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Abstract:
In diagnostic imaging, image fusion remains a significant difficulty, particularly in medical applications like
guided image operations and radiation therapy. By maintaining the pertinent details and characteristics of the
original images, medical image fusion aims to increase the precision of disease diagnosis. This study suggests
a novel methodology for MRI and CT image fusion that uses the proposed tri-scale decomposition with
Gaussian and guided filters to decompose the source images into base and detail layers. Each source image is
guided through guided filtering using Gaussian curvature as guidance. While the detail layers are fused based
on maximum energy assessed using the Krisch compass operator, the base layers are fused based on the whale
optimization method, for which the objective function is maximization of entropy, edge strength and pixel
intensity. Thirty different kinds of slices of five medical datasets from diverse sources were used to assess the
effectiveness of the proposed algorithm both visually and statistically compared to existing approaches. Based
on both objective evaluation and qualitative image analysis, the experimental results demonstrated that the
suggested strategy performed better than other widely used techniques. In comparison to the existing methods
under consideration, the quantitative results show that the proposed algorithm improves the standard deviation
by 16%, mutual information by 41%, spatial frequency by 12%, image entropy by 6.5%, edge strength of the
fused image by 37%, and structural similarity index by 31%.
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1. Introduction

Numerous sensors can now capture a wide range of images
because of the quick development of sensor technologies.
Magnetic Resonance Imaging (MRI), Positron Emission
Tomography (PET), Computed Tomography (CT), Single
Photon Emission Computed Tomography (SPECT), Green
Fluorescent Protein (GFP), and Phase Contrast (PC) imag-
ing are among the methods frequently used in multimodal
biomedical imaging. A 3D depiction of lesions and accurate
localization are made possible by MRI’s thorough cross-
sectional, sagittal, coronal, and inclined-plane views of the
human body. Higher-density tissues, such as bone, are rep-
resented as brighter areas on CT scans, which show how
various organs and tissues absorb X-rays. Because of this,
CT scans are useful for locating the dense tissues of body.

Different amounts of tracer molecules that are injected into
the circulation and correlate to different degrees of tissue
activity are detected by radiation-based imaging techniques
like PET and SPECT. Because of this, PET and SPECT
are especially helpful in locating and detecting aberrant
metabolic activity in tissues, which helps detect diseases.
GFP and PC are two often used imaging techniques in
molecular biology. PC imaging is useful for identifying
minute alterations in cellular constituents such as the mito-
chondria, cytoplasm, or nucleus because it provides insight
into the structural characteristics of cells. In contrast, the
distribution of proteins can be seen by GFP imaging. GFP
images emphasize the dispersion of proteins, but PC images
provide superior grayscale spatial resolution. Combining
these benefits is the aim of PC-GFP image fusion, which
preserves the phase contrast structural characteristics of an
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image while enabling the detection of areas with strong pro-
tein activity. By offering more precise protein localization
and in-depth information, this fusion improves biomedical
analysis. But only one kind of image can be captured by
a single sensor. By merging images from many modali-
ties, image fusion creates a composite image with better
visual quality and more detailed information. Image fusion
is therefore a very useful tool in many domains, such as ob-
ject identification, computer-aided diagnostics, and image
retrieval and classification.
Although there are many different fusion approaches, the
majority of them use multiscale and multi-resolution trans-
formation (MST-MRT) methods. Multiscale characteris-
tics can be captured using MST-MRT-based algorithms at
a variety of resolutions, and the fusion results can be en-
hanced by applying different fusion rules to different layers.
Non-Subsampled Shearlet Transform (NSST) [1, 2], Non-
Subsampled Contourlet Transform (NSCT) [3, 4], wavelet-
based techniques [5, 6], and pyramid-based approaches
[7, 8] are some of the MST-based methods that have been
developed. With flexible fusion strategies for wavelet co-
efficients, wavelet-based fusion methods use the wavelet
transform to extract multi-scale features. The fused image
is then produced by applying the inverse wavelet transform.
Despite providing flexible decomposition using different
wavelet basis functions, wavelet-based fusion techniques
often result in fuzzy fused images due to the considerable
amount of detail lost throughout the process.
The decomposition and fusing processes of pyramid-based
fusion approaches also result in the loss of detail. A more re-
cent and faster class of transformations is NSST and NSCT,
which provide multi-scale and multi-directional transforma-
tions. Although high-frequency coefficient loss during the
fusion process can still lead to fuzzy edges and blurred
features, these techniques can help fused images retain
their edges and details to some degree. Sparse represen-
tation (SR) [9], which is another popular fusion technique,
is made up of two primary parts: dictionary learning and
coefficient optimization. SR is quite flexible and can be
used for restoration, information fusion, and image denois-
ing. SR-based fusion algorithms do have certain limitations,
though. It can be difficult to choose the right dictionary
size, for instance a dictionary that is too big slows down
the fusion process, whereas a dictionary that is too tiny
yields incomplete information and less than ideal fusion
results. Furthermore, it can be challenging to select the
best optimization technique because different approaches
yield varied fusion outcomes. The speed and effective filter-
ing capabilities of filter-based algorithms have made them
prominent in imaging. A significant breakthrough was made
in 2013 with the introduction of guided image filters [10].
However, because it solely takes spatial weights into ac-
count, its capacity to maintain edges and minimize noise is
constrained. To overcome these constraints, the rolling guid-
ance filter [11] was put forth in 2014; it takes into account
both range and spatial weights and incorporates numerous
guidance processes. Consequently, the rolling guidance fil-
ter can remove small details while maintaining large-scale
structures. Deep convolutional neural networks (CNNs)

