Document Type : Reseach Article

Authors

1 Department of Electrical Engineering, Razi University, Kermanshah, Iran.

2 Pooya Power Knowledge Enterprise, Tehran, Iran.

3 Department of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham, UK.

4 Department of Physics, Faculty of Science, Lorestan University, Khorramabad, Iran.

5 Department of Science, University of British Columbia, Vancouver, Canada.

10.30486/mjee.2024.710185

Abstract

Unbalanced voltage is a prevalent issue in power networks that can have significant adverse effects. Voltage unbalance arises when the three-phase voltages in the power system differ in magnitude or phase angle, leading to waveform distortion. This imbalance can increase energy losses, thereby elevating costs for energy consumers. Additionally, it can negatively impact the power factor, which measures the efficiency of power usage in the system. To improve power
quality and mitigate the detrimental effects, this paper proposes an innovative control strategy using a Static Synchronous Compensator (STATCOM) based on the multivariable filter (MVF) method within a utility-connected microgrid. The MVF configuration effectively separates the positive and negative components, which are then utilized in control loops. First, the voltage control loop builds the references for current control loop. Then, the current control unit sends the appropriate commands to the STATCOM in order compensate the votage amplitude. The primary advantage of the proposed strategy is its precision in reference tracking and ease of implementation. The MVF-based STATCOM can compensate for voltage imbalances by injecting reactive power and regulating the DC-link voltage. The results demonstrate that the proposed control structure effectively eliminates negative components and enhances the voltage profile of the studied microgrid.

