
Volume 19, Issue 1, 192511 (1-8)

Majlesi Journal of Electrical Engineering (MJEE)

https://doi.org/10.57647/j.mjee.2025.1901.11

Classification of heart diseases using time-frequency
representations of electrocardiogram signals by transfer

learning networks

Amir Hossein Jalalzadeh1 , Hamid Ebrahimi1,∗ ,
Maryam Jahangiri Moghadam2

1Department of Biomedical Engineering, Engineering Faculty, Shahed University, Tehran, Iran.
2Radiology technician, Kermanshah University of Medical Sciences, Kermanshah, Iran.
∗Corresponding author: idakwoharrison@unimaid.edu.ng

Original Research
Received:
12 October 2024
Revised:
30 December 2024
Accepted:
16 January 2025
Published online:
1 March 2025

© 2025 The Author(s). Published by
the OICC Press under the terms of
the Creative Commons Attribution
License, which permits use, distribu-
tion and reproduction in any medium,
provided the original work is prop-
erly cited.

Abstract:
It is crucial to monitor and diagnose cardiac function early to prevent the development of future, more
severe issues. This study categorized 193 male and female subjects into three groups based on their ECG
signals obtained during an exercise test: healthy, myocardial infarction, and left bundle branch block. The
data were then processed and converted into images representing three time-frequency representations: a
spectrogram, a scalogram, and a spectrum. These images were used as input for two pre-trained networks
through transfer learning. The ResNet-18 and GoogLeNet networks were utilized in this study. The ResNet-18
network achieved an accuracy of 88.64% for the spectrogram, 98.41% for the scalogram, and 83.33% of the
spectrum. The results for the GoogLeNet network were as follows: 77.27% for the spectrogram, 97.62% for
the scalogram, and 78.57% of the spectrum.
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1. Introduction

Heart complications are the most common type of disease
spread around the world that many people deal with. Also,
deaths caused by heart disease are in first place according
to the statistics of the World Health Organization and ev-
ery year it kills about 18 million people around the world.
Given the importance of this issue, the need for timely and
correct diagnosis of a person’s heart complications before
the disease reaches higher stages is clear to all. Nowadays,
there are different methods like nuclear imaging, ultrasound
imaging, etc. For checking cardiac function. But one of the
least expensive, most accessible, and most reliable types
to check the heart’s health is using an electrocardiogram
device, which displays the waveform from the beginning to
the end of a cardiac cycle by recording the electrical poten-
tial of the heart muscle. An electrocardiogram is one of the
most common ways of observing how the heart works. The
use of electrocardiograms helps to understand all types of

