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Received: The solar panel or solar cell is one of the most important components of the solar system that produces
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and reliability. This approach enables rapid identification and resolution of faults, helping to avoid energy
losses, reduce downtime and support proactive maintenance. It guarantees the optimal functioning of solar
panels, maximizing energy production and improving return on investment. Quantitatively, this method
achieves high diagnostic accuracy (over 90%), reduces error rates by up to 30% under dynamic conditions, and
provides real-time fault detection with minimal latency. The combination of RLS and fuzzy logic improves
fault diagnosis by effectively handling uncertainties and handling ambiguous situations better than traditional
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1. Introduction

Photovoltaic solar energy is a sustainable and non-polluting
energy source. It plays a significant role in research to meet
future energy needs. Currently, PV module manufacturing
technology has evolved considerably in quality and produc-
tion cost [1].

Defects in a photovoltaic installation can occur during its
design, installation, and operation [2]. These defects de-
crease the performance of photovoltaic systems, affecting
photovoltaic production [3].

The issue of diagnosing a solar panel using fuzzy logic aims
to assess its operational state based on incomplete or uncer-
tain data. Fuzzy logic allows for simulating how individuals
make decisions in the face of uncertainty. In this context,
the goal is to determine whether the panel is functioning
correctly, if it has minor or major defects, or if it is com-
pletely out of service. By integrating fuzzy variables such as
the panel’s temperature, output voltage, and the amount of
energy produced, fuzzy logic can provide a more accurate
evaluation of the solar panel’s condition.

The diagnostic approach for a solar panel using fuzzy logic,

combined with recursive least squares optimization, rep-
resents a promising method for analyzing and resolving
potential issues with solar panels. With fuzzy logic, it is
possible to account for uncertainties and variations in the
data, while recursive least squares optimization allows for
iterative adjustments of the model parameters to achieve
more reliable results. This integrated approach could prove
to be very effective in diagnosing and resolving solar panel
issues with greater precision and efficiency.

Firstly, start with the formatting of the page. The paper
should be prepared using A4 paper format with the Moni-
toring systems are essential for maintaining optimal perfor-
mance of photovoltaic systems. A crucial aspect of these
monitoring systems is fault diagnostic techniques. Fault de-
tection and diagnostic techniques involve identifying causes
that affect real-time energy production and/or the proper
functioning of photovoltaic systems.

Supervision of photovoltaic systems involves comparing
forecasted data with measured results from the installation
and providing technical reports. These systems primarily
consist of sensors (electrical and environmental), a data ac-
quisition system with appropriate communication protocols,
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and data analysis algorithms [4-35].

In recent years, the field of photovoltaic installation moni-
toring has matured, with an increasing number of scientific
articles related to these systems emerging. Most of them
address aspects of the monitoring system, such as sensors
and data acquisition [7-36].

Other research works have focused on measurement instru-
mentation, data acquisition and storage systems, as well as
system supervision methods [5, 6]. Additionally, some ele-
ments have been used to develop algorithms dedicated to PV
module diagnostics and prognosis [6, 7]. Furthermore; data
analysis methods for PV systems are presented in [8]. New
diagnostic techniques have been proposed to monitor pho-
tovoltaic installations, predict malfunctions, and improve
system performance.

Some of these photovoltaic fault detection algorithms are
based on simulating the electrical circuit of the photovoltaic
generator [9, 10]. Others use approaches based on electrical
signals [11, 12] or various maximum power point tracking
(MPPT) techniques [13, 14, 37, 38].

In this work, we are primarily interested in diagnosing faults
at the photovoltaic generator level, leading to reduced pro-
duction. The objective is to propose an intelligent approach
using recursive least squares optimization of fuzzy logic as
a solution, while taking the fewest possible measurements
to meet economic constraints.

Recent solutions for the intelligent diagnosis of solar panels
incorporate several innovative approaches. First, machine
learning, particularly algorithms like random forests and
neural networks, is increasingly used to detect faults, pro-
viding accurate and effective analyses [30]. Additionally,
the integration of 10T sensors allows for real-time moni-
toring of panel performance, facilitating early detection of
anomalies [31-39].

