[1] M. H. Saeed, W. Fangzong, B. A. Kalwar, and S. Iqbal, “A Review on Microgrids’ Challenges & Perspectives,” IEEE Access, vol. 9, pp. 166502–166517, 2021, doi: 10.1109/ACCESS.2021.3135083.
[2] L. Moosa et al., “Maldives National Adaptation Programme,” Minist. Environ. Energy Water, 2007, p. 114, 2007. doi: https://unfccc.int/resource/docs/napa/mdv01.pdf
[3] R. K. Chauhan, B. S. Rajpurohit, S. N. Singh, and F. M. Gonzalez-Longatt, DC Grid Interconnection for Conversion Losses and Cost Optimization, vol. 0, no. 9789814585262. Springer Verlag, 2014, pp. 327–345. doi: 10.1007/978-981-4585-27-9_14/COVER.
[4] J. Stamp, The SPIDERS project - Smart Power Infrastructure Demonstration for Energy Reliability and Security at US military facilities. Institute of Electrical and Electronics Engineers (IEEE), 2012, pp. 1–1. doi: 10.1109/ISGT.2012.6175743.
[5] A. K. Rajput and J. S. Lather, “Energy Management and DC Bus Voltage Stabilization in a HRES Based DC Microgrid Using HESS,” Serbian J. Electr. Eng., vol. 20, no. 2, pp. 243–268, Jun. 2023, doi: 10.2298/SJEE2302243R.
[6] D. Kumar, F. Zare, and A. Ghosh, “DC Microgrid Technology: System Architectures, AC Grid Interfaces, Grounding Schemes, Power Quality, Communication Networks, Applications, and Standardizations Aspects,” IEEE Access, vol. 5, pp. 12230–12256, Jun. 2017, doi: 10.1109/ACCESS.2017.2705914.
[7] Y. Ito, Y. Zhongqing, and H. Akagi, “DC micro-grid based distribution power generation system,” in Conference Proceedings - IPEMC 2004: 4th International Power Electronics and Motion Control Conference, 2004, pp. 1740–1745.
[8] S. Bandyopadhyay, G. R. C. Mouli, Z. Qin, L. R. Elizondo, and P. Bauer, “Techno-Economical Model Based Optimal Sizing of PV-Battery Systems for Microgrids,” IEEE Trans. Sustain. Energy, vol. 11, no. 3, pp. 1657–1668, Jul. 2020, doi: 10.1109/TSTE.2019.2936129.
[9] M. Alramlawi and P. Li, “Design optimization of a residential pv-battery microgrid with a detailed battery lifetime estimation model,” IEEE Trans. Ind. Appl., vol. 56, no. 2, pp. 2020–2030, Mar. 2020, doi: 10.1109/TIA.2020.2965894.
[10] J. J. Caparrós Mancera et al., “Experimental analysis of the effects of supercapacitor banks in a renewable DC microgrid,” Appl. Energy, vol. 308, p. 118355, Feb. 2022, doi: 10.1016/J.APENERGY.2021.118355.
[11] F. Zhang et al., “Power management strategy research for DC microgrid with hybrid storage system,” 2015 IEEE 1st Int. Conf. Direct Curr. Microgrids, ICDCM 2015, pp. 62–68, Jul. 2015, doi: 10.1109/ICDCM.2015.7152011.
[12] H. Chaouali et al., “Energy Management Strategy of a PV/Fuel Cell/Supercapacitor Hybrid Source Feeding an off-Grid Pumping Station Modelling and control of systems View project Instrumentation of the fuel cell View project Energy Management Strategy of a PV/Fuel Cell/Supercapacitor Hybrid Source Feeding an off-Grid Pumping Station,” Artic. Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 8, 2017, doi: 10.14569/IJACSA.2017.080832.
[13] D. B. Wickramasinghe Abeywardana, B. Hredzak, and V. G. Agelidis, “A Fixed-Frequency Sliding Mode Controller for a Boost-Inverter-Based Battery-Supercapacitor Hybrid Energy Storage System,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 668–680, Jan. 2017, doi: 10.1109/TPEL.2016.2527051.
[14] L. Maheswari, P. Srinivasa Rao, N. Sivakumaran, G. Saravana Ilango, and C. Nagamani, “A control strategy to enhance the life time of the battery in a stand-alone PV system with DC loads,” IET Power Electron., vol. 10, no. 9, pp. 1087–1094, Jul. 2017, doi: 10.1049/IET-PEL.2016.0735.
[15] H. Zhou, T. Bhattacharya, D. Tran, T. S. T. Siew, and A. M. Khambadkone, “Composite energy storage system involving battery and ultracapacitor with dynamic energy management in microgrid applications,” IEEE Trans. Power Electron., vol. 26, no. 3, pp. 923–930, 2011, doi: 10.1109/TPEL.2010.2095040.