heart arrhythmias. By connecting multi-channel leads to the
patient’s body, this device monitors all stages of heart mus-
cle activity, and the doctor can diagnose the origin and type
of the disease based on the abnormal changes in the formed
waveform, compared to the condition of a normal person.
In light of the heightened sensitivity of diagnosis and pre-
diction in medicine, it is imperative to enhance the precision
of previous studies. The reliable substitution of neural net-
works for humans necessitates extensive data training and
precise parameter tuning to achieve enhanced accuracy. The
objective of this study is to improve the accuracy of an ar-
tificial neural network for the diagnosis of cardiovascular
disease. The selected pre-trained networks yielded supe-
rior results compared to those observed in previous studies.
Transfer learning using pre-trained networks provided ac-
ceptable results in other applications. It also requires less
time to set parameters and network design. In numerous
previous studies, the ECG signal was employed directly for
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training and classification, in CNN networks. Given that
the heart signal is a time series signal, LSTM networks may
be employed directly for this purpose. The utilization of
convolutional networks is contingent upon the data being
presented to the network in the form of images, as this is ex-
pected to result in enhanced accuracy. While convolutional
networks are employed in this work, it is preferable to trans-
form the signals into images in the frequency domain. This
resulted in an improved level of classification accuracy. Fur-
thermore, the examination and comparison of three distinct
representations of a signal in the frequency domain are of
considerable significance. This will facilitate the identifica-
tion of the representation that is most effective in diagnosing
individuals with cardiac conditions. In this work, we ex-
amined two common conditions, myocardial infarction and
the Left Bundle Branch Block (LBBB). The test subjects
are of different age ranges and both sexes, after recording
data from them and performing the required pre-processing
on the recorded signals such as removing noise, we con-
verted them into time-frequency images. We converted the
signals of every person into a scalogram, spectrogram, and
pspectrum as input of deep convolutional neural networks
[1]. In recent years, much research has been conducted into
deep networks and their use as a relatively suitable surro-
gate for humans in decision-making and diagnosis [2]. The
development of deep networks has helped resolve classifi-
cation issues, especially in the medical area for diagnosis
and treatment. Moreover, most researchers favor the use
of pre-trained networks because of their high efficiency.
Powerful pre-trained networks such as ResNet-18 [3] and
GoogLeNet [4] are used in this work, and by fine-tuning
them, the weights and parameters can be changed according
to the desired goal. A lot of important research has been
done on this. Diker et al. Used the PTB database, which in-
cluded ECGs of 148 patients and 80 normal subjects, which
were converted to spectrogram images as inputs to 3 pre-
trained networks. They used networks such as AlexNet,
VGGnet, and ResNet-18. The precision achieved for each
network was 83%, 76%, and 82% respectively. Of course,
it is worth mentioning that the specific nature of this task
for each network is 62%, 50%, and 54% respectively [5].
In a similar work, Singh et al. Used 70 ECG samples of
their class 3 OSA problem. They divided training and test-
ing data equally, meaning that 35 samples were considered
for network formation and 35 samples for network testing.
The network they used was AlexNet, whose input was fed
with spectrogram images of the data used. They formed
the desired network up to 2 epochs and achieved 86% accu-
racy [6]. Yaldirim et al. published their research to classify
2 classes of normal people and diabetes mellitus patients
from 15 1-hour ECG data of healthy people and also 15
ECG data of diabetes mellitus patients. They also used
only spectrogram images of signals for the input of deep
networks. The difference in their work compared to the pre-
vious two studies is that in addition to the 1D signal, they
used a spectrogram for 2D CNN networks to train Alexnet,
VGG, ResNet-18, and Dense net. The accuracy of this work
was 95%, 96%, 95%, and 97% respectively [7]. Huang et
al. Used the MIT-BIH arrhythmia database. In this work,

