However, some low-carbon technologies have
unique exceptions, like a photovoltaic system connected
to the utility grid via a PEC where the power flow is from

the PVs, which is a DC input source, to the AC utility. In
certain systems, the direction of power flow can be reversed,
depending on the operating condition. The battery energy
storage system is an example of such a condition [4, 5].
The power industry is constantly seeking innovative solu-
tions to enhance power conversion efficiency, reduce com-
ponent counts, and improve overall system performance. In
this regard, nine switch converters (NSCs) have emerged
as a promising technology that addresses these challenges
[6, 7]. A typical nine-switch converter comprises nine
power semiconductor switches that are used to control the
transfer of power between the input and output sides of the
converter [8]. These semiconductor switches can either be
MOSFETs, IGBTs, or other types. The nine-switch con-
verter typically has three-phase inputs, which are usually
connected to a rectifier, and it also has three-phase outputs
that are connected to the load. The converter has two stages:
the first stage is a voltage source converter (VSC) that oper-
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ates as a rectifier or an inverter depending on the direction
of the power flow, while the second stage is a current source
converter (CSC) that operates as a boost or a buck converter,
depending on the voltage level required by the load [9, 10].
The control system of the nine-switch converter consists
of a controller that generates the pulse-width modulation
(PWM) signals for the semiconductor switches, and it also
includes a feedback loop that monitors the converter’s op-
erating conditions, such as the output voltage and current.
Additionally, the nine-switch converter may have additional
components that include an inductor, a filter capacitor, and
a DC-link capacitor, which help to smooth out the voltage
and current waveforms. These components make the nine-
switch converter a complex but versatile piece of power
electronics equipment that is widely used in various indus-
trial applications [11–13].
The nine-switch converter has several advantages over other
converters. The nine-switch converter is highly flexible in
terms of the direction of power flow, voltage regulation, and
fault tolerance. The converter can operate as a rectifier or
an inverter, depending on the direction of power flow, and
it can regulate the output voltage at different levels using
the CSC stage [14, 15]. Also, NSCs have higher efficiency
compared to other converters because they use fewer com-
ponents and have reduced switching losses. The VSC stage
of such a converter uses fewer switches to control the power,
resulting in reduced power losses due to switching. Further-
more, it is capable of reducing harmonics compared to other
converters because it uses a high-frequency PWM scheme
to minimize the harmonic content in the output waveform.
This helps to attenuate the distortion and noise in the output
waveform and enhances the overall performance of the con-
verter [16–18].
In addition, power quality improvement via the utilization
of NSCs is feasible. They can regulate the output voltage
with high precision and mitigate voltage fluctuations. This
way, the stability and reliability of the power system could
be upgraded. Lower component costs can be achieved by
using fewer components. This results in reduced manufac-
turing costs and makes the converter affordable for a wide
range of industrial applications [19, 20]. The significant
advantages of NSCs are listed in Fig. 1.
In electric transportation, these converters enhance power
conversion efficiency and reduce the size and cost of power
electronics systems, which are crucial for electric vehicles
[21]. In electric machine control, they offer improved per-
formance in motor drives by enabling better modulation
techniques that lead to higher torque and capability [22, 23].
In renewable energy integration, nine switch converters fa-