[12, 13] have been popular in imaging-related applications
in recent years. Convolution, pooling, and activation layers
are the three primary layers that make up CNNs. CNNs
can fit a wide range of data once they have been taught.
Because of their adaptability, they can be used for a variety
of challenging tasks, such as image fusion, classification,
segmentation, and super-resolution.
Recent years have seen the development of numerous meta-
heuristic optimization strategies that have been effectively
used to medical image fusion. Some noteworthy exam-
ples include Quantum-behaved Particle Swarm Optimiza-
tion (QPSO) [14], Modified Central Force Optimization
(MCFO) [15], Gray Wolf Optimization [16], Chaotic Grey
Wolf Optimization (CGWO) [17], Hybrid Genetic and Grey
Wolf Optimization (HG-GWO) [18], Particle Swarm Opti-
mization with Non-Subsampled Shearlet Transform (NSST-
PSO) [19], Binary Crow Search Optimization (BCSO) [20],
Modified Shark Smell Optimization (MSSO) [21], and
Cartoon-texture decomposition utilizing Particle Swarm
Optimization (TV-PSO) based on Total Variation (TV) [22].
Recent developments in medical image fusion and brain tu-
mor segmentation offer a context for assessing the novelty of
this work. Multi-level edge fusion is integrated into Sparse
Dynamic Volume TransUNet for brain tumor segmentation,
whereas Lightweight Medical Image Segmentation Net-
works employ multi-scale feature-guided fusion [23–27].
Nevertheless, rather than enhancing the fused image quality
directly, these works mostly concentrate on segmentation.
By improving both the base and detail layers, our approach,
on the other hand, addresses the fusion quality and allows
for more accurate diagnostic interpretations.
There are several problems with the current image fusion
techniques. The low-frequency component fusion approach,
which applies a weighted average rule, is the first limitation.
The brightness intensity of the combined image is reduced
as a result of this limitation. The second disadvantage is the
poor fusing of high-frequency coefficients. Current tech-
niques struggle to preserve specific information because
their preservation indices are too low. Important informa-
tion in the fused image may be lost as a result. This work is
motivated by the pressing need for better fusion techniques
that maintain contrast and diagnostic information. For in-
stance, perfect fusion helps define regions of interest and
detect small anomalies, which are essential in applications
such as surgical planning and tumor detection.
In this paper, we propose a novel approach that employs two
algorithms to address these limitations. The key advantages
of the recommended approach are outlined below:
1. The Whale Optimization approach (WOA) is utilized to
determine the optimal parameters for fusing base layers in
order to ensure that the fused image has improved contrast.
2. The Kirsch compass mask, which effectively preserves
the detailed information of the input images in the fused
image, is employed to give an efficient fusion rule of the
detail layers.
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2. Background

2.1 Guided image filter
Guided filter is used to produce base layers that are smooth
and noise-free. The filter suppresses noise and improves
edge preservation by using Gaussian curvature as guidance.
Both large-scale and small-scale detail layers are obtained
by subtracting the output at different points in time. The
definition of the output F at a pixel ‘i’ for a guided image P
centered at pixel ‘k’ within a square window wk is given by
equation (1)

Fi = mkPi +nk,∀i ∈ wk (1)

In this case, the linear coefficients mk and nk are found
within the window wk by minimizing the subsequent cost
function.

E(mk,nk) = ∑
i∈wk

((mkPi +nk − Ii)
2 + εm2

k) (2)

The regularization parameter in this equation is ε . The ideal
values that minimize the objective function for mk and nk
are determined as follows:

mk =

1
|w| ∑i∈wk

PiIi −µkE[Ik]

σ2
K + ε

(3)

nk = E[Ik]−mkµk (4)

In this case, the total number of pixels in wk, is represented
by |w|.
The mean and variance of the window wk are represented
by µk, and σ2

k ; the expected value of I in wk is indicated by
E[Ik]. Equation (1) is used to calculate the filtered output,
Fi, after the coefficients mk and nk have been determined.