they examined 5 types of heartbeats, which are: normal beat
(NOR), left bundle branch block beat (LBB), right bundle
branch block beat (RBB), premature ventricular contraction
beat (PVC), and atrial premature. Contraction beat (APC).
First, they performed 2D spectrogram images from ECG
signals using a short-time Fourier transform to train convo-
lutional networks. A learning rate of 0.001 and a batch size
of 2500 were used for this network, which was designed
with an unbalanced data count and reached a remarkable
accuracy of 99%. They also compared their network with
the 1D network, and finally, the resulting accuracy of the
1D network was 90.93% [8]. The next work that Salem et al.
Has done is to use a pre-trained network called DenseNet.
After converting the ECG signals of four different datasets
into spectrogram images, they gave it to the input of the
network, but after extracting the features by the middle lay-
ers of the convolutional network, from an external classifier
which was SVM with -10 folds to classify the data. They
finally got 97.30% accuracy [9]. Alqudah et al., in their
research, used both types of Spectrogram displays and types
of deep convolutional networks for classification. In this
work, they solved the problem more comprehensively. The
data set used was the standard MIT-BIH six-class arrhyth-
mia. The different spectrogram displays used in this work
were: Log-scale and Mel-Scale in addition to Bi-Spectrum
and the third-order cumulant. Also, 4 different network
architectures named AOCT-NET, Mobile-Net, Squeeze-Net,
and Shuffle-Net have been classified in this research. The
highest accuracy obtained among the tested networks over-
all was for Mobile net architecture with 93.8%. Also, the
highest accuracy rate among different Spectrogram displays
belongs to the bispectrum with 93.7% accuracy [10].
Additionally, other research has been conducted to examine
the various classifications of heart disease. Acharya et al.
Attempted to develop an automated system for the detection
and localization of myocardial infarction using electrocar-
diograms. A data set comprising 52 healthy subjects and
148 subjects with MI was employed. The sole cardiac con-
dition under investigation was MI. However, the researchers
proposed an automated detection of 10 types of MI and their
locations. A total of 12 features was manually extracted
from the ECG signal to detect MI, resulting in an accuracy
rate of 98.8% [11]. Additionally, Li and Zhou employed a
classification approach utilizing wavelet packet entropy and
random forests for ECG data. The MIT–BIH Arrhythmia
Database was employed, and the entropy of each terminal
node in the wavelet packet tree was calculated as a feature.
The algorithm, which integrated wavelet packet entropy and
the time between the R peaks of two heartbeats, achieved an
accuracy of 94.61% when evaluated using random forests
[12]. In another study, Diker et al. Investigated the appli-
cation of artificial neural networks (ANN), support vector
machines (SVM), and k-nearest neighbor (k-NN) machine
learning methods for the classification of electrocardiogram
(ECG) signals as normal or abnormal. The highest perfor-
mance was achieved by SVM, at 85.1%. The open-source
PTBDB database was used in this study [13]. The last one
is Josaga’s work, where he investigated Atrial Fibrillation
by utilizing three distinct 2D representations of ECG sig-
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nals. In his research, Josaga applied CNNs to compare
the effectiveness of three different visualization techniques:
scalogram, spectrogram, and attractor reconstruction. Us-
ing the MIT-BIH Atrial Fibrillation (AFIB) database, his
approach yielded classification accuracies of 94% for both
the spectrogram and scalogram representations, and 89%
for the attractor reconstruction [14].

2. Material and method

2.1 Dataset
The methodology of this study is illustrated in the block
diagram provided in figure 1. The dataset was acquired
from a clinical environment, comprising participants from
four distinct cardiovascular categories: normal, myocardial
infarction, left bundle branch block (LBBB), and ischemia.
However, ischemia data were subsequently excluded from
the analysis due to inconsistencies that rendered it unsuit-
able for the intended scope of this study. The final dataset
used in this investigation consisted of 193 normal records,
78 records from individuals diagnosed with myocardial in-
farction, and 88 records from individuals with LBBB. The
participants, spanning both genders, were aged between
50 and 70 years, ensuring a relevant demographic for the
study of age-related cardiac conditions. Participants were
admitted to the clinic in the morning hours and were admin-

istered a radiopharmaceutical agent before any testing. This
radiopharmaceutical was used to enhance gamma imaging,
a nuclear medicine technique employed to visualize func-
tional processes in the body. Following gamma imaging,
participants underwent a graded exercise test, which lasted
between 5 and 15 minutes based on individual fitness levels
and clinical indications. The exercise test, an essential com-
ponent of this study, aimed to induce cardiac stress, under
which latent cardiovascular abnormalities might manifest,
thus providing more comprehensive diagnostic insights. All
electrocardiography data were recorded using a 12-lead
ECG treadmill system developed by Avecina. This system
was chosen for its robust performance in clinical stress-
testing environments. Exercise ECGs are particularly in-
formative for identifying ischemic changes or arrhythmias
that may not be evident during resting ECG. The use of
a treadmill allowed for standardized stress induced, while
continuous ECG monitoring provided real-time assessment
of cardiac electrical activity. To minimize external influ-
ences and ensure high-quality signal acquisition, the signal
recording environment was meticulously controlled. The
recording room was electromagnetically shielded to prevent
interference from ambient electronic devices, human activ-
ity, and environmental noise. Moreover, no strong magnetic
or electrical fields were present in the vicinity of the record-