cilitate the seamless connection of renewable sources like
solar and wind to the grid, enabling efficient energy con-
version and minimizing harmonic distortion [24, 25]. Addi-
tionally, these converters are finding applications in power
factor correction and uninterruptible power supplies (UPS),
where they contribute to improved energy quality and relia-
bility [26].
Considering the advantages listed for this type of converter,
the need to investigate their various usages in power net-
works are extremely felt. Thus, following the above dis-
cussion, this paper presents a novel exploration of NSCs,
emphasizing their versatile applications and distinct advan-
tages in modern power systems. By detailing the design,
control strategies, and specific use cases such as Direct
Torque Control (DTC) for induction motors, PV solar array
operation, power factor improvement, fault ride-through in
wind turbines, and electric vehicles, the paper highlights
the unique ability of NSCs to enhance efficiency, flexibility,
and performance across various power electronic applica-
tions. The novelty lies in the comprehensive analysis of
NSCs’ potential to minimize harmonic distortion, reduce
component count, and achieve higher efficiency, all while
maintaining cost-effectiveness. This multifaceted review
not only consolidates existing knowledge but also identifies
future research directions, underscoring NSCs pivotal role
in advancing power conversion technologies. The main con-
tributions of the paper are as follows:
*The paper provides an in-depth analysis of the nine-switch
converter advantages, highlighting its cost-effectiveness,
compact size, improved efficiency, enhanced reliability and
application versatility. This analysis helps in understanding
the practical benefits of NSCs over traditional converters
and justifies their adoption in various power system applica-
tions.
* The paper introduces innovative configurations and con-
trol strategies for the nine-switch converter, optimizing its
performance for different power systems applications. By
presenting new circuit designs and advanced control algo-
rithms, the paper contributes to the improvement of wave-
form quality, efficiency, and dynamic response, enhancing
the overall functionality of the NSC in real-world scenarios.
* The paper explores and demonstrates the application of
nine-switch converters in diverse power system scenarios,
such as renewable energy integration, electric vehicle drives,
and industrial motor drives.
The remainder of the paper can be organized as follows.
Section 2 represents the general schematic of nine switch
converters with its basic concepts. Different implementa-
tions of NSCs are discussed in section 3. Section 4 states the

Figure 1. Key benefits of nine-switch converters.

2345-3796[https://doi.org/10.57647/j.mjee.2025.1901.06]

https://doi.org/10.57647/j.mjee.2025.1901.06


Parvizi et al. MJEE19 (2025) -192506 3/11

future studies, and finally, conclusion is given in section 5.

2. Schematic of an NSC

A nine-switch converter (NSC) is constructed with three
parallel branches, where each branch comprises a series
connection of three power devices. The circuit arrangement
is illustrated in Fig. 2. The NSC encompasses 8 distinct
switching states within each leg, although certain states
must be avoided to prevent abnormal operation of the con-
verter. The remaining functional switching states are re-
ferred to as effective switching states, as they enable the
proper functioning of the converter [27].
In a Nine-Switch Converter, the three-phase output voltages
can be expressed as a function of the switching states of
the nine switches and the input DC voltage. Each switch
can be represented by a switching function S(i, j) where i
represents the phase (A, B, C) and j represents the switch
position (upper or lower).
S(i, j) = 1 When the upper switch is ON and the lower switch
is OFF.
S(i, j) = 0 When the upper switch is OFF and the lower
switch is ON.
According Fig. 2, the output phase voltages voa, vob, and
voc can be derived from the switching functions and the DC
bus voltage, E:

voa =
E
2
(S1H −S2H)

vob =
E
2
(S1M−S2M)

voc =
E
2
(S1L−S2L)

Figure 2. General topology of NSC.

Assuming balanced operation and resistive-inductive load
R, L connected to the output, the current equations in the
steady state can be expressed as:

E.(
S1H −S2H

2
) = iA.R+L.

diA
dt

E.(
S1M−S2M

2
) = iB.R+L.

diB
dt

E.(
S1L−S2L

2
) = iC.R+L.

diC
dt

The state space model of the above equations described as
follows:

d
dt

iA
iB
iC

=

−R
L 0 0

0 −R
L 0

0 0 −R
L

×

iA
iB
iC

+

 1
L 0 0
0 1

L 0
0 0 1

L

×

voa
vob
voc


This model exhibits nonlinear behavior and varies over time.
However, by applying the d-q transformation to this model
with an angular frequency corresponding to the grid line
frequency (ω), a time-invariant model can be derived. In
this transformed model, the d-axis component of the supply
phase voltage becomes zero.

d
dt

[
id
iq

]
=

[
−R

L ω

ω −R
L

]
×
[

id
iq

]
+

[ 1
L 0
0 1

L

]
×
[

vd
vq

]
NSCs provide flexible control over the flow of electrical
energy. They utilize nine switches, typically a combination
of MOSFETs or IGBTs, to enable various operating modes.
The control methods of nine-switch converters depend on
the desired application and system requirements. Table 1 ex-
plores two major control strategies for this type of converter.

