[1] G. A. Marin, "Network security basics," *IEEE Secur. Privacy*, vol. 3, no. 6, pp. 68–72, Nov. 2005, DOI: 10.1109/MSP.2005.153.
[2] S. Aljawarneh, M. Aldwairi, and M. B. Yassein, "Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model," *J. Comput. Sci.*, vol. 25, pp. 152–160, 2018, DOI: 10.1016/j.jocs.2017.04.009.
[3] D. E. Denning, "An intrusion-detection model," *IEEE Trans. Softw. Eng.*, vol. SE-13, no. 2, pp. 222–232, Feb. 1987, DOI: 10.1016/j.procs.2016.09.346.
[4] S.-J. Horng et al., "A novel intrusion detection system based on hierarchical clustering and support vector machines," *Expert Syst. Appl.*, vol. 38, no. 1, pp. 306–313, 2011, DOI: 10.5815/ijcnis.2016.01.07.
[5] E. De la Hoz, E. De La Hoz, A. Ortiz, J. Ortega, and B. Prieto, "PCA filtering and probabilistic SOM for network intrusion detection," *Neurocomputing*, vol. 164, pp. 71–81, 2015, DOI: 10.1016/j.neucom.2014.09.083.
[6] I. S. Thaseen and C. A. Kumar, "Intrusion detection model using fusion of chi-square feature selection and multi class SVM," *J. King Saud Univ.-Comput. Inf. Sci.*, vol. 29, no. 4, pp. 462–472, 2017, DOI: 10.1016/j.procs.2019.11.170.
[7] M. V. Mahoney and P. K. Chan, "Learning rules for anomaly detection of hostile network traffic," in *Proc. 3rd IEEE Int. Conf. Data Mining*, 2003, DOI: 10.1109/ICDM.2003.1250987.
[8] C. Sinclair, L. Pierce, and S. Matzner, "An application of machine learning to network intrusion detection," in *Proc. 15th Annu. Comput. Secur. Appl. Conf. (ACSAC'99)*, 1999, DOI: 10.1016/j.gltp.2021.08.017.
[9] Z. Chiba, N. Abghour, K. Moussaid, A. El Omri, and M. Rida, "A novel architecture combined with optimal parameters for back propagation neural networks applied to anomaly network intrusion detection," *Comput. Secur.*, vol. 75, pp. 36–58, 2018, DOI: 10.1016/j.cose.2018.01.023.
[10] A. F. M. Agarap, "A neural network architecture combining gated recurrent unit (GRU) and support vector machine (SVM) for intrusion detection in network traffic data," in *Proc. 2018 10th Int. Conf. Mach. Learn. Comput.*, 2018, DOI: 10.48550/arXiv.1709.03082.
[11] M. M. Rathore et al., "Intrusion detection using decision tree model in high-speed environment," in *Proc. 2018 Int. Conf. Soft-Comput. Netw. Secur. (ICSNS)*, 2018, DOI: 10.1109/ICSNS.2018.8573631.
[12] B. Cui, S. He, and H. Jin, "Multi-layer anomaly detection for Internet traffic based on data mining," in *Proc. 2015 9th Int. Conf. Innov. Mobile Internet Serv. Ubiquitous Comput.*, Jul. 2015, DOI: 10.1109/IMIS.2015.43.
[13] P. A. A. Resende and A. C. Drummond, "A survey of random forest based methods for intrusion detection systems," *ACM Comput. Surv.*, vol. 51, no. 3, pp. 1–36, 2018, DOI: 10.1145/3178582.
[14] H. Feng, M. Li, X. Hou, and Z. Xu, "Study of network intrusion detection method based on SMOTE and GBDT," *Appl. Res. Comput.*, vol. 34, no. 12, pp. 3745–3748, 2017, DOI: 10.1145/3290480.3290505.
[15] J. Yang, J. Deng, S. Li, and Y. Hao, "Improved traffic detection with support vector machine based on restricted Boltzmann machine," *Soft Comput.*, vol. 21, no. 11, pp. 3101–3112, 2017, DOI: 10.1007/s00500-015-1994-9.
[16] S. A. Aljawarneh and R. Vangipuram, "GARUDA: Gaussian dissimilarity measure for feature representation and anomaly detection in Internet of things," *J. Supercomput.*, vol. 76, no. 6, pp. 4376–4413, 2020, DOI: 10.1145/3460620.3460757.
[17] J.-Y. Jiang, R.-J. Liou, and S.-J. Lee, "A fuzzy self-constructing feature clustering algorithm for text classification," *IEEE Trans. Knowl. Data Eng.*, vol. 23, no. 3, pp. 335–349, Mar. 2010, DOI: 10.1109/TKDE.2010.122.