Furthermore, fuzzy logic systems demonstrate high effi-
ciency in managing uncertainty in performance data, en-
hancing the reliability of diagnostics [32, 33, 35? —40].
Thermal imaging is also recognized as a promising tech-
nique for identifying physical defects on panels [? ]. Finally,
the application of genetic algorithms and other optimization
methods contributes to strengthening diagnostic models,
making the process more robust [34—41]. These advance-
ments open new perspectives for the efficiency and sustain-
ability of photovoltaic systems.

Our work based on the intelligent method integrated with
fuzzy logic makes several important contributions to so-
lar panel diagnostics. It enhances diagnostic accuracy by
better handling uncertainties and imprecise data, allowing
for more precise fault identification. This method enables
real-time diagnostics, reducing downtime and avoiding en-
ergy losses. It also supports adaptive learning, continuously
improving fault detection.

Additionally, fuzzy logic helps address ambiguous situa-
tions and variable conditions, reducing both false positives
and false negatives. It facilitates proactive maintenance by
detecting potential issues early, thereby optimizing energy
production and return on investment. Finally, this method
allows for finer data interpretation and reduces maintenance
costs by preventing major faults and targeting necessary

Boulanouar & Boualem

repairs.

2. Methodology

The architecture of a MAMDANI-type fuzzy inference sys-
tem can be mathematically decomposed as follows:

Each input variable (x;) is associated with a fuzzy set (A;)
defined by membership functions pA;(x;), where uA;(x;)
gives the degree to which (x;) belongs to the set (x;).

For each input value (x;), the degree of its membership in
each fuzzy set is calculated using the corresponding mem-
bership functions.

For a rule R; of the form:

If x; is Ay AND x; is A» AND..THEN y is B; its degree of
activation () is calculated using the 7-norm operator.

In the context of adapting fuzzy logic with the recursive
least squares method, it is necessary to describe the three
characteristics of a fuzzy subset. From such a function,
several characteristics of the fuzzy subset can be studied:
Kernel, Support, and Height (Fig. 1).

- The Cor(A), is the set of all the elements which totally
belong to it of the form:

Cor(A)={xeX | mx) =1} @)

- The support of a fuzzy subset A of X, denoted Supp(A),
is the set of all the elements which belong to it at least
a little:

Supp(A) = {x € X | pa(x) > 0} 2

- The height of a fuzzy subset A of X, denoted H(A), is
the maximum value reached on the support of A:

H(A) = Sup{pa(x) | x € X} 3)

We will then say that a fuzzy subset is normalized if its
height H(A) is equal to 1.

The premises of the rules are defined by the fuzzy member-
ship to prototypes C') which are characterized by a center
p® and a covariance matrix Y@, The degree of fuzzy
membership ) (X) is calculated by a basis function hyper-
ellipsoidal radial, as a function of the Mahalanobis distance
dy (i (X, u®) between X and C(9):

1

o) L+ dy) (X, u) @

Height
\H‘
-

Core
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f
Y

Figure 1. Characteristics of a fuzzy set of core support height.
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The conclusions of the rules give the fuzzy membership
to the different classes; these degrees of membership are
obtained by linear functions of the inputs:

yﬁxx)::UYHX);..JgRX)) ©)

where lg) (X) represents the linear consequence function of

rule (i) for class (k):
Px)=6""X=6/ln+..+6x  ©

We calculate the output of the system for each class using
sum-product fuzzy inference:

P(x)=Y. B0 70X) )

where (r) represents the number of fuzzy rules. Class (X)
is chosen as the label corresponding to the maximum com-
ponent of the system output ¥ (X) = (51 (X);...;9¢(X)).

Classe(X) = argmaxH(X) k=1,...,C (8)

In learning consequences in fuzzy logic, we can use the
Recursive Least Squares (RLS) method by activating the
rules [10].