Because overlapping windows share pixels, all overlapping
estimates of Fi are averaged to provide the final output.

Fi = m̄iPi + n̄i (5)

Section 2.2.1 describes the equations and parameters, in-
cluding a regularization term of 0.01 and a neighborhood
size of 15.

2.2 Tri-scale image decomposition

There are numerous algorithms for splitting an image into
multi scales. These algorithms have been used to various
medical image fusion methodologies. In this study, we intro-
duced the tri-scale image decomposition method. Figure 1
shows the proposed picture decomposition method. Here,
the base layer, which comprises homogenous portions of
the image, is created by applying a Gaussian filter to the
input image. The detail layers are extracted by applying
the source image to a guided filter, which uses the guid-
ance image as the Gaussian curvature of the source image.
The output of the Gaussian filter is subtracted from the out-
put of the guided filter to obtain the detail layer with large
variations, and the output of the guided filter is subtracted
from the original image to obtain the detail layer with tiny
scale changes. Targeted processing is made possible by
tri-scale decomposition, which clearly separates base lay-
ers (uniform regions) from detail layers (fine features). In
contrast to conventional two-scale techniques, this method
minimizes noise interference and preserves more fine fea-
tures. Because of the extra filtering processes, the tri-scale
decomposition is computationally demanding even though
it is successful.

Figure 1. Proposed Tri-scale image decomposition model.
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2.2.1 Algorithm of proposed tri-scale decomposition
Step 1: Let the input image to be decomposed is I1
Step 2: Base layer of I1 is obtained is filtering it using
Gaussian lowpass filter with σ = 3.

IB = Gaussian(I1,3) (6)

where Gaussian function of 2D is defined as I1 (x,y,σ ) =
1

2πσ2 exp(− x2+y2

2σ2 ) , with (x,y) representing the spatial co-
ordinates of an image.
Step 3: Obtain the Gaussian curvature of input image as
follows:
Obtain the smoothed image of I1 using equation (7)

Is = Gaussian(I1,3) (7)

Compute the first order partial derivatives of Is along x and
y directions to get gradient.

Ix =
∂ Is

∂x
and Iy =

∂ Is

∂y
(8)

Compute the second order partial derivatives of Is along x
and y directions

Ixx =
∂ 2Is

∂x2 and Iyy =
∂ 2Is

∂y2 and Ixy =
∂ 2Is

∂x∂y
(9)

Compute Gaussian curvature (K) of an image using the
following relation

K =
IxxIyy − I2

xy

(1+ I2
x + I2

y )
2 (10)

The denominator (1+ I2
x + I2

y )
2 ensures that the curvature

is scaled appropriately based on the gradients of the image.

Through the integration of data from an image’s maximum
and minimum curvatures, Gaussian curvature offers a thor-
ough assessment of surface variance. This makes it es-
pecially well-suited for capturing and maintaining subtle
transitions and details, which are essential in medical imag-
ing. In medical images, mean curvature tends to emphasize
smoother transitions and could miss structural details or
sharp edges. As a scalar approximation of curvature, the
Laplacian is less accurate in distinguishing between con-
cave and convex regions, which could result in the loss of
important information. Experimental results demonstrate
the higher edge and detail retention of the suggested strat-
egy, which reflects the balanced approach that Gaussian
curvature offers by combining comprehensiveness and pre-
cision.
Step 4: Obtain the Guided filtered image (IG) of input image
by taking Gaussian curvature (K) as guidance image.

IG = guided filter (I1,K,r,ε) (11)

where r, ε are the size of neighborhood and regularization
parameters of guided filter which are taken as 15 and 0.01.
Step 5: Compute the detail layer with small scale variations
(IDS) by subtracting the guided filtered image from original
image.

IDS = I1 − IG (12)

Step 6: Compute the detail layer with large scale variations
(IDL) by subtracting the Gaussian filtered image from guided
filtered image.

IDL = IG − IB (13)

The results of proposed novel tri-scale image decomposition
technique are illustrated in figure 2. Equations (6), (12) and
(13) are used to produce base, detail layer with small scale

Figure 2. An example of proposed tri-scale image decomposition.
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variations (IDS) , detail layer with large scale variations (IDL)
using tri-scale decomposition.

2.3 Whale optimization algorithm
The Whale Optimization Algorithm (WOA) is inspired by
the hunting behavior of humpback whales, particularly their
bubble-net feeding strategy [22]. This algorithm is used for
solving optimization problems, including image threshold-
ing. It mainly contain following steps:

2.4 Initialization
Start by randomly generating n whales within the search
space. Each whale represents a potential solution, i.e., a
set of threshold values for image segmentation. Let the ith

individual in the population is given as Xi = [Xi1, Xi2 · · ·
Xid] (where d is the dimensionality of problem which means
number of unknowns to be calculated). Each population is
initialized using equation (14).