[18] D. J. Weller-Fahy, B. J. Borghetti, and A. A. Sodemann, "A survey of distance and similarity measures used within network intrusion anomaly detection," *IEEE Commun. Surv. Tutor.*, vol. 17, no. 1, pp. 70–91, 2014, DOI: 10.1109/COMST.2014.2336610.
[19] W.-C. Lin, S.-W. Ke, and C.-F. Tsai, "CANN: An intrusion detection system based on combining cluster centers and nearest neighbors," *Knowl.-Based Syst.*, vol. 78, pp. 13–21, 2015, DOI: 10.1016/j.knosys.2015.01.009.
[20] R. K. Gunupudi, M. Nimmala, N. Gugulothu, and S. R. Gali, "CLAPP: A self constructing feature clustering approach for anomaly detection," *Future Gener. Comput. Syst.*, vol. 74, pp. 417–429, 2017, DOI: 10.1016/j.future.2016.12.040.
[21] A. Nagaraja, B. Uma, and R. k. Gunupudi, "UTTAMA: An intrusion detection system based on feature clustering and feature transformation," *Found. Sci.*, vol. 25, no. 4, pp. 1049–1075, 2020, DOI: 10.1007/s10699-019-09589-5.
[22] F. Ullah, S. Ullah, G. Srivastava, and J. C.-W. Lin, "IDS-INT: Intrusion detection system using transformer-based transfer learning for imbalanced network traffic," *Digit. Commun. Netw.*, vol. 10, no. 1, pp. 190–204, 2024, DOI: 10.1016/j.dcan.2023.03.008.
[23] Z. Wu, H. Zhang, P. Wang, and Z. Sun, "RTIDS: A robust transformer-based approach for intrusion detection system," *IEEE Access*, vol. 10, pp. 64375–64387, 2022, DOI: 10.1109/ICACCS60874.2024.10717109.
[24] Y. Liu and L. Wu, "Intrusion detection model based on improved transformer," *Appl. Sci.*, vol. 13, no. 10, p. 6251, 2023, DOI: 10.3390/app13106251.
[25] Z. Xiang and X. Li, "RETRACTED ARTICLE: Fusion of transformer and ML-CNN-BiLSTM for network intrusion detection," *EURASIP J. Wireless Commun. Netw.*, vol. 2023, no. 1, p. 71, 2023, DOI: 10.1186/s13638-023-02279-8.
[26] V. Dutta, M. Pawlicki, R. Kozik, and M. Choraś, "Unsupervised network traffic anomaly detection with deep autoencoders," *Logic J. IGPL*, vol. 30, no. 6, pp. 912–925, 2022, DOI: 10.1093/jigpal/jzac002.
[27] K. He, W. Zhang, X. Zong, and L. Lian, "Network intrusion detection based on feature image and deformable vision transformer classification," *IEEE Access*, vol. 12, pp. 44335–44350, 2024, DOI: 10.1109/ACCESS.2024.3376434.
[28] T. Jiang, X. Fu, and M. Wang, "BBO-CFAT: Network intrusion detection model based on BBO algorithm and hierarchical transformer," *IEEE Access*, 2024, DOI: 10.1109/ACCESS.2024.3386405.
[29] Z. Long, H. Yan, G. Shen, X. Zhang, H. He, and L. Cheng, "A transformer-based network intrusion detection approach for cloud security," *J. Cloud Comput.*, vol. 13, no. 1, p. 5, 2024, DOI: 10.1186/s13677-023-00574-9.
[30] H. Chen, G.-R. You, and Y.-R. Shiue, "Hybrid intrusion detection system based on data resampling and deep learning," *Int. J. Adv. Comput. Sci. Appl.*, vol. 15, no. 2, 2024, DOI: 10.14569/IJACSA.2024.0150214.
[31] F. S. Melícias et al., "GPT and interpolation-based data augmentation for multiclass intrusion detection in IIoT," *IEEE Access*, 2024, DOI: 10.1109/ACCESS.2024.3360879.
[32] A. Patcha and J.-M. Park, "An overview of anomaly detection techniques: Existing solutions and latest technological trends," *Comput. Netw.*, vol. 51, no. 12, pp. 3448–3470, 2007, DOI: 10.1016/j.comnet.2007.02.001.
[33] R. Ul Islam, M. S. Hossain, and K. Andersson, "A novel anomaly detection algorithm for sensor data under uncertainty," *Soft Comput.*, vol. 22, no. 5, pp. 1623–1639, 2018, DOI: 10.1007/s00500-016-2425-2.