3. NSC applications
This section delves into the significant utilization of nine-
switch converters within power systems and electric ma-
chines, aiming to offer researchers a comprehensive under-
standing and pave the way for the widespread adoption of
these highly efficient converters.

3.1 Direct torque control of induction motors
The NSC is a new tool with dual output capabilities that
enables the independent operation of two three-phase loads.
In contrast, Direct Torque Control (DTC) represents a ro-
bust control scheme for AC motors, where careful selection
of state vectors of a conventional voltage source inverter
plays a crucial role. However, due to the distinctive oper-
ating principle of the NSC compared to the conventional
voltage source inverter and the varying impact of active
space vectors on motor torque and stator flux, [28] suggests
the implementation of Direct Torque Control to efficiently
drive two independent induction motors using the NSC. The
objective is to minimize torque and stator flux ripples for
both motors during operation.
In this study, the DTC control method is first described, and
then the use of NSC in this control system is discussed. The
DTC control scheme encompasses two distinct modes of
operation: a) DTC torque mode, which directly controls
the motor torque, and b) DTC speed mode, which controls
the motor torque indirectly through the motor speed. In the
direct DTC scheme, the inverter state vectors are carefully
chosen to control both the stator flux and the electromag-
netic torque. To ensure the proper functioning of the DTC
control scheme, an accurate model of the induction motor
is necessary. This is because the estimation of the stator
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Table 1. Widely used control technique for nine-switch converters.

Control Strategy Contributions

Space Vector Modulation (SVM)

-It allows for precise control of the output voltage or current
by adjusting the duty cycles of the nine switches.

-SVM calculates the reference voltage vectors and determines
the appropriate switching states to generate the desired output
waveform.

Pulse Width Modulation (PWM)

-It involves generating a high-frequency carrier waveform and
comparing it with a reference signal.

-By adjusting the width of the carrier pulses, the converter can
regulate the output voltage or current.

flux and electromagnetic torque relies on the motor model.
Consequently, the following equation can be formulated
within this approach:

T⃗ =
3
2

P
2

Lm

σLsLr
ψ⃗r ⊗ ψ⃗s (1)

|T⃗e|=
3
2

P
2

Lm

σLsLr
|ψr||ψs|sinθsr (2)

Where, ψs and ψr are the stator and rotor flux space vectors
respectively. Ls , Lr and, Lm are stator inductance, rotor
inductance and mutual inductance. P represents the number
of poles. σ shows the leakage coefficient [28].
On the other hand, in the DTC speed mode control scheme,
several parameters are measured and estimated for effective
control. This includes the measurement of three-phase sta-
tor currents and stator voltages, as well as the estimation or
measurement of motor speed using an encoder. The mag-
nitude and angle of the stator flux are then estimated based
on the obtained currents and voltages.
Now that the concept of DTC has been defined, to achieve
independent control of the two loads, the NSC is designed
to supply power to only one load at a time. When one load
is being supplied, the phases of the second load are short-
circuited through one of the DC rails. However, subsequent
analytical investigations conducted by [29] revealed that
the rates of increase and decrease in torque and stator flux

values are not equal during successive switching:

∆Te ↑= [P(ψ⃗r ⊗ v⃗s)−Pwrψ⃗r
◦
ψ⃗s −RmTe]Tf /L f (3)

∆Te ↓= [−Pwrψ⃗r
◦
ψ⃗s −RmTe]Tf /Lσ (4)