Xi = LB+ rand(UB−LB) where i = 1 to n (14)

where LB - lower bound of image intensity, which is taken
as 0 and UB - upper bound of image intensity, which is
taken as 255. rand is a random number in the interval [0,1]

2.5 Encircling prey (exploitation)
Let Xi be the position of ith whale in the population. Then
the position update formula is given as follows:

Xi(t +1) = X∗(t)− A⃗∗ D⃗ (15)

D⃗ = |C⃗ ∗X∗(t)−Xi(t)| (16)

where C⃗ and A⃗ are coefficient vectors, t is the current itera-
tion number and t +1 is the next iteration number.

A⃗ = 2a∗ r⃗1–a (17)

C⃗ = 2r⃗2 (18)

r⃗1 and r⃗2 are the random vectors in the interval [0,1] and
‘a’ is the convergence factor. The value of ‘a’ decreases
linearly from 2 to 0 as the number of iterations increases,
the formula for calculating ‘a’ is given as a = 2− 2t

T (where
‘T ’ is the maximum number of iteration)

2.5.1 Bubble-net attacking method (exploration)
The bubble net attack mimics how whales hunt and catch
prey by employing spiral bubble nets. Equation (19) pro-
vides an updated formula for the bubble net attack’s loca-
tion.

Xi(t +1) = D⃗′ ∗ ebl ∗ cos(2πl)+Xbest(t) (19)

where b is the constant used to define the shape of the
logarithmic spiral, l is the random number between [-1,1].

2.5.2 Random search stage
Whales not only use bubble nets for foraging, but they also
conduct haphazard searches for food. Every whale updates
its position in relation to other random whales during the
random search phase, hence broadening the search area.

Equation (20) is used to express the location of the random
search stage.

Xi(t +1) = Xr(t)− A⃗∗ D⃗ (20)

D⃗ = |C⃗ ∗Xr(t)−Xi(t)| (21)

The suggested image fusion approach in the research relies
heavily on the Whale Optimization Algorithm (WOA) to
fuse the base layers of the source images. The primary
objective is to find the best fusion settings to improve image
quality, which optimizes the fusion process. The purpose of
WOA is to maximize a specified objective function that in-
corporates important metrics like entropy, edge strength and
contrast so that fused image guarantees the high information
richness and maintains edge and structural components of
the original images by preserving pixel intensity.

3. Proposed fusion approach
In this section, we suggest two novel algorithms. The first
one is suggested to combine detail layers and is based on
the Kirsch compass operator. The second algorithm uses
the tri-scale image decomposition method and the Whale
Optimization Algorithm to combine medical images.

3.1 Kirsch compass operator based fusion rule
A sharp image has significantly more energy in its detail
layers than one that is blurry. Details layers hold the fine
details of an image. As a result, certain methods, such
the NSCT transform with local energy and the empirical
wavelet decomposition with maximum local energy utilized
fusion rule based on maximum local energy. Our proposal
for a new fusion rule for detail layers is driven by the ef-
ficiency of the local energy function and is based on the
Kirsch operator. One technique for locating the edge is the
compass operator. There are several popular compass oper-
ators, including the Robinson, Prewitt, Kirsch, and isotropic
compass operators. Among them, the Kirsch operator has
proven to be the most effective of these compass operators.
Russell Kirsch originally presented the Kirsch operator in
1971. North (N), North-West (NW), West (W), South-West
(SW), South (S), South-East (SE), East (E), and North-East
(NE) are the eight directions in which this approach em-
ploys eight kernel masks as shown in figure 3.
We proposed a new fusion rule for fusing the detail layers
based on maximum energy computed using Krisch operator.

3.1.1 Algorithm for fusing the detail layers
Step 1: Take detail layers of two source images obtained
from tri-scale image decomposition as inputs. Let they are
labeled as ID1 and ID2.

Figure 3. Illustration of Krisch masks in eight directions.

2345-3796[https://doi.org/10.57647/j.mjee.2025.1901.20]

https://doi.org/10.57647/j.mjee.2025.1901.20


6/12 MJEE19 (2025) -192520 Nagasirisha et al.

Step 2: Compute the energy of detail each layer in eight
directions (E1 to E8) by applying Krisch masks.

EK(x,y) =
1

∑
t1=−1

1

∑
t2=−1

MK(t1, t2)∗ I2
D(x− t1,y− t2) (22)

for K = 1 to 8

where MK is the Krisch mask in Kth direction.
Step 3: Compute maximum energy layer from the eight
available energy layers by pixel by pixel comparison.