[34] H. Saeedi Emadi and S. M. Mazinani, "A novel anomaly detection algorithm using DBSCAN and SVM in wireless sensor networks," *Wireless Pers. Commun.*, vol. 98, no. 2, pp. 2025–2035, 2018, DOI: 10.1007/s11277-017-4961-1.
[35] K. Agrawal, T. Alladi, A. Agrawal, V. Chamola, and A. Benslimane, "NovelADS: A novel anomaly detection system for intra-vehicular networks," *IEEE Trans. Intell. Transp. Syst.*, vol. 23, no. 11, pp. 22596–22606, Nov. 2022, DOI: 10.1109/TITS.2022.3146024.
[36] H. Sarmadi and A. Karamodin, "A novel anomaly detection method based on adaptive Mahalanobis-squared distance and one-class kNN rule for structural health monitoring under environmental effects," *Mech. Syst. Signal Process.*, vol. 140, p. 106495, 2020, DOI: 10.1016/j.ymssp.2019.106495.
[37] H. Guo, Z. Zhou, D. Zhao, and W. Gaaloul, "EGNN: Energy-efficient anomaly detection for IoT multivariate time series data using graph neural network," *Future Gener. Comput. Syst.*, vol. 151, pp. 45–56, 2024, DOI: 10.1016/j.future.2023.09.028.
[38] S. Alangari, "An unsupervised machine learning algorithm for attack and anomaly detection in IoT sensors," *Wireless Pers. Commun.*, pp. 1–25, 2024, DOI: 10.1007/s11277-023-10811-8.
[39] E. Altulaihan, M. A. Almaiah, and A. Aljughaiman, "Anomaly detection IDS for detecting DoS attacks in IoT networks based on machine learning algorithms," *Sensors*, vol. 24, no. 2, p. 713, 2024, DOI: 10.3390/s24020713.
[40] M. M. Inuwa and R. Das, "A comparative analysis of various machine learning methods for anomaly detection in cyber attacks on IoT networks," *Internet Things*, vol. 26, p. 101162, 2024, DOI: 10.1016/j.iot.2024.101162.
[41]Alsalman, D. (2024). A Comparative Study of Anomaly Detection Techniques for IoT Security using AMoT (Adaptive Machine Learning for IoT Threats). IEEE Access. DOI:10.3390/s24020713.
[42] A. K. Mishra, S. Paliwal, and G. Srivastava, "Anomaly detection using deep convolutional generative adversarial networks in the internet of things," *ISA Trans.*, vol. 145, pp. 493–504, 2024, DOI: 10.1016/j.isatra.2023.12.005.
[43] U. Tahir, M. K. Abid, M. Fuzail, and N. Aslam, "Enhancing IoT security through machine learning-driven anomaly detection," *VFAST Trans. Softw. Eng.*, vol. 12, no. 2, pp. 01–13, 2024, DOI: 10.21015/vtse.v12i1.1766.
[44] K. Nimmy, M. Dilraj, S. Sankaran, and K. Achuthan, "Leveraging power consumption for anomaly detection on IoT devices in smart homes," *J. Ambient Intell. Humaniz. Comput.*, vol. 14, no. 10, pp. 14045–14056, 2023, DOI: 10.1007/s12652-022-04110-6.
[45] A. Protogerou, S. Papadopoulos, A. Drosou, D. Tzovaras, and I. Refanidis, "A graph neural network method for distributed anomaly detection in IoT," *Evolving Syst.*, vol. 12, no. 1, pp. 19–36, 2021, DOI: 10.1007/s12530-020-09347-0.
[46] H. Wang, Q. Bao, Z. Shui, L. Li, and H. Ji, "A novel approach to credit card security with generative adversarial networks and security assessment," 2024, DOI: 10.53469/wjimt.2024.07(02).03.
[47] V. Shanmuganathan and A. Suresh, "LSTM-Markov based efficient anomaly detection algorithm for IoT environment," *Appl. Soft Comput.*, vol. 136, p. 110054, 2023, DOI: 10.1016/j.asoc.2023.110054.
[48] M. A. Lawal, R. A. Shaikh, and S. R. Hassan, "Security analysis of network anomalies mitigation schemes in IoT networks," *IEEE Access*, vol. 8, pp. 43355–43374, 2020, DOI: 10.1109/ACCESS.2020.2976624.
[49] W. Ma, "Analysis of anomaly detection method for Internet of things based on deep learning," *Trans. Emerg. Telecommun. Technol.*, vol. 31, no. 12, p. e3893, 2020, DOI: 10.1002/ett.3893.
[50] A. Yahyaoui, T. Abdellatif, S. Yangui, and R. Attia, "READ-IoT: Reliable event and anomaly detection framework for the Internet of Things," *IEEE Access*, vol. 9, pp. 24168–24186, 2021, DOI: 10.1109/ACCESS.2021.3056149.