Let ®() be the matrix of all the parameters of the linear
consequences of rule(i):

o o 6ie

el=1|: - ©)
9<li 9(‘)C

n, n,

where (C) represent the number of classes, and () the size
of the feature vector. These matrices can be recursively
learned:

6 =0, +Rx.0(x - x0)));

t—

4 (10)
ey =0

where the covariance matrix P¥) = (Y4_, X; - X[ )~ is also
updated recursively:

(i) T pli)
P XX By

1 T pli)
ﬁ(i)(xz) +Xt Ptlet

B ::Iﬁ?l__

an

When the number of training data increases, the changes
made to the conclusions by the RLS algorithm will be small,
Indeed, the weight given to each piece of data being equiva-
lent, the more the number of pieces of data increases, the
lower the weight of each individual piece of data.

This property is illustrated by the fact that the covariance
matrix decreases with time: (P < P,_;) It is said that the
gain of the algorithm tends towards zero. This property
has the effect of reducing the responsiveness of the system
over time. It is therefore necessary to limit the weight of
old data, in other words to introduce forgetting into the
recursive least squares algorithm, to maintain the learning
capabilities of the system. To do this, we must work on the

MIEE19 (2025) -192528 3/14

covariance matrix which represents the distribution of data
in the recursive least squares algorithm. The principle of
forgetting is to introduce a temporal update of this matrix
[11]:

P = f(PR) (12)

In the case of a system with slow variation over time, we
introduce a forgetting factor which has the effect of giving
more weight to recent data and exponentially forgetting old
data. By introducing this factor, the recursive algorithm
becomes:

t
P :( )Ltfk.Xk.XT)fl
’ k; ¢ (13)

= (A*XTX L AAXT X X )
Or in a recursive way:

P l=Ar +Xx'x; 0<A <1 (14)
where (4) the forgetting factor value

This exponential weighting of the data results in the forget-
ting function:

P)=— 15
fP) =7 (15)
The MCR adjusts the (6) parameters continuously based
on new data. Parameter updating is performed using the
following equations:

Kaman'’s gain:

K(k)=Pk—1)XT (k)X (k)P(k—1)XT (k) + 01" (16)

where K (k) is the Kalman gain P(k — 1), is the error co-
variance matrix of the previous estimate 62, is the error
variance, and (I) is the identity matrix.

To estimate the parameters we calculate:

0(k) = 6(k—1)+K(k)[y(k) =X (k)6(k—1)]  (17)
Then the update of the covariance matrix will be:
P(k) = [[ - K(K)X ()|P(k—1) (18)

After updating, diagnostic errors (prediction error) are cal-
culated by comparing the actual observations to the fitted
model predictions.

19)

To integrate fuzzy logic, we define fuzzy variables represent-
ing the different ranges of values for the detected anomalies.
The variables include terms such as “low”, “medium”, and

“high” for the severity of anomalies.

- Fuzzy membership functions are defined for each vari-
able, such as a membership function for the prediction
error will be:

€2
.uweak(e) = eXp < - 262>

where o is a parameter defining the scope of the function.
This detailed diagram (Fig. 2) provides a comprehensive

(20)
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( Data collection and ' [ Cleaning, Mormalization and |
Sensors — preprocessing Interpolation
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l I Initialization of parameters, 1
parameter Estimation (RLS) Calculation of Kalman Gain, |
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Figure 2. Intelligent recursive least squares diagram for diagnosing a solar panel.

view of the solar panel diagnostic process using the integra-  We can translate the execution steps of the recursive least
tion of Recursive Least Squares (RLS) method with fuzzy = squares algorithm by the diagram presented in Fig. 3.

logic, enabling effective management of the performance  The recursive least squares (RLS) algorithm which is used
and faults of photovoltaic systems. in step 5 of the above algorithm is presented by equations

Online steps

1) Gi*{enthe dataset:
Z'=|(H v Le=1 N X e R Y eR

Separate data into a set number of groups
2) Check for similarities between groups.
3) Use the parditioning results to construct the
membership functions.

Offtine Steps

4) Calculate conseguence parameters using
(RLS)

5) Adjustthe antecedent parameters usingthe
gradient method

Figure 3. RLS algorithm.
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[33]:

(1) =0(t—1)+Ki(y(t) —x(1)"6(t —1))
Pox(n)”
(A +x(0)P_1x(1)T)
1

P =P *Ktx(t)Ptfl)I

K= Q1)

To illustrate the mathematical progression (Fig. 2) of the
steps in integrating the Recursive Least Square (RLS)
method with fuzzy logic, we will detail the calculations
and mathematical concepts involved in each step.