Emax(x,y) = max(Ei(x,y)) where i = 1 to 8 (23)

Using steps 2 and 3, compute the maximum energy layers
of detail layers of two source images by replacing I2

D with
I2
D1 and I2

D2, which are labeled as E1
max and E2

max
Step 4: Fuse the detail layers winner-takes first rule as
follows:

IDF(x,y) = ID1(x,y)) if E1
max(x,y)≥ E2

max(x,y) (24)

= ID2(x,y)) if E1
max(x,y)< E2

max(x,y)

Energy computed on detail layers using Krisch compass op-
erator in eight directions along with maximum energy layer
is depicted in figure 4. The function of the Kirsch Compass
Operator for detail fusion is to calculate edge information in
eight directional masks. In the fused image, it reduces redun-
dant information and highlights fine features by choosing
the direction with the highest energy. The Sobel operator,
on the other hand, is computationally effective and appro-
priate for edge detection; however, it mainly concentrates
on horizontal and vertical gradients, potentially leading to
the loss of diagonal edge characteristics. Similar to this,
the Canny edge detector is more computationally complex
and requires several processing steps (such as Gaussian
smoothening, gradient estimation, non-maximum suppres-
sion, and thresholding), even though it is quite precise at
identifying edges with less noise. Furthermore, weaker but

clinically relevant edges found in medical pictures may be
unintentionally excluded by Canny’s thresholding proce-
dure.

3.2 Proposed algorithm based on Tri-scale decomposi-
tion and WOA

The proposed approach of image fusion is illustrated in
figure 5 and it contain following steps:
Step 1: Read Input images I1 and I2 that needs to be fused
Step 2: Apply proposed tri-scale decomposition mechanism
and decompose the input images into coarse layers (IB1 and
IB2), detail layers with significant variations (IDL1 and IDL2)
and detail layers with small scale variations (IDS1 and IDS2).
Step 3: Fuse the detail layers using proposed fusion rule
based on Krisch compass operator (FR-KCO) energy.

Da = FR−KCO(IDS1, IDS2) (25)

Db = FR−KCO(IDL1, IDL2) (26)

Step 4: The base layer fusion is performed using a linear
combination of two base layers, controlled by the fusion
parameter β ∈ [0,1] which will be optimized.

Fused base layer, IB f = β ∗ IB1 +(1−β )∗ IB2 (27)

Step 5: Combining the fused based layer and the fused
detail layers yields the final fused image.

Fused Image, Ifused = IB f +Da +Db (28)

Step 6: Objective function (OF) is modeled as weighted
sum of edge strength, entropy and mean pixel intensity and
is used as maximization problem.

OF = β1 ∗Eedge(Ifused)+β2 ∗H(Ifused)+β3 ∗M(Ifused)
(29)

where Eedge(Ifused) indicates the edge strength of fused im-
age and is calculated using the Laplacian filter. It is defined

Figure 4. Illustration of energy layers computed using KCO on detail layer.
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Figure 5. Proposed mechanism of image fusion.

as the accumulation of the absolute values of the Laplacian-
filtered image.

Eedge(Ifused) = ∑
i

∑
j
|L(Ifused(i, j))| (30)

where (i, j)-coordinates of pixels of an image
H(Ifused) indicates entropy, which measures information
content in an image. For an image with probability of pixel
intensity distribution Pk, H(Ifused) can be calculated using
equation (31).

H(Ifused) =−
255

∑
k=0

Pk log(Pk) (31)

M(Ifused) indicates the Mean value of all pixel intensities in
the fused image. For a 256 × 256 image, M = 256 and N =
256 and M(I f used) is computed using equation (32).

M(Ifused) =
1

MN

M

∑
i=1

N

∑
j=1

Ifused(i, j) (32)

β1, β2 and β3 are the weighting factors of edge strength,
entropy and mean pixel intensity of fused image. Choosing
appropriate values for the weights β1, β2 and β3 in the ob-
jective function depends on the specific requirements and
characteristics of the image fusion task. If the primary goal
is to preserve the sharpness, structural details, and bound-
aries (e.g., in medical or satellite images), edge strength
should be prioritized. In this case, β1 is assigned higher
value. If the objective is to maximize information content or
contrast (e.g., for high-contrast imaging tasks), then entropy
should have more influence. Increasing β2 will help empha-
size contrast and fine details. To have an image with more
brightness, β3 is assigned more value. A sensitivity study
was conducted on the objective function’s weighting pa-
rameters. 0.5 (edge strength), 0.3 (entropy), and 0.2 (mean

intensity) were shown to be the ideal weights, guaranteeing
robustness across different datasets. Hence In our work, val-
ues of β1, β2 and β3 are taken as 0.5, 0.3, 0.2 respectively.
Step 7: The objective function is used to guide the WOA
in finding the optimal fusion parameter (β ), ensuring the
maximization of edge strength, entropy, and mean pixel
intensity.