Figure 1. The block diagram of the method.
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ing area, ensuring a clean, undistorted ECG signal. These
precautions were critical in preventing artifacts that could
compromise the integrity of the recorded data. The ECG
signals were continuously recorded from the second lead of
the 12-lead system, commonly regarded as a reliable lead
for monitoring and detecting arrhythmic events or ischemic
changes. A sampling rate of 256 Hz was employed, ensur-
ing that the temporal resolution was sufficient to capture
all relevant cardiac events, including rapid changes in heart
rate and rhythm during exercise. The signals were digitized
at a 12-bit resolution, providing a high degree of precision
in the recorded data, with each sample capable of distin-
guishing 4,096 discrete levels of voltage. Data collection
was conducted at the Parto Nuclear Medicine Center, a spe-
cialized facility located in Khorram Abad, Iran. This center
was selected for its expertise in both nuclear medicine and
cardiovascular diagnostics, ensuring the availability of the
necessary equipment and clinical expertise for this study.
Importantly, all participants provided informed consent be-
fore enrolling in the study, following ethical guidelines and
ensuring their voluntary participation. Informed consent
protocols were strictly adhered to, ensuring that participants
were fully aware of the nature, purpose, and potential risks
of the study. To ensure the reliability and accuracy of the
dataset, all data labeling was rigorously validated by a panel
of medical experts. The classification of participants into
the categories of normal, myocardial infarction, and LBBB
was verified by two senior clinicians. Dr. Sharifi, a sea-
soned cardiologist, and Dr. Jafarian, a nuclear medicine
specialist, reviewed the ECG records and clinical data to
confirm the accuracy of the diagnoses. Their involvement
in the verification process added a layer of credibility to the
dataset, ensuring that it was appropriately categorized for
subsequent analysis. The precision of data labeling was crit-
ical to the downstream analyses, particularly in the context
of machine learning applications, where mislabeled data
could lead to erroneous conclusions. By involving domain
experts in the verification process, the study ensured that
the dataset would be a reliable foundation for further com-
putational modeling and statistical evaluation. In summary,
the data collection process for this study was conducted
under highly controlled conditions, with stringent protocols
in place to ensure the accuracy and reliability of the ECG
recordings. The comprehensive verification of data labels
by experienced clinicians further enhanced the quality of
the dataset, making it suitable for detailed analysis in the
context of myocardial infarction and LBBB diagnosis.

2.2 Preprocessing

Despite data recording under optimum conditions, the pres-
ence of noise and signal disturbance is undeniable [15].
Initially, we used the wavelet transform to reduce the noise
of the recorded signals. We obtained Wavelet coefficients
using Symlet 10 in MATLAB software [16]. After this
stage, we will proceed to the normalization of the amount
of data. In this section, due to the amount of data of 3
classes is unbalanced. For improved training and to avoid
biasing the network towards one of the classes, all data for
the three classes are randomly divided into as few classes as

possible. We’ve narrowed the data in each class down to 78.
Furthermore, in many earlier works, they avoid this practice
and solve this problem by using committee machines and
applying data with different weights to the network. In this
work, after reducing the data of the classes, we have done
Data augmentation images. Since the accuracy of the results
of deep networks increases with the increase in the amount
of data with independent features, we have also increased
data for a reliable result.

2.3 Time-Frequency representation
2.3.1 Scalogram
A type of time-frequency representation is obtained from the
continuous wavelet transform. It converts the ECG signal,
which is a continuous-time signal, into a time-frequency
space with a function and a mother wavelet. The mathemat-
ical equation for transformation to continuous wavelets is
shown in (Eq. 1):

Xω(a,b) =
1

|a| 1
2

∫
∞

−∞

x(t)ψ(
t −b

a
)dt (1)

where ψ is a continuous function in time-frequency, known
as Kernel wavelet or mother wavelet function. Also, Ω

are the wavelet coefficients. The input signal will be x,
and a and b are the comparison and positional parameters,
respectively [17]. We prepared these images using the CWT
command in MATLAB software and also considered the
Morse wavelet as the default wavelet, then used them as
inputs of pre-trained deep networks.