[16] G. R. Athira and V. R. Pandi, “Energy management in islanded DC microgrid using fuzzy controller to improve battery performance,” in Proceedings of 2017 IEEE International Conference on Technological Advancements in Power and Energy: Exploring Energy Solutions for an Intelligent Power Grid, TAP Energy 2017, 2018, pp. 1–6. doi: 10.1109/TAPENERGY.2017.8397369.
[17] Y. Han, W. Chen, Q. Li, H. Yang, F. Zare, and Y. Zheng, “Two-level energy management strategy for PV-Fuel cell-battery-based DC microgrid,” Int. J. Hydrogen Energy, vol. 44, no. 35, pp. 19395–19404, Jul. 2019, doi: 10.1016/j.ijhydene.2018.04.013.
[18] Y. Pu, Q. Li, W. Chen, and H. Liu, “Hierarchical energy management control for islanding DC microgrid with electric-hydrogen hybrid storage system,” Int. J. Hydrogen Energy, vol. 4, pp. 5153–5161, 2019, doi: 10.1016/j.ijhydene.2018.10.043.
[19] Z. Cabrane, D. Batool, J. Kim, and K. Yoo, “Design and simulation studies of battery-supercapacitor hybrid energy storage system for improved performances of traction system of solar vehicle,” J. Energy Storage, vol. 32, p. 101943, Dec. 2020, doi: 10.1016/J.EST.2020.101943.
[20] Z. Cabrane, J. Kim, K. Yoo, and M. Ouassaid, “HESS-based photovoltaic/batteries/supercapacitors: Energy management strategy and DC bus voltage stabilization,” Sol. Energy, vol. 216, pp. 551–563, Mar. 2021, doi: 10.1016/j.solener.2021.01.048.
[21] X. Wen, W. Kai, and Z. Shengzhe, “Research on hierarchical control strategy of hybrid energy storage system in microgrid,” in Proceedings - 2017 Chinese Automation Congress, CAC 2017, 2017, pp. 3323–3326. doi: 10.1109/CAC.2017.8243351.
[22] Y. Han, W. Chen, and Q. Li, “Energy management strategy based on multiple operating states for a photovoltaic/fuel cell/energy storage DC microgrid,” Energies, vol. 10, no. 1, 2017, doi: 10.3390/en10010136.
[23] M. K. Senapati, C. Pradhan, S. R. Samantaray, and P. K. Nayak, “Improved power management control strategy for renewable energy-based DC micro-grid with energy storage integration,” IET Gener. Transm. Distrib., vol. 13, no. 6, pp. 838–849, 2019, doi: 10.1049/iet-gtd.2018.5019.
[24] M. K. Senapati, C. Pradhan, and R. K. Calay, “A computational intelligence based maximum power point tracking for photovoltaic power generation system with small-signal analysis,” Optim. Control Appl. Methods, vol. 44, no. 2, pp. 617–636, Mar. 2023, doi: 10.1002/OCA.2798.
[25] M. K. Senapati, O. Al Zaabi, K. Al Hosani, K. Al Jaafari, C. Pradhan, and U. R. Muduli, “Advancing Electric Vehicle Charging Ecosystems With Intelligent Control of DC Microgrid Stability,” IEEE Trans. Ind. Appl., 2024, doi: 10.1109/TIA.2024.3413052.
[26] M. K. Senapati, K. Al Jaafaari, K. Al Hosani, and U. R. Muduli, “Flexible Control Approach for DC Microgrid Oriented Electric Vehicle Charging Station,” 2023 IEEE IAS Glob. Conf. Renew. Energy Hydrog. Technol., 2023, doi: 10.1109/GLOBCONHT56829.2023.10087864.
[27] P. Singh and J. S. Lather, “Design and stability analysis of a control system for a grid-independent direct current microgrid with hybrid energy storage system,” Comput. Electr. Eng., vol. 93, p. 107308, Jul. 2021, doi: 10.1016/J.COMPELECENG.2021.107308.
[28] A. K. Rajput and J. S. Lather, “Energy management of a DC microgrid with hybrid energy storage system using PI and ANN based hybrid controller,” Int. J. Ambient Energy, vol. 44, no. 1, pp. 703–718, Dec. 2023, doi: 10.1080/01430750.2022.2142285.
[29] D. Pavković, M. Lobrović, M. Hrgetić, and A. Komljenović, “A design of cascade control system and adaptive load compensator for battery/ultracapacitor hybrid energy storage-based direct current microgrid,” Energy Convers. Manag., vol. 114, pp. 154–167, Apr. 2016, doi: 10.1016/J.ENCONMAN.2016.02.005.