βoptimal = argmax(OF(β )) (33)

Step 8: Using the βoptimal , Fused base layer relation of
equation (27) is modified as follows:

IB f optimal = βoptimal ∗ IB1 +(1−βoptimal)∗ IB2 (34)

Step 9: From the optimal fused base layer, Optimal fused
image is obtained using equation (35).

Ifusedoptimal = IB f optimal +Da +Db (35)

4. Results and discussion

4.1 Subjective analysis
The proposed method was implemented and evaluated us-
ing an Intel Core i3 CPU running at 2.4 GHz with 8 GB of
RAM and Windows 10 64-bit operating system. We made
use of MATLAB 2020a, which has built-in toolboxes for
image processing, optimization, and programming. Five
MRI and CT scan datasets related to brain diseases, des-
ignated ”Dataset-I” through ”Dataset-V,” are selected to
evaluate the effectiveness of the proposed image fusion
method. Sagittal perspective images of the brain and skull
(Dataset-IV), a brain with cerebellar metastases (Dataset-
V), a patient’s brain bleeding to death (Dataset-II), a brain
with neoplastic cancer (Dataset-III), and a healthy brain
(Dataset-I) are all included in these datasets [28]. Each im-
age has 256 by 256 pixels and is made up of 256 grayscale
levels. The datasets are sourced from [29] and are avail-
able at [http://www.med.harvard.edu/aanlib/home.html], the
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website for the Benchmark Brain Atlas. The fusion re-
sults for Dataset-I are shown in figure 6, where CT and
MRI source images are shown in Figs. 6(a) and (b). The
results of several fusion strategies, such as Sparse Repre-
sentation (SR), Discrete Wavelet Transform (DWT), Non-
Subsampled Shearlet Transform (NSST), Convolutional
Neural Network (CNN), guided filter approach and the pro-
posed method are displayed from figs. 6(c) through (h).
There are slight variations in how detail and contrast are
maintained between the modalities, despite the fact that the
connective tissue details acquired by MRI and the skeletal
structure from CT are typically conserved. A yellow rectan-
gle draws attention to the differences between the different
fusion procedures. The emphasized region of the fused pic-
tures, as seen in Figs. 6(c) and (d), exhibits a rather weak
brightness.
Certain information from the MRI scan is usually lost, even
though the CT image information is usually retained in the
NSST and CNN methods as observed in Figs. 6(e) and (f).
The visual clarity of the guided filter is comparable to our
proposed method that can preserve all the features of the
original image. As seen in Figs. 6(g)-(h), the intensity of the
guided filter technique is lower than that of our approach.
The second set of medical images is called Dataset-II, and
the fusion results are displayed in Fig. 7. The application of
DWT leaves hard tissues containing bone structures, with
minimal information and visual impact, as seen in Fig. 7(d).
Fig. 7(c) similarly illustrates this low intensity problem. The

outcomes of the remaining three currently used approaches
did not differ substantially. Since our approach is unable to
discern between the intensity fluctuations of pixels in the CT
scan on a row-by-row and column-by-column basis, in con-
trast to the guided filter, the CT information is not as well
retained in this situation. The proposed methodology pro-
duced a fused image with great contrast and full retention
of soft tissue information, as illustrated in Fig. 8(h), which
compares the suggested method with alternative compari-
son techniques using a third clinical data set (Dataset-III).
Figures 9 and 10 display the fusion results of Datasets IV
and V, where the SR, DWT and NSST methods provide in-
sufficient information on the bone structure and lose details
of the original images. The recommended method produces
results with more contrast, sharper edges, and finer details.
To assess fusion performance, both qualitative and quanti-
tative evaluation criteria must be used. This research uses
quantitative assessment measures, including Standard Devi-
ation (SD), Mutual Information (MI), Image Entropy (H),
Spatial Frequency (SF), Mean Structural Similarity Index
Measure (MSSIM), and Edge Strength (QAB/F), to evaluate
the efficacy of several fusion procedures [30].
The quantitative assessments employing image evaluation
metrics are summarized in Table 2. Mathematical formu-
lation of these metrics are presented in Table 1. The best
outcomes are presented in bold. The proposed methodology
for fusing image data performed much better in terms of MI,
H, QAB/F, and MSSIM, while the other metrics are hardly

Figure 6. Fusion results of Dataset-I (CT-MRI of healthy brain).

Figure 7. Fusion results of Dataset-II (CT-MRI of Fatal stroke).