Keywords

  1. A. Muhtadi, D. Pandit, N. Nguyen & J. Mitra, “Distributed energy resources based microgrid: Review of architecture, control, and reliability,” IEEE Transactions on Industry Applications, 57(3):2223-223, 2021. DOI: https://doi.org/10.1109/TIA.2021.306532.
  2. V. Nazari, M. H. Mousavi & H. Moradi CheshmehBeigi, “Reduction of Low Frequency Oscillations Using an Enhanced Power System Stabilizer via Linear Parameter Varying Approach,” Journal of Renewable Energy and Environment, 9(2):59-74, 2022. DOI: https://doi.org/10.30501/jree.2021.306909.1265.
  3. K. Prakash, A. Lallu, F. R. Slam & K. A. Mamun, “Review of power system distribution network architecture,” In 2016 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), 124-130, 2016. DOI: https://doi.org/10.1109/APWC-on-CSE.2016.030.
  4. M. Ahmadi, M. H. Mousavi & H. Moradi, “Enhancing Resiliency in Standalone Microgrid Control System Using Consensus Algorithm Integrated with Multivariable Filter,” In 2023 9th International Conference on Control, Instrumentation and Automation (ICCIA), 1-6, 2023. DOI: https://doi.org/10.1109/ICCIA61416.2023.10506324.
  5. M. H. Mousavi & H. Moradi, “Simultaneous compensation of distorted DC bus and AC side voltage using enhanced virtual synchronous generator in Islanded DC microgrid,” International Journal of Electronics, 1-26, 2023. DOI: https://doi.org/10.1080/00207217.2023.2278440.
  6. M. Soshinskaya, W. H. Crijns-Graus, J. M. Guerrero & J. C. Vasquez, “Microgrids: Experiences, barriers and success factors,” Renewable and sustainable energy reviews, 40:659-672, 2014. DOI: https://doi.org/10.1016/j.rser.2014.07.198.
  7. M. H. Mousavi, H. M. CheshmehBeigi & M. Ahmadi, “A DDSRF-based VSG control scheme in islanded microgrid under unbalanced load conditions,” Electrical Engineering, 105(6):4321-4337, 2023. DOI: https://doi.org/10.1007/s00202-023-01941-0.
  8. M. Ahmadi, M. H. Mousavi, H. Moradi & K. Rouzbehi, “A new approach for harmonic detection based on eliminating oscillatory coupling effects in microgrids,” IET Renewable Power Generation, 17(14):3536-3553, 2023. DOI: https://doi.org/10.1049/rpg2.12867.
  9. D. R. Nair, M. G. Nair & T. Thakur, “A smart microgrid system with artificial intelligence for power-sharing and power quality improvement,” Energies, 15(15):5409, 2022. DOI: https://doi.org/10.3390/en15155409.
  10. N. Gupta, A. Swarnkar & K. R. Niazi, “Distribution network reconfiguration for power quality and reliability improvement using Genetic Algorithms,” International Journal of Electrical Power & Energy Systems, 54:664-671, 2014. DOI: https://doi.org/10.1016/j.ijepes.2013.08.016.
  11. J. He, Y. W. Li & F. Blaabjerg, “Flexible microgrid power quality enhancement using adaptive hybrid voltage and current controller,” IEEE Transactions on Industrial Electronics, 61(6):2784-2794, 2013. DOI: https://doi.org/10.1109/TIE.2013.2276774.
  12. M. S. Mahmoud, N. M. Alyazidi & M. I. Abouheaf, “Adaptive intelligent techniques for microgrid control systems: A survey,” International Journal of Electrical Power & Energy Systems, 90:292-305, 2017. DOI: https://doi.org/10.1016/j.ijepes.2017.02.008.
  13. P. Ray & S. R. Salkuti, “Smart branch and droop controller based power quality improvement in microgrids,” International Journal of Emerging Electric Power Systems, 21(6), 2020. DOI: https://doi.org/10.1515/ijeeps-2020-0094.
  14. B. Keyvani-Boroujeni, B. Fani, G. Shahgholian & H. H. Alhelou, “Virtual impedance-based droop control scheme to avoid power quality and stability problems in VSI-dominated microgrids,” IEEE Access, 9:144999-145011, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3122800.
  15. L. A. Paredes, B. R. Serrano & M. G. Molina, “FACTS Technology to Improve the Operation of Resilient Microgrids,” In 2019 FISE-IEEE/CIGRE Conference-Living the energy Transition (FISE/CIGRE), 1-7, 2019. DOI: https://doi.org/10.1109/FISECIGRE48012.2019.8984960.
  16. J. Qi, W. Zhao & X. Bian, “Comparative study of SVC and STATCOM reactive power compensation for prosumer microgrids with DFIG-based wind farm integration,” IEEE Access, 8:209878-209885, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.3033058.
  17. W. Aslam, Y. Xu, A. Siddique & F. M. Albatsh, “Implementation of series facts devices SSSC and TCSC to improve power system stability,” In 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2291-2297, 2018. DOI: https://doi.org/10.1109/ICIEA.2018.8398092.
  18. O. J. Ewaoche & N. Nwulu, “Design and Simulation of UPFC and IPFC for Voltage Stability under a Single Line Contingency: A Comparative Study,” In Proceedings of the International Conference on Industrial Engineering and Operations Management, 27-29, 2018. DOI: https://doi.org/10.46254/NA03.20180373.
  19. F. Li, M. Yu, Z. Li, J. Yuan, X. Yang, W. Zhang, ... & C. Zou, “Summary of research on phase shifting transformer,” In Conference Proceedings of 2021 International Joint Conference on Energy, Electrical and Power Engineering: Component Design, Optimization and Control Algorithms in Electrical and Power Engineering Systems, 103-110, 2022. DOI: https://doi.org/10.1007/978-981-19-3171-0_9.