[51] K. N. Durai, R. Subha, and A. Haldorai, "A novel method to detect and prevent SQLIA using ontology to cloud web security," *Wireless Pers. Commun.*, vol. 117, no. 4, pp. 2995–3014, 2021, DOI: 10.1007/s11277-020-07243-z.
[52] S. Gupta et al., "A novel approach toward the prevention of the side channel attacks for enhancing the network security," 2022, DOI: 10.21203/rs.3.rs-1334345/v1.
[53] Q. He and H. He, "A novel method to enhance sustainable systems security in cloud computing based on the combination of encryption and data mining," *Sustainability*, vol. 13, no. 1, p. 101, 2021, DOI: 10.3390/su13010101.
[54] K. N. Mishra and C. Chakraborty, "A novel approach toward enhancing the quality of life in smart cities using clouds and IoT-based technologies," in *Digital Twin Technologies and Smart Cities*, M. Farsi, A. Daneshkhah, A. Hosseinian-Far, and H. Jahankhani, Eds. Cham, Switzerland: Springer, 2020, pp. 19–35, DOI: 10.1007/978-3-030-18732-3_2.
[55] M. A. Almaiah et al., "A novel approach for improving the security of IoT–medical data systems using an enhanced dynamic Bayesian network," *Electronics*, vol. 12, no. 20, p. 4316, 2023, DOI: 10.3390/electronics12204316.
[56] B. Wang, Y. Sun, and X. Xu, "A scalable and energy-efficient anomaly detection scheme in wireless SDN-based mMTC networks for IoT," *IEEE Internet Things J.*, vol. 8, no. 3, pp. 1388–1405, Mar. 2020, DOI: 10.1109/JIOT.2020.3011521.
[57] S. P. Praveen et al., "A novel approach for enhance fusion based healthcare system in cloud computing," *J. Inf. Secur. Internet Things*, vol. 9, no. 1, pp. 84–96, 2023, DOI: 10.54216/JISIoT.090106.
[58] L. Cui et al., "Security and privacy-enhanced federated learning for anomaly detection in IoT infrastructures," *IEEE Trans. Ind. Informat.*, vol. 18, no. 5, pp. 3492–3500, May 2021, DOI: 10.1109/TII.2021.3107783.
[59] I. Ullah and Q. H. Mahmoud, "Design and development of RNN anomaly detection model for IoT networks," *IEEE Access*, vol. 10, pp. 62722–62750, 2022, DOI: 10.1109/ACCESS.2022.3176317.
[60] S. Thudumu, P. Branch, J. Jin, and J. Singh, "A comprehensive survey of anomaly detection techniques for high dimensional big data," *J. Big Data*, vol. 7, no. 1, p. 42, 2020, DOI: 10.1186/s40537-020-00320-x.
[61] G. Fernandes et al., "A comprehensive survey on network anomaly detection," *Telecommun. Syst.*, vol. 70, no. 3, pp. 447–489, 2019, DOI: 10.1007/s11235-018-0475-8.
[62] L. Erhan et al., "Smart anomaly detection in sensor systems: A multi-perspective review," *Inf. Fusion*, vol. 67, pp. 64–79, 2021, DOI: 10.1016/j.inffus.2020.10.001.
[63] Y. Himeur, K. Ghanem, A. Alsalemi, F. Bensaali, and A. Amira, "Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives," *Appl. Energy*, vol. 287, p. 116601, 2021, DOI: 10.1016/j.apenergy.2021.116601.
[64] R. A. Ariyaluran Habeeb, F. Nasaruddin, A. Gani, I. A. Targio Hashem, E. Ahmed, and M. Imran, "Real-time big data processing for anomaly detection: A survey," *Int. J. Inf. Manage.*, vol. 45, pp. 289–307, 2019, DOI: 10.1016/j.ijinfomgt.2018.08.006.
[65] H. Wang, M. J. Bah, and M. Hammad, "Progress in outlier detection techniques: A survey," *IEEE Access*, vol. 7, pp. 107964–108000, 2019, DOI: 10.1109/ACCESS.2019.2932769.
[66] G. Pang, C. Shen, L. Cao, and A. V. D. Hengel, "Deep learning for anomaly detection: A review," *ACM Comput. Surv.*, vol. 54, no. 2, pp. 1–38, 2021, DOI: 10.1145/3439950.
[67] A. A. Cook, G. Mısırlı, and Z. Fan, "Anomaly detection for IoT time-series data: A survey," *IEEE Internet Things J.*, vol. 7, no. 7, pp. 6481–6494, Jul. 2020, DOI: 10.1109/JIOT.2019.2958185.