Figure 8. Fusion results of Dataset-III (CT-MRI of neoplastic tumor).
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Figure 9. Fusion results of Dataset-IV (CT-MRI of brain skull).

Figure 10. Fusion results of Dataset-V (CT-MRI of Cerebella metastasis).

Table 1. Advantages and disadvantages of GFM converter control methodologies.

Performance Metric Mathematical formulae

Average Pixel Intensity (API)
For an image f (i, j) of size MXN, API = 1

MN ∑
M
i=1 ∑

N
j=1 f (i, j)

Higher value of API produces an image with more contrast.

Standard Deviation (SD)
It is a metric for the level of deviation in a mean collection of image data.

SD =
√

1
MN ∑

M
i=1 ∑

N
j=1( f (i, j)−API)2

Image Entropy (H)

It estimates information content in an image. Large value of H indicates an
image with more information. For an image with probability of pixel
intensity distribution Pk, entropy is calculated as follows:
H = -∑255

k=0 Pk log(Pk)

Mutual Information (MI)

For two source images A,B and fused image F , Mutual information is
given as MIAB

F = MI(A,F)+ MI(B,F)
MI(A,F)=∑z∈Z ∑y∈Y p(A,F) log2

p(A,F)
p(A)p(F)

MI(B,F)=∑z∈Z ∑y∈Y p(B,F) log2
p(B,F)

p(B)p(F)

The quantity of activity level data that is transmitted from the
source images into the fused image is measured.

Spatial Frequency (SF)

It measures an resolution level of an image. Higher value is desired.
SF(i, j)=

√
|RF(i, j)|2 + |CF(i, j)|2

RF(i, j)=
√

1
MxN ∑

M
i=2 ∑

N
j=2[I(i, j)− I(i, j−1)]2

CF(i, j)=
√

1
MxN ∑

M
i=2 ∑

N
j=2[I(i, j)− I(i−1, j)]2

Edge Strength ((QAB/F))

QAB/F represents the degree to which the edge information from the input
images transitions into the fused image. The evaluation is as follows:

QAB/F = ∑
M
i=1 ∑

N
j=1(QAF(i, j)WA(i, j)+QBF(i, j)WB(i, j))

∑
M
i=1 ∑

N
j=1(WA(i, j)+WB(i, j))

Mean Structural Similarity Index Measure (MSSIM)

SSIM(A,F) = (2µAµF+C1)(2σAF+C2)
(µ2

A+µ2
F+C1)(σ 2

A+σ 2
F+C2)

The variance of A is represented by
σ2

A , the variance of F by σ2
F ,

the covariance of A and F by σAF , and the mean of A and F by µA and µF ,
respectively. The usage of two constants, C1 and C2, prevents the
instability that can arise from a division with a value close to zero. SSIM
readings are a number between 0 and 1, where 1 denotes exceptional
quality and 0 denotes poor quality. Less distortion is present in the fused
image when the MSSIM score is greater.
MSSIM = SSIM(A,F)+SSIM(B,F)

2
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Table 2. Statistical parameters of proposed approach for multimodal datasets.

Dataset type Method
Standard Deviation

(SD)
Mutual Information

(MI)
Spatial Frequency

(SF)
Image Entropy

(H)
Edge Strength

(QAB/F)
MSSIM

Dataset-I

SR 30.82 2.57 11.68 5.80 0.5756 0.5122
DWT 44.71 1.92 17.13 6.17 0.6073 0.5246
NSST 44.16 2.05 17.05 6.20 0.6816 0.5366
CNN 52.89 2.43 17.40 6.07 0.7184 0.5518

Guided filter
(GF)

52.89 2.31 16.97 6.52 0.7210 0.5634

Proposed 57.22 5.63 20.21 6.73 0.8207 0.9938

Dataset-II

SR 51.40 3.42 17.76 4.94 0.5178 0.8248
DWT 55.73 3.19 22.01 5.19 0.5051 0.7915
NSST 54.56 3.34 20.95 5.12 0.5887 0.8160
CNN 59.92 3.34 21.93 4.89 0.5888 0.8146

Guided filter
(GF)

55.68 3.79 20.25 5.20 0.6028 0.8207

Proposed 62.50 3.99 24.58 4.86 0.8040 0.9940

Dataset-III

SR 61.50 3.18 20.19 4.52 0.5157 0.7640
DWT 66.53 3.12 25.11 4.86 0.5473 0.7489
NSST 65.89 3.20 24.52 4.88 0.5971 0.7733
CNN 69.60 3.38 25.99 4.39 0.6042 0.7775

Guided filter
(GF)