» Step 1: Separate the Data into a Determined Number
of Groups
We apply a clustering method to partition the data into
distinct groups.
We choose (k) random centroids for the clusters. For
each data point (x;), we calculate the distance to the
centroid (u;) of each Cluster Point Allocation:

dij = |lxi — ;| (22)

We assign each point to the cluster with the minimum dis-
tance:
C; = argmind;; 23)
J
For the Centroids Update, taking the average of the assigned
points:
1

= 24)

¥«

/| xiGCj

Iterate until convergence (i.e. until the centroids no longer
change significantly).

» Step 2: Check for Similarities Between Group
We analyze the relationships between groups using
two-sided similarity measures:

- The distance between Centroids:

dix = ||j — | (25)

- The analysis of Overlaps (Fuzzy Clustering), for fuzzy
clustering (fuzzy c-means), we calculated the degree of
membership y;; of a poin (x;) to the cluster (j):

1
Uij = 3

=
¢ ((lenil )"
Liet <x,~—uk

where (m) the fuzzy parameter.

(26)

» Step 3: Construct the Membership Functions
We previously defined the fuzzy membership functions
for each group. We use Triangular functions, based on
the clustering results.

» Step 4: Calculate the Consequence Parameters with
RLS

MIEE19 (2025) -192528 5/14

B The objective is to estimate the consequence parameters
of the fuzzy rules using the RLS algorithm from the cost
function:

n
J(6) =Y (vi—3) @7
i=1
where (y;) the real is value and (J;) is the value predicted
by the fuzzy model.
B For the estimation of the parameters (6) we update the
parameters using the RLS algorithm:

1 Kix!' P
Poi=—(P——F 28
%+ 1 /l( % %+ Pk (28)
Pyxy
Ky=——+— 29
k A +XZPka ( )
O = O+ Ky —x{ 0 (30)

where A is the forgetting factor.

» Step 5: Adjusting the antecedent parameters with the
gradient method
The objective is to optimize the antecedent parame-
ters of the fuzzy rules using the mean squared error
gradient descent method:

E0)=-Y (vi—9) 31)

S| =
AMS

I
-

l

where (¥;) is the output predicted by the fuzzy model.
B The calculation of gradients of E(0) with respect to
parameter (0) will be:

0E() _ 2y )90
86j __nl;(y'_y')89j

(32)

B To calculate the Parameter Update using the gradient

descent rule:

JE(0)
d0;

01" =69 —n (33)

where 7 is the learning rate.

This mathematical path provides an understanding of the
calculations and mathematical processes involved in inte-
grating RLS with fuzzy logic for solar panel diagnostics.

3. Fuzzy system architecture adapted by RLS

A solar panel diagnostic system based on fuzzy logic could
have several steps, each associated with fuzzy rules. The
general block diagram for diagnosing a solar panel based
on fuzzy logic:

This is the phase of combining the results of the rules to
obtain an overall fuzzy distribution for each output variable
(the state of the solar panel). This may involve the use of
operators such as maximization. This is usually done using
Defuzzification methods such as center of gravity.
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Figure 4. Confused methodology: fuzzy logic for PV diagnosis.

4. Defects encountered in the study panel

(PV BPSX3190B)

In our work we will use the BP SX3190B PV panel. The
solar panel is made up of four blocks in series, i.e. 50 cells
of poly-crystalline technology (Fig. 5).

Standard laboratory test conditions must have a radiation
of 1000 W/m? and a temperature of 25 °C. The electrical
characteristics of this panel are summarized in the Table 1.
The electrical characteristics of the panel are obtained with
STC (Standard Test Conditions), i.e. with luminance set at
1000 W/m? and temperature at 25 °C. The following figures
(Fig. 6, 7 and 8) show the change caused by increasing the
series resistance on current, voltage and power energy.

5. Design of fuzzy logic descriptor

5.1 Voltage/current measurement

This technique is based on measurements of electrical sig-
nals, which are voltage and current [22]. Hirata et al., (2011)
developed a diagnostic function which makes it possible to

Figure 5. Solar panel solar panel (Algerian region).

obtain the I (V) curves of PV modules in the same branch
to automatically detect certain failures [22, 23]. Kaplan is
et al., (2011) calculated form factor (FF), series and parallel
resistances from the 7 (V) curve [26].