[30] J. W. Umland and M. Safiuddin, “Magnitude and Symmetric Optimum Criterion for the Design of Linear Control Systems: What Is It and How Does It Compare with the Others?,” IEEE Trans. Ind. Appl., vol. 26, no. 3, pp. 489–497, 1990, doi: 10.1109/28.55967.
[31] D. Vranči, S. Strmčnik, and A. Juriči, “A magnitude optimum multiple integration tuning method for filtered PID controller,” Automatica, vol. 37, no. 9, pp. 1473–1479, Sep. 2001, doi: 10.1016/S0005-1098(01)00088-7.
[32] L. Fan and E. M. Joo, “Design for auto-tuning PID controller based on genetic algorithms,” 2009 4th IEEE Conf. Ind. Electron. Appl. ICIEA 2009, pp. 1924–1928, 2009, doi: 10.1109/ICIEA.2009.5138538.
[33] T. Praveen Kumar, N. Subrahmanyam, and S. Maheswarapu, “Genetic Algorithm Based Power Control Strategies of a Grid Integrated Hybrid Distributed Generation System,” Technol. Econ. Smart Grids Sustain. Energy, vol. 6, no. 1, pp. 1–14, Dec. 2021, doi: 10.1007/S40866-021-00109-8/TABLES/2.
[34] M. Y. El-Sharkh, A. Rahman, M. S. Alam, P. C. Byrne, A. A. Sakla, and T. Thomas, “A dynamic model for a stand-alone PEM fuel cell power plant for residential applications,” J. Power Sources, vol. 138, no. 1–2, pp. 199–204, Nov. 2004, doi: 10.1016/j.jpowsour.2004.06.037.
[35] S. G. Malla and C. N. Bhende, “Voltage control of stand-alone wind and solar energy system,” Int. J. Electr. Power Energy Syst., vol. 56, pp. 361–373, Mar. 2014, doi: 10.1016/j.ijepes.2013.11.030.
[36] O. Tremblay and L. A. Dessaint, “Experimental validation of a battery dynamic model for EV applications,” World Electr. Veh. J., vol. 3, no. 2, pp. 289–298, 2009, doi: 10.3390/wevj3020289.
[37] K. B. Oldham, “A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface,” J. Electroanal. Chem., vol. 613, no. 2, pp. 131–138, Feb. 2008, doi: 10.1016/J.JELECHEM.2007.10.017.
[38] D. Somwanshi, M. Bundele, G. Kumar, and G. Parashar, “Comparison of fuzzy-PID and PID controller for speed control of DC motor using LabVIEW,” in Procedia Computer Science, 2019, pp. 252–260. doi: 10.1016/j.procs.2019.05.019.
[39] J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic controllers,” J. Dyn. Syst. Meas. Control, vol. 115, no. 2B, pp. 220–222, Jun. 1995, doi: https://doi.org/10.1115/1.2899060.
[40] C. G. A. Cohen G. H., “Theoritical considerations of retarded control,” Trans. ASME, vol. 75, no. 5, pp. 827–834, 1953, doi: https://doi.org/10.1115/1.4015451.
[41] L. Hao, C. Ma, and F. Li, “Study of adaptive PID controller based on single neuron and genetic optimization,” in 2007 8th International Conference on Electronic Measurement and Instruments, ICEMI, 2007, pp. 1240–1243. doi: 10.1109/ICEMI.2007.4350432.
[42] L. Junli, M. Jianlin, and Z. Guanghui, “Evolutionary algorithms based parameters tuning of PID controller,” in Proceedings of the 2011 Chinese Control and Decision Conference, CCDC 2011, 2011, pp. 416–420. doi: 10.1109/CCDC.2011.5968215.
[43] Y. S. Lata and S. Asha, “Comparative Study of Different Selection Techniques in Genetic Algorithm,” Int. J. Eng. Sci. Math., vol. 6, no. 3, pp. 174–180, 2017.
[44] A. A. Aly, “PID Parameters Optimization Using Genetic Algorithm Technique for Electrohydraulic Servo Control System,” Intell. Control Autom., vol. 02, no. 02, pp. 69–76, 2011, doi: 10.4236/ica.2011.22008.
[45] S. Punna, R. Mailugundla, and S. R. Salkuti, “Design, Analysis and Implementation of Bidirectional DC–DC Converters for HESS in DC Microgrid Applications,” Smart Cities 2022, Vol. 5, Pages 433-454, vol. 5, no. 2, pp. 433–454, Mar. 2022, doi: 10.3390/SMARTCITIES5020024.
[46] N. Saini and J. Ohri, “Optimal Load Frequency Control of a Multi-Area Power System with Dead Band Effect and Generation Rate Constraints,” Majlesi J. Electr. Eng., vol. 17, no. 1, pp. 81–96, Mar. 2023, doi: 10.30486/MJEE.2023.1970197.0.