2.3.2 Spectrogram
Another type is the time-frequency representation of the
signal, which is the result of the output of the short-time
Fourier transform of the signal. The signal will be split
into smaller time slices, and a Fourier transform will be
applied to each of them [18]. After doing this, each of
the intervals will be converted into a frequency spectrum,
and by assigning a color code according to the value of the
coefficients, we’ll have a color map for the main signal. By
using MATLAB software, we converted the ECG signals
in the database to color images which can be used for deep
neural networks using the spectrogram (X) command [19].

2.3.3 Pspectrum
Whenever we need to display the signal strength spectrum,
we use a pspectrum command in MATLAB software [20].
The difference between this display and the spectrogram in
plain language is that the spectrogram plots the spectrum of
the short-time Fourier transform of the input signal, while
the pspectrum displays the power spectrum which is used
to analyze the signals in the domain Frequency and time
frequency are used [21].

2.4 Pre-trained convolutional neural networks
These days, because of the proper efficacy of artificial neural
networks, this powerful algorithm is widely used for ma-
chine learning. Neural networks have proven to be effective
in solving problems such as classification and regression in
different areas. Artificial neural network, which is a sub-
set of artificial intelligence and machine learning, was first
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introduced by McCulloch and Pitts in 1943 by modeling
the structure of neural message transmission in the human
brain [22]. They first introduced a single-neuron perceptron
network. As can be seen in (Fig. 2), two inputs for this neu-
ron, which are sample features, are entered into the network.
After multiplying with the weights on the branches of the
neuron, the obtained value moves towards the activation
function, which in this figure is a linear function, and if the
threshold limit of this function is reached, the neuron is ac-
tivated, otherwise, the output is zero. This is a very simple
example of a primitive network of single-neural perceptrons.
With the passage of time and the increase in the speed of
calculations and of course the progress and development of
neural networks, as well as the emergence of cases such as
error backpropagation to solve problems that have nonlinear
separability, deep networks were designed. As a result of
deep networks, the use of this algorithm has become more
popular. Introduce things like the establishment of hyperpa-
rameters, the application of various optimization methods,
and the definition of new activation functions added to the
appeal and efficiency of artificial networks.
This has led the developers of deep neural networks to de-
velop new network architectures every year and introduce
powerful trained networks. ResNet-18 is one of the most
powerful and widely used networks when it comes to clas-
sification issues. This network was introduced by Kaiming
He et al. (2015). This network aims to rewrite the network
formula and reduce the complexity of deep networks using
the same parameters. The proposed network has shown
that it is easier to optimize than normal networks, and it

is also more successful in increasing the accuracy of the
network in classification compared to normal networks in
higher depths. Another network introduced by Christian
Szegedy was named Google Net in 2014. They proposed a
22-layer network in the ILSVRC14 challenge. The advan-
tage of this network is stated in the improvement of internal
computing resources, which simultaneously increases the
depth and width of the network, and still provides users
with the quality of results while keeping the cost of com-
puting constant. This network has won the first rank in the
ILSVRC14 challenge. Once the data had been converted to
spectral images, we resized it to the size of the network in-
puts. In our work, we used both ResNet-18 and GoogLeNet
networks and changed all 3 groups of images to 224*224*3
dimensions to fit them as input of these networks.

2.5 Performance evaluation
To validate this work’s accuracy which you can see in
(Eq. 2), used.

Accuracy =
TP+TN

TP+TN+FP+FN
(2)

To validate this work’s accuracy which you can see in
(Eq. 2), has been used. TP (True Positive) means the model
correctly predicts the positive class, TN (True Negative)
means the model correctly predicts the negative class, FP
(False Positive) means the model incorrectly predicts the
positive class when it is negative and FN (False Negative)
means the model incorrectly predicts the negative class
when it is positive.