In this figure is a graphical curve of voltage (V) which varies
with time (in minutes) in the solar panel. We note that the
voltage value begins to gradually increase from the begin-
ning of the experiment until reaching the value of 13.01
V at 11:30 a.m., then decreases and begins to rise another
woman until reaching its value the highest, which is 14.21
V at 3:55 p.m. It decreases until it stabilizes gradually due
to the natural changes of the solar panels.

In this curve it represents a graphical curve of the current
(A) which varies with time (in minutes) in the solar panel.
As the current value is low in the first few minutes, then we
notice that the current value starts to increase from 9:10 a.m.
until 5:02 p.m., which reaches the highest value of 2.66 A
and then gradually decreases until stabilize.

Table 1. Electrical characteristics of the BP SX3190B PV panel in standard
conditions.

Features Values

Open circuit voltage Voc 30.6 V

Voltage Vinp 243V

Current Inyp 7.82 A

Current Isc 8.6 A
Maximum power at PPM Ppax 190.26 W/Crete
Temperature Current coefficients Isc 0.1 %/°C
Temperature voltage coefficients Voc =~ —0.33 %/°C
Number of cells 50

2345-3796[https://doi.org/10.57647/j.mjee.2025.1902.28]
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Courant {m#y

. Rs (Ohm}) .

Figure 6. Current energy from increasing Rs.

Tension (¥)

 Rs(Ohm)

Figure 7. Voltage energy from increasing Rs.

Puissance(W)

" Rs(onm)

Figure 8. Power energy from increasing Rs.

5.2 Power loss analysis

The analysis of power losses in the PV system amounts to
determining the power losses which are calculated by com-
paring the measured data to the simulated results. Chouder
et al. (2010), proposed detection, supervision and fault
method based on power loss analyzes [25]. Silvestre et al.
(2013) used voltage and current ratios in the fault detection
algorithm by measuring the losses captured in a PV system

MIEE19 (2025) -192528 7/14

25

Cas de sain 0%

Figure 9. The measured electrical quantities (/ and V) at the PV output
for 0% healthy case.

[26].

5.3 Temperature-based models and heat exchange

This technique is based on the fact that faults that appear
in the PV generator cause a change in the temperature of
the PV module. Hu et al., (2013) and Vergura et al., (2012)
modeled the physical defects of different types of PV cells
using the limited element method [27-29]. It is based on
the thermal behavior of PV cells resulting from electrical
failures.

The curve represents the study of the variations in the tem-
perature of the solar panels in the importance of time, as we
notice that the temperature starts at around 33.91 degrees
Celsius at 8 a.m., then begins to rise gradually until reaching
its highest value of 52.74 degrees Celsius in 1 hour 15 hours
45 minutes, then gradually decreases until it reaches a value
of 40 degrees Celsius at 6 p.m.

The fuzzy logic diagnostician is designed according to the
link between the parameters which represent the factors in-
fluencing the state of the solar panel: Solar current intensity
(Isc), Solar panel voltage (Voc) and Solar panel tempera-
ture. There are a total of 3 input variables.

The functional diagram of the fuzzy logic diagnostician
is presented in figure 10 and a Mamdani type fuzzy logic

23 T T

T
Cas de sain 20%

0.5

0

0 0.2 04 0.6 0.8 1 12 14 1.6

Figure 10. The measured electrical quantities (/ and V) at the PV output
for the case of 20% shading.
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Taking the measure heat in the one day

14.5 T

voltage (V)

Time (hours)

Figure 11. Tacking the measure (voltage) heat in the one day.

Taking the measure heat in the one day

Current {A)

12 14
Time (hours)

Figure 12. Tacking the measure (Current) heat in the one day.

Taking the measure heat in the one day

55 :

Temperature(C")

18
Time(hours)

Figure 13. Tacking the measure (Temperature) heat in the one day

system was used.