69.63 3.34 24.39 5.05 0.6119 0.7762

Proposed 72.81 4.39 26.38 5.17 0.8009 0.9831

Dataset-IV

SR 69.84 3.33 28.98 7.56 0.4964 0.6532
DWT 76.80 3.08 35.94 7.41 0.4699 0.6263
NSST 79.49 3.23 34.60 7.44 0.5349 0.6628
CNN 79.84 3.26 32.85 7.31 0.5171 0.6462

Guided filter
(GF)

75.36 3.52 34.30 7.60 0.5510 0.6602

Proposed 85.97 5.22 37.03 7.76 0.8250 0.9847

Dataset-V

SR 51.71 3.19 17.58 5.24 0.4823 0.7427
DWT 55.72 2.80 22.28 5.36 0.4573 0.7098
NSST 53.79 2.94 21.47 5.44 0.5226 0.7311
CNN 61.11 3.18 23.06 4.83 0.5214 0.7448

Guided filter
(GF)

66.98 3.23 21.56 5.60 0.5330 0.7342

Proposed 74.64 4.63 25.98 5.78 0.8625 0.9899

comparable, suggesting that it can maintain saliency data
and edge features. Figure 11 depicts a visual comparison
of numerous methodologies based on the average values of
four essential relevant assessment metrics (MI, H, MSSIM,
and QAB/F) measured over thirty datasets.

4.2 Result analysis
The experimental findings show that the Sparse Represen-
tation (SR) and DWT techniques perform poorly in fusion
when there is little intensity and insufficient bone struc-
ture information. While NSST, guided filter and CNN ap-
proaches have a noticeable visual impact, they does not

completely retain the edge and texture of the yellow high-
lighted zone. Furthermore, the Guided Filter technique
failed to sustain color in the MR-SPECT & MR-PET fusion
circumstances. However, the proposed method preserves
saliency traits, which provide the most information about
soft tissue and bone anatomy, resulting in crisper and more
colorful fused images. Standard deviation (SD), Image en-
tropy (H) and spatial frequency (SF) are three of the six
metrics taken into consideration. These metrics are widely
used to evaluate the quality of fused images and show the
intrinsic characteristics of a single image. The entropy repre-
sents the fused image’s data entropy. The image is rendered

Figure 11. Comparative analysis of average values of quality evaluation metrics.
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clear by the SF. The combined image’s contrast is described
by the SD. While a higher contrast makes it easier to per-
ceive the fused image, a larger SD causes the image’s grey
level dispersion to be more widely spread. Some existing
techniques include duplicate elements, which increase the
value for each of these metrics. This work introduces three
new measures to allow for a more full objective examina-
tion: QAB/F, MI and SSIM. The MI measures the similarity
of the intensity distributions of the connected image pairs
while also estimating the amount of information extracted
from the source images. The MI value grows as more data
is transferred from the original images, as well as the clar-
ity and activity level of the combined image. The MSSIM
determines the level of distortion in the composite image.
QAB/F additionally evaluates the amount of edge informa-
tion transferred from the primary images to the fused image.
With the addition of more edge information, such as texture
& bone structure, this parameter becomes more important
for clinical image fusion. This is because it allows for ac-
curate clinical assessment of edges. A statistical analysis
of results of both existing as well as proposed techniques
revealed that the proposed mechanism enhances standard
deviation by 16%, mutual information by 41%, spatial fre-
quency by 12%, image entropy by 6.5%, edge details of the
fused image by 37% and structural similarity index by 31%,
when compared to existing methods. This demonstrates that
the fused image was minimally distorted and contained an
acceptable amount of soft tissue details, prominent features,
bone structures, and important edge details.

5. Conclusion
The proposed study addresses shortcomings in current
fusion algorithms by introducing a novel approach to MRI
and CT image fusion that successfully blends tri-scale
image decomposition, the Whale Optimization Algorithm
(WOA), and the Krisch compass operator. The technique
assures effective fusion and maintains important features
by breaking down source images into basic and detail
layers. In order to provide superior edge preservation
and feature retention, the WOA maximizes entropy, edge
strength, and pixel intensity while fusing the base layer.
At the same time, an energy maximization method based
on the Krisch compass operator is employed to fuse the
detail layers. Numerous tests showed that the suggested
approach produces fused images with sharper edges,
higher contrast, and improved representation of soft tissue
and bone structures, outperforming current methods in
terms of quality assessment metrics.This work could
be expanded in the future by adding more modalities,
integrating deep learning for parameter optimization,
creating real-time clinical applications, creating adaptive
objective functions for particular diagnostic tasks, and
investigating novel evaluation metrics that are more in
line with clinical requirements, like boundary sharpness
and lesion detectability. With these improvements, the
usefulness of suggested framework and adaptability may be
further increased, expanding its potential for patient care
and clinical diagnostics.
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