Figure 2. The structure of pre-trained ResNet18 used in this research.
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3. Results

The experiments for the analysis were carried out on a com-
puter with an Intel(R) Core i7 CPU and 8 GB of memory,
using MATLAB 2021b. In the first result of our work, we
removed the noise of the ECG signal. A sample of the sig-
nal before removing the noise and also after applying the
transform to wavelets to reduce the noise.
After noise removal, we transform the signal into three
classes of time-frequency representation and prepare them
for the next stage we should use them as input for transfer
learning networks. An example of time-frequency image
output can be seen in (Fig. 3).
After obtaining time-frequency images from healthy and
diseased ECG signals, we fed them to deep-learning net-
works for feature extraction and classification. We utilized
78 samples for network training and 20% for network vali-
dation during training. Also, we use data augmentation like
rotation, rescaling, etc. To increase the size of the dataset to
decrease the possibility of overfitting. Table 1 shows two
different networks with different hyperparameter settings
are used for this task. To achieve the highest accuracy, dif-
ferent batches and different optimization functions were
used. Also, considering the early stopping point during
network training, different learning rates were also used,
and the final results were summarized in the following table,
showing some of them. This work used a variety of trials
and errors to define hyperparameters. For example, batches
15 and 10 were also used. It is important to choose the num-
ber of data to be trained in each iteration because choosing
a very high value is associated with the possibility of re-
ducing the accuracy, and also choosing a very low value, in
addition to increasing the time and volume of calculations,
causes the updating of the weights to be prolonged, and the
tolerance Changes in weights will be drastic. Finally, opti-
mally, we obtained the highest accuracy value using batch
10. Since choosing a fixed learning rate in network train-
ing faces problems such as increasing computation time or
network divergence, in this work, a time-varying learning
rate is used at the beginning of the network training process,
when the error rate is high, from the steps use large to reach
the minimum point and after some time and check the small
changes of the error, take advantage of small steps so that
he does not lose the optimal place and does not cross it.
The initial set rate was 0.0001. Also, we discussed various
optimization methods such as SGDM, ADAM, and RM-
SPROP to test and check the accuracy of the network by
using different optimization algorithms. Ultimately, we put

Table 1. Summary of different parameters.

Approach Network Batch Accuracy (%)

Scalogram
ResNet-18 10 98.41
GoogleNet 15 97.62

Spectrogram
ResNet-18 10 88.64
GoogleNet 15 77.27

Pspctrum
ResNet-18 10 88.10
GoogleNet 15 78.57

the most appropriate optimization algorithm in this work,
SGDM. It should be noted that to prevent the network from
diverging in reaching the optimal weights, we defined a stop
criterion for the network, which, if the downward trend of
the validation number is observed for 5 consecutive epochs,
the training of the network is stopped and the last previous
value of the obtained accuracy is Decreasing the validation
number to declare as the final accuracy of the network.
In (Fig. 4) The images are associated with the test data of
the trained networks. The first row represents a sample
of spectrogram images, the middle row of scalogram im-
ages, and the lower row of spectrum images. The numbers
inserted at the top of each of the images signify the accu-
racy of the detection of the desired network in the correct
determination of the corresponding class.

4. Discussion
Heart diseases remain one of the leading causes of mor-
tality worldwide, with early detection, playing a crucial
role in preventing many of these fatalities. Timely and
accurate diagnosis of heart failure and other cardiac con-
ditions can significantly reduce the associated morbidity
and mortality rates. In this study, we explore the poten-
tial of artificial intelligence, specifically deep learning, to
diagnose various cardiac diseases through the analysis of
electrocardiogram (ECG) signals. The research focuses on
classifying individuals into three categories: healthy sub-
jects, those who have experienced a myocardial infarction,
and those with left bundle branch block (LBBB), based on
cardiac signals recorded during exercise stress tests. To
enhance the accuracy of the classification, the raw ECG
data is preprocessed and transformed into time-frequency
representations. In particular, the spectrogram, scalogram,
and pspectrum are employed as key visualizations of the
signal, serving as input to two pre-trained deep convolu-
tional neural networks—ResNet-18 and GoogLeNet. This
approach demonstrates the efficacy of using deep learning
techniques in the automated classification of cardiac condi-

Figure 3. (a) Spectrogram, (b) Pspectrum, and (c) Scalogram.