Both triangular and trapezoidal shapes are used for the
membership function of inputs and outputs. The centroid
method is used for defuzzification. Fuzzy Logic Diagnostic
is developed using Matlab Toolkit and Fuzzy Logic. The
system is tested using Simulink.

To build a fuzzy diagnostic system, we used the following
fuzzy logic system:

— The inputs of this system are: maximum power of the

A

Boulanouar & Boualem
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Figure 14. The fuzzy diagnostic system used with three inputs and three

outputs.
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Figure 15. Fuzzy logic membership functions (inputs); (a) Voltage mem-
bership function, (b) Power membership function, (c) Temperature mem-
bership function.
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module (PPM), the open circuit voltage of the module
Voc) and the temperature (T).

— The outputs of our fuzzy diagnostic system are: S1
between 0 and 1, S2 between 1 and 2, S3 between 2
and 3.

Following an exhaustive simulation with the variation of the
input variables (7', P, and V) of the PV module, we have
brought together the results obtained in the Table 2.

This section presents the simulation results of our photo-
voltaic system, as well as the performance of the proposed
diagnostic technique. The simulation results are obtained
using the MATLAB/Simulink software under the following
climatic conditions (in the healthy state): Solar irradiation
G = 1000 W/m? and temperature T = 25 °C.

MIEE19 (2025) -192528 9/14

Figure 16 shows the simulation results of diagnosis and
detection of three different states in a photovoltaic system
by the Fuzzy Logic type method, in which, at each step,
the PV case is well illustrated.

The outputs of the fuzzy diagnostician are shown in detail
in figure 16. The three panel states were selected as S1 for
good panel status, S3 for medium and S2 for poor panel
status.

Through the fuzzy surface (figure 18) and the extent of flat-
ness and the state of curvature, we notice that the tempera-
ture factor plays a crucial role in evaluating the performance
of solar panels and shows that the temperature is important
in relation to the state of the electric current and the voltage
generated by the solar cells as the efficiency of solar cells is
linked to the temperature (As the temperature increases, the

Table 2. Variation of the three considered symptoms of the PV module.

Rule T (°C) P (W) Voc (V) State 1 State 2 State 3
1 38 332 156 0.28 1.72 2.72
2 38 414 156 0.56 1.7 2.71
3 34.1 259 215 0.24 1.51 2.7
4 39.2 405 244 0.53 1.7 2.7
5 40.8 405 244 0.5 1.68 2.68
6 423 405 244 0.5 1.5 2.5
7 43.8 405 244 0.5 1.5 2.5
8 45 405 244 0.5 1.5 2.5
9 45 177 102 0.273 1.3 227
10 474 177 102 0.273 1.3 227
11 474 432 223 0.5 1.5 2.5
12 38 432 223 0.617 1.71 2.71
13 38 495 248 0.708 1.72 2.72
14 38 223 252 0.231 1.36 2.71
15 40.2 223 252 0.248 1.41 2.7
16 43.8 223 252 0.5 1.5 2.5
17 45 223 252 0.5 1.5 2.5
18 48 377 194 0.5 1.5 2.5

1 Less More 1 Less' More ) Less More

08| 08| 08
g 8o £
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Figure 16. Fuzzy logic membership functions (Outputs); (a) First state membership function, (b) Membership function of second state, (c) Third state

membership function.
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Figure 17. The result of the solar panel description.

Figure 18. Fuzzy control surfaces; (a) Fuzzy control surface S1 (T, P), (b) Fuzzy control surface S1 (P, T), (c) Fuzzy control surface S2 (P, V), (d) Fuzzy
control surface S2 (P, T), (e) Fuzzy control surface S3 (P, T), (f) Fuzzy control surface S3 (T, V).
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Figure 20. The fuzzy temperature control output.

performance of the cells tends to decrease. This is due to an
increase in the internal resistance of the cell, leading to an
increase in voltage loss and a reduction in output current),
the quality and ability of solar systems to produce energy.
It is important to monitor temperature to ensure stable per-
formance of solar panels over time. By understanding the
impact of temperature on the performance of solar cells,
necessary steps can be taken to improve their performance
and reduce heat-related deterioration.

In the figures (figure 19 and 20) we observe that the rela-
tionship between temperature and power in a solar panel
is inversely proportional: when