Where Tf is the sampling period, ⊗ stands for vector prod-
uct while ◦ denotes the scalar product and Rm = (LrRs +
LsRr)/(LmRm) ; Lσ = (LrLs - L2

m)⁄Lm.
Consequently, controlling the two motors in an alternating
manner with a 50% duty cycle does not guarantee optimal
outcomes. Instead, it can result in asymmetry and high
ripples, compromising performance. Moreover, within the
framework of the Direct Torque Control (DTC) scheme, it
has been observed that the stator flux experiences significant
ripples, particularly in the low-speed region.
To address the challenge of minimizing ripples in the elec-
tromagnetic torque and stator flux for both motors while
achieving a comparatively higher switching frequency, the
aforementioned findings are utilized as the foundation for
the development of a novel control scheme. This control
scheme is based on the algorithm outlined in Fig. 3. Its
primary objective is to leverage the identified facts and prin-
ciples to optimize the control process and attain improved
performance in terms of torque and flux stability.
Considering the aforementioned reasons, the control scheme
prioritizes the control of torque over the control of stator
flux. In the event that one or both of the motors exhibit a

Figure 3. The Flow chart of the proposed algorithm [28].
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significant torque error, the inverter will supply power to
the load with the higher torque error. Conversely, if the
torque errors for both loads are within an acceptable range,
the selection process will favor the load whose vector has
the least impact on changes in the stator flux, particularly
when operating in the low-speed region. However, if the
torque errors are acceptable and there is no specific focus
on the stator flux, the selection between the two loads will
be performed in an alternating manner.

3.2 PV solar array operation

Solar energy is an exceptional example of an inexhaustible
resource, as it is derived from the vast amount of sunlight
that reaches the Earth’s surface. This abundant source of
energy is available in practically unlimited quantities and
is expected to continue for billions of years. Unlike fos-
sil fuels, which are finite and subject to depletion, solar
energy is constantly replenished by the sun, making it a sus-
tainable and reliable option for meeting our energy needs
[31, 32]. The conversion of solar energy into electrical
energy involves various types of converters designed for
specific applications. However, converters face challenges
such as switching losses. In recent years, significant atten-
tion has been focused on reducing the number of switches in
converter circuits. Nine switch converters represent a revo-
lutionary advancement in this changing landscape, offering
numerous advantages, including fewer switching devices,
reduced switching losses, and improved power quality. In
[30], a novel approach utilizing a photovoltaic solar array
as the energy source, coupled with a nine switch converter
to supply power to a load unit has been investigated. The
voltage generated by the photovoltaic solar array is regu-
lated using a dc-dc boost converter, which then feeds into
the input of the nine-switch converter, ultimately providing
power to the loads. The considered PV units of this study,

including irradiation and temperature are as follows.

Vk =ns ×
Si

SiN
×TC(T −TN)+n× (Vmax −Vmin)×ns×

(5)

exp(
Si

SiN
× ln(Vmax −Vmin))

Ik = np ×
Si

SiN
× (ISc +TCi +(T −TN)) (6)

where ns and np are the total number of series and parallel-
connected PV cells, Si and SiN denote solar irradiance and
standard test condition irradiance, respectively. In addition,
TC is the temperature coefficient, Vmax and Vmin show the
open circuit voltage at 1200 W/m2 and 200 W/m2 (298 K),
respectively [30].
Equation (7) and (8) describe the correlation between the
input and output voltage as well as current in the employed
boost converter.

Vout put

Vinput
=

1
1−Duty cycle

(7)

Iinput

Iout put
=

1
1−Duty cycle

(8)

The block diagram of the proposed control strategy of PV
cells comprises of PV unit, boost converter and NCS unit is
illustrated in Fig. 4.

Figure 4. The proposed strategy of PV cells-NCS [30].

The switching vectors for the NSC vector control approach
are shown in Table. 2. The findings indicate that the uti-
lization and regulation of a solar PV cell can be achieved

Table 2. Switching Vectors in Control strategy of Nine Switch Converter [30].

Vector Number 1st Leg 2nd Leg 3rd Leg Activation
1 1 0 0 Upper Switches
2 1 1 0
3 0 1 0
4 0 1 1
5 0 0 1
6 1 0 1
7 -1 1 1 Lower Switches
8 -1 -1 1
9 1 -1 1

10 1 -1 -1
11 1 1 -1
12 -1 1 -1
13 1 1 1 Zero Mode
14 0 0 0
15 -1 1 -1
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successfully by employing a NSC instead of a 12-switch
converter. This allows for independent operation when
connected to different loads and the grid, showcasing the
potential for effective control and implementation of solar
energy resources.

3.3 Power factor improvement
Power electronic systems, such as rectifiers and inverters,
are commonly used in various applications, including motor
drives, renewable energy systems, and power supplies. The
nine-switch converter is another power electronic converter
topology that offers several advantages, including power
factor improvement of a three-phase supply. These systems
often employ DC link capacitors to store and release en-
ergy, providing smooth power flow and voltage regulation
[33, 34].
By controlling the voltage across the DC link capacitor, it is
possible to manipulate the power factor of the system. This
is typically achieved through a control strategy called active
power factor correction (APFC) [35]. APFC techniques
actively adjust the voltage across the DC link capacitor to
maintain a high-power factor and improve the overall effi-
ciency of the system. In [36] to maintaining balance in the
DC link capacitor and achieve power factor improvement
a PID controller with injection the third harmonic is em-
ployed (Fig. 5). The capacitor’s charging and discharging
operations are contingent on the power transfer between
the source and the load in both directions. In this control
technique, active power can be transferred from the source
to the load or vice versa by adjusting the angle δ , which
represents the phase difference between the utility phase
voltage and the rectifier modulating reference. Additionally,
reactive power control can be achieved by modifying the
amplitude vr of the modulating reference. The modulation
reference signals, incorporating a DC-offset, are expressed
by Equation (9) and Equation (10).

Figure 5. DC link capacitor controller [36].

vr = mr sin[(2π frt)±δ ]+DC o f f set (9)

vi = mi sin[(2π frt)±δ ]−DC o f f set (10)

Here, fr refers to the reference frequency of the rectifier,
and fi represents the reference frequency of the inverter.
The modulating references, denoted as vr and vi are utilized,
where vr signifies the rectifier reference, and vi represents
the inverter reference.
To enhance the utilization of the DC bus and improve power
factor quality, the modulation references described by equa-
tions (9) and (10) incorporate the addition of a third har-
monic component. The final modulating references for the
NSC topology are derived from equations (11) and (12). It
should be noted that by selecting the value of k as 1/6, which

maximizes the DC bus utilization, the desired modulating
references are obtained.

v∗r = vr + k sin[3× (2π frt)±δ ] (11)

v∗i = vi + k sin[3× (2π fit)±δ ] (12)

To illustrate the operation of the Gate Logic Controller de-
picted in Fig. 4, the three-phase, three-leg NSC converter
shown in Fig. 1 is considered. In this configuration, spe-
cific switches are designated to function as diodes (S1H,
S2H, S3H, S1M, S2M, and S3M) and others as inverters
(S1M, S2M, S3M, S1L, S2L, and S3L). Notably, S1M, S2M,
S3M serve dual purposes, operating as both inverters and
diodes. The system presents three possible states where two
switches per leg are turned ON while the third one is turned
OFF. To provide a clearer understanding of this arrange-
ment, Table. 3 is presented, illustrating the characteristics
of a single leg in the 9-switch converter.

3.4 Wind turbine - fault ride through
The integration of wind energy systems into the power grid
has led to the implementation of stricter regulations for con-
necting wind farms to the utility network. While a large
number of recently produced and installed wind farms uti-
lize Doubly-Fed Induction Generators (DFIG), a notable
portion of the current wind turbines still rely on Fixed Speed
Induction Generator based Wind Turbines (FSIG-WTs) [37–
39].
The FSIG-WT operates by directly linking to the grid with-
out any power electronics interface, necessitating the use
of shunt capacitor banks to assist in fulfilling the genera-
tor’s reactive power requirements. Consequently, the FSIG-
WT exhibits inadequate voltage regulation and Fault Ride
Through (FRT) capability. When a fault occurs, the terminal
voltage drops, causing an imbalance between electrical and
mechanical powers, which leads to an acceleration in gen-
erator speed and a substantial demand for reactive power.
Additionally, network disturbances can trigger torsional
modes in the WT-generator. Therefore, the integration of
supplementary components becomes necessary to ensure
voltage control and FRT compliance in accordance with the
latest grid code mandates [40, 41].

Figure 6. General diagram of system under study in [42].

To address the system dynamics and grid faults associated
with FSIG-WT implementation, reference [42] employs a
nine-switch converter (NSC) that enables both shunt and
series compensation. This NSC serves to provide necessary
adjustments and support in response to grid conditions and
faults.
As demonstrated in Fig. 5, where the fault ride through
structure for FSIG-WT is depicted, the NSC uses switches
S1-S9 for its proper function. Specifically, switches S1-S6
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Table 3. Switching states of a legs in the NSC for power quality application [36].

Switching
state S1H S1M S1L VA1n VA2n

1 ON ON OFF E E
2 OFF ON ON 0 0
3 ON OFF ON E 0

Figure 7. A comprehensive schematic of NSC control configuration for
shunt-series compensation [42].

are exploited for the series VSC, whereas switches S4-S9
are responsible for the shunt VSC. It is worth noting that
switches S4, S5, and S6 are shared between the shunt and
series converters. To mitigate the impact of switching har-
monics, an appropriate LC filter is implemented. Further-
more, the shunt terminal is connected to the grid side of the
series transformer, enabling the injection of reactive power
during fault conditions. The Detailed control schematic
of nine switch converter for shunt-series compensation is
illustrated in Fig. 7.
From above figure, Equation (5) and (6) are stated as fol-
lows:

Vshunt,abc =Vshunt,abc,re f +{(−1)−min(Vshunt,abc,re f )}
(13)

Vseries,abc =Vseries,abc,re f +{1−max(Vseries,abc,re f )} (14)

The effectiveness of the proposed scheme in improving the
operation of Fault Ride-Through (FRT) and meeting the re-
quirements outlined in the grid code has been substantiated
through an extensive simulation study.

3.5 Electric transportation
In applications such as subways, suburban trains, high-
speed trains, and electric tramways-collectively known as
electrically powered rail transport-power electronics solu-
tions featuring integrated and efficient converters with mul-
tiple functionalities are highly desirable. Among these, the
nine-switch converter family stands out due to its ability to
generate multiple output terminals with a reduced number
of switches. In battery-powered tramways, the nine-switch
converter presents a promising solution for achieving effi-
cient, compact, and reliable power conversion. By utilizing
this advanced converter topology, tramways can benefit
from improved energy efficiency, a reduced component

Figure 8. Schematic of multiport nine-switch converter [51].

count, and enhanced operational flexibility. Consequently,
[51] proposes a multiport converter solution based on the
nine-switch converter topology that integrates multiple func-
tionalities with a reduced switch count. This converter,
which drives the power system of the electric tramway, is
exclusively powered by a battery. Additionally, it incorpo-
rates a strategically connected passive filter that provides a
low-impedance path for high-frequency currents, prevent-
ing leakage current circulation in the induction motor. Its
phase-shift pulse-width modulation effectively reduces the
high-frequency components of the current delivered by the
battery.
The nine-switch converter proposed in the [51] offers signif-
icant benefits and key differences compared to the conven-
tional structure, which typically involves traditional Voltage
Source Inverters (VSIs). One of the primary advantages
is the ability to enable bidirectional conversion between
DC and AC, allowing control over both amplitude and fre-
quency. This flexibility is essential for battery-powered
tramways that require efficient switching between motoring
and regenerative braking modes.
The nine-switch converter achieves its functionality with
only nine switches, unlike conventional setups that gener-
ally require twelve switches. This reduction in the number
of switches leads to lower costs, improved reliability, and a
more compact design. Additionally, the proposed converter
can generate two sets of three-phase outputs, essentially
functioning as two separate VSI units with a single con-
verter. This dual-output capability enhances operational
flexibility and reduces the need for multiple converters. The
scheme of multiport nine-switch converter presented by
[51] is shown in the Fig. 8.
According to Fig. 8, when providing power to the load, the
proposed topology functions in boost mode, channeling
power from the second port to the first port. During regen-
erative braking, it shifts to buck mode, enabling the Energy
Storage System (ESS) to absorb energy.
The system outlined in [51] utilizes a nine-switch multiport
converter to drive a three-phase motor. This converter fea-
tures two distinct energy processing units, referred to as the
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Figure 9. Comprehensive block diagram of the control system.

top and bottom units, which can be operated independently,
as depicted in Fig. 9.
The top unit is dedicated to driving the three-phase motor,
allowing for precise control over speed and torque to en-
hance motor performance. However, this study employs an
open-loop control strategy, which models the steady-state
behavior of the system while accounting for variations in
load based on a typical electric tram load profile.
At last, it is worth mentioning that some research papers
have conducted experimental setups on nine-switch con-
verters. The experimental setups typically involve rigorous
testing under diverse conditions to validate the theoretical
models and to enhance the converters’ efficiency, reliability,
and performance. Table. 4 demonstrates the projects that
have tested NSCs experimentally for different purposes.

4. Comparison and future prospectives
Table. 5 presents a fair comparison table between nine
switch converters and conventional converters across vari-
ous aspects.

As the electrification of transportation continues to acceler-
ate and the demand for efficient energy management grows,
nine switch converters are poised to play a crucial role. In
addition to the special applications that NSCs have found in
the field of electric ships [52] or charging and discharging
batteries in electric vehicles [53], they can also be employed
in uninterruptible power supplies (UPS). The bidirectional
functionality of these converters makes them well-suited for
UPS systems. On the other hand, NSCs would be able to in-
tegrate with HVDC grids to enhance power flow, improving
fault handling, and increasing the scalability and reliability.
These advantages contribute to the efficient transmission of
electrical power, proposing a promising technology for the
future development of HVDC networks.

5. Conclusion

In conclusion, this paper briefly reviews nine switch
converters (NSCs), which represent a promising and
versatile technology with a wide range of applications
across multiple sectors. Their bidirectional power flow
capability, enhanced fault handling, and modular design
make them highly suitable for various power systems,
including electric mobility, renewable energy integration,
microgrids, industrial power systems, UPS, smart grids,
and energy storage systems. Moreover, their utilization
in HVDC grids offers significant advantages such as
improved grid stability, efficient power control, seamless
AC integration, and scalability. As the demand for efficient
power flow control and energy management continues

Table 4. Summary of main experimental tests conducted on NSCs for various applications.

Reference [43] Three-phase UPS application
Reference [44] Carrier-based phase-shift space vector modulation
Reference [45] Photovoltaic (PV) source of array
Reference [46] Model predictive control approach of nine switch inverter-based drive systems
Reference [47] PV grid-tied systems
Reference [48] Direct model predictive control of nine switch inverter for dual-output mode operation
Reference [49] Nine switch inverter to control two induction motors
Reference [50] DFIG wind generation system

Table 5. Comparing different aspects of nine switch converters and conventional converters.

Aspect Nine Switch Converters Conventional Converters

Component Count
Reduced number of switches (9 in total),
fewer passive components.

Higher number of switches, each converter stage
requires its own set of switches and components.

Efficiency
Higher efficiency due to reduced switching
losses and shared components.

Typically lower efficiency due to increased switching
losses and multiple stages.

Cost
Lower cost due to fewer components
and integrated design.

Higher cost due to the need for more components and
separate converter stages.

Control Complexity
More complex control algorithms needed
to manage shared switches and multiple outputs.

Simpler control due to independent stages but requires
coordination between stages.

Size and Weight
More compact and lighter due to integrated
design and fewer components.

Larger and heavier due to multiple stages and more
components.

Thermal Management
Easier thermal management due to
fewer heat-generating components.

More challenging due to multiple stages and higher heat
generation.

Switching Frequency
Typically higher, allowing for smaller
passive components.

Can vary widely, but generally lower switching
frequencies in each stage.

Power Quality
Can offer improved power quality
with appropriate control strategies.

Power quality depends on the design of each stage,
typically requiring additional filtering.
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to grow, the adaptable nature of nine switch converters
positions them as a key contributor to the future of power
electronics and grid systems.
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