2345-3796[https://doi.org/10.57647/j.mjee.2025.1901.11]

https://doi.org/10.57647/j.mjee.2025.1901.11


Jalalzadeh et al. MJEE19 (2025) -192511 7/8

Figure 4. The accuracy achieved in this study by utilizing the networks was
determined by separating three different frequency domain representations
of the LBBB sample. (a) The results obtained by the ResNet network (b)
The results obtained by the GoogleNet network.

tions. Both ResNet-18 and GoogLeNet have shown strong
potential in accurately distinguishing between the different
categories of heart disease. By leveraging these advanced
architectures, the study achieves robust performance in the
detection of cardiac arrhythmias, demonstrating the effec-
tiveness of time-frequency imaging in enhancing diagnostic
accuracy. While previous research has yielded encouraging
results in the early detection of arrhythmias, this study in-
troduces the novel application of time-frequency images to
improve classification outcomes. Furthermore, this work
offers a comparative analysis of the results with those of
earlier studies, underscoring advancements in the use of
convolutional neural networks (CNNs) for heart disease di-
agnosis. The findings highlight the potential of integrating
AI and deep learning models into clinical practice for early
detection and diagnosis, contributing to more efficient and
timely interventions for heart disease patients. The table
below presents a detailed comparison of the current study’s
results with previous research, emphasizing improvements
in diagnostic accuracy through innovative methodologies.

5. Conclusions
The detection and classification of cardiac arrhythmias
is a critical challenge in modern medicine, demanding
robust automated solutions. This study leverages ECG data
from 193 individuals, classified into healthy, myocardial
infarction, and Left Bundle Branch Block (LBBB) groups,
to explore AI-driven diagnostics. Pre-trained neural
networks ResNet-18 and GoogLeNet were fine-tuned using
three time-frequency ECG representations: spectrogram,
scalogram, and pspectrum. Scalogram with ResNet-18
achieved the highest accuracy (98.41%). The results

Table 2. Comparison with other works.

Articles Dataset Input Network architecture Accuracy

PTB Spectrogram
Alexnet 83%

Diker et al [5] VGGnet 76%
Resnet18 82%

Singh et al [6] OSA Spectrogram Alexnet 86%

- Spectrogram
Alexnet 95%

Yaldirim et al [7] VGGnet 96%
Resnet18 95%

Huang et al [8] MIT-BIH arrhythmia Spectrogram CNN 90.93%
Salem et al [9] Four different databases Spectrogram Densnet 97.3%

Alqudah et al [10]
Standard MIT-BIH
six-class arrhythmia

Spectrogram Mobilenet 93.8%

Acharya et al [11] PTB 1-D ECG signal KNN 98.8%
Li and Zhou [12] MIT-BIH arrhythmia 1-D ECG signal Random Forest 94.61%
Diker et al [13] PTBDB 1-D ECG signal SVM 85.1%

Josaga [14] MIT-BIH AFIB
Scalogram,

Spectrogram
Attractor

CNN

94%

94%

89%

Spectrogram
Resnet18 88.64%

OURS GoogLenet 77.27%

Scalogram
Resnet18 98.41%

OURS GoogLenet 97.62%

Pspectrum
Resnet18 83.33%

OURS GoogLenet 78.57%
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highlight the potential of AI for arrhythmia detection,
suggesting ensemble techniques and combined transforms
for improved diagnostic performance and personalized care.
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