  20. B. Vyas, R. P. Maheshwari & B. Das, “Evaluation of artificial intelligence techniques for fault type identification in advanced series compensated transmission lines,” IETE Journal of Research, 60(1):85-91, 2014. DOI: https://doi.org/10.1080/02564602.2014.893767.
  21. P. Rao, M. L. Crow & Z. Yang, “STATCOM control for power system voltage control applications,” IEEE Transactions on power delivery, 15(4):1311-1317, 2000. DOI: https://doi.org/10.1109/61.891520.
  22. R. Sadiq, Z. Wang, C. Y. Chung, C. Zhou & C. Wang, “A review of STATCOM control for stability enhancement of power systems with wind/PV penetration: Existing research and future scope,” International Transactions on Electrical Energy Systems, 31(11):e13079, 2021. DOI: https://doi.org/10.1002/2050-7038.13079.
  23. Y. Lee & H. Song, “A reactive power compensation strategy for voltage stability challenges in the Korean power system with dynamic loads,” Sustainability, 11(2):326, 2019. DOI: https://doi.org/10.3390/su11020326.
  24. Y. Han, H. Li, P. Shen, E. A. A. Coelho & J. M. Guerrero, “Review of active and reactive power sharing strategies in hierarchical controlled microgrids,” IEEE Transactions on Power Electronics, 32(3):2427-2451, 2016. DOI: https://doi.org/10.1109/TPEL.2016.2569597
  25. E. Hashemzadeh, M. Khederzadeh, M. R. Aghamohammadi & M. Asadi, “A robust control for D-STATCOM under variations of DC-link capacitance,” IEEE Transactions on Power Electronics, 36(7):8325-8333, 2020. DOI: https://doi.org/10.1109/TPEL.2020.3026092.
  26. H. M. El Zoghby & H. S. Ramadan, “Isolated microgrid stability reinforcement using optimally controlled STATCOM,” Sustainable Energy Technologies and Assessments, 50:101883, 2022. DOI: https://doi.org/10.1016/j.seta.2021.101883.
  27. N. K. Saxena, W. D. Gao, A. Kumar, S. Mekhilef & V. Gupta, “Frequency regulation for microgrid using genetic algorithm and particle swarm optimization tuned STATCOM,” International Journal of Circuit Theory and Applications, 50(9):3231-3250, 2022. DOI: https://doi.org/10.1002/cta.3319.
  28. S. Ranjan, D. C. Das, N. Sinha, A. Latif, S. S. Hussain & T. S. Ustun, “Voltage stability assessment of isolated hybrid dish-stirling solar thermal-diesel microgrid with STATCOM using mine blast algorithm,” Electric Power Systems Research, 196:107239, 2021. DOI: https://doi.org/10.1016/j.epsr.2021.107239.
  29. M. G. Yenealem, L. M. Ngoo, D. Shiferaw & P. Hinga, “Management of voltage profile and power loss minimization in a grid-connected microgrid system using fuzzy-based STATCOM controller,” Journal of Electrical and Computer Engineering, 1-13, 2020. DOI: https://doi.org/10.1155/2020/2040139.
  30. M. M. Hashempour & T. L. Lee, “Integrated power factor correction and voltage fluctuation mitigation of microgrid using STATCOM,” In 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia, 1215-1219, 2017. DOI: https://doi.org/10.1109/IFEEC.2017.7992215.
  31. Q. Song & W. Liu, “Control of a cascade STATCOM with star configuration under unbalanced conditions,” IEEE Transactions on Power electronics, 24(1):45-58, 2009. DOI: https://doi.org/10.1109/TPEL.2008.2009172.
  32. Z. Miao, L. Piyasinghe, J. Khazaei & L. Fan, “Dynamic phasor-based modeling of unbalanced radial distribution systems,” IEEE transactions on power systems, 30(6):3102-3109, 2015. DOI: https://doi.org/10.1109/TPWRS.2014.2388154.
  33. Z. Shuai, Y. Peng, J. M. Guerrero, Y. Li & Z. J. Shen, “Transient response analysis of inverter-based microgrids under unbalanced conditions using a dynamic phasor model,” IEEE Transactions on Industrial Electronics, 66(4):2868-2879, 2018. DOI: https://doi.org/10.1109/TIE.2018.2844828.
  34. G. Tian, S. Wang & G. Liu, “Power quality and transient stability improvement of wind farm with fixed-speed induction generators using a STATCOM,” In 2010 International Conference on Power System Technology, 1-6, 2010. DOI: https://doi.org/10.1109/POWERCON.2010.5666419.
  35. M. H. Mousavi & H. M. CheshmehBeigi, “A brief review of methods for improving the performance of virtual synchronous generators under unbalnced conditions,” In 2022 30th international conference on electrical engineering (ICEE), 630-635, 2022. DOI: https://doi.org/10.1109/ICEE55646.2022.9827134.
  36. C. R. Amaya-Rodríguez & C. C. Chu, “Laboratory-scaled STATCOM for unbalanced voltage sag mitigation by decoupled double synchronous reference current controllers,” In 2013 IEEE International Symposium on Industrial Electronics, 1-6, 2013. DOI: https://doi.org/10.1109/ISIE.2013.6563617.
  37. M. Ahmadi, P. Sharafi, M. H. Mousavi & F. Veysi, “Power quality improvement in microgrids using statcom under unbalanced voltage conditions,” International Journal of Engineering, 34(6):1455-1467, 2021. DOI: https://doi.org/10.5829/ije.2021.34.06c.09
  38. A. Meligy, T. Qoria, & I. Colak, “Assessment of Sequence Extraction Methods Applied to MMC-SDBC STATCOM under Distorted Grid Conditions,” IEEE Transactions on Power Delivery, 37(6):4923-4932, 2022. DOI: https://doi.org/10.1109/ISIE.2013.6563617.
  39. A. Yazdani & R. Iravani, “Voltage-sourced converters in power systems: modeling, control, and applications,” John Wiley & Sons, 2010. DOI: https://doi.org/10.1002/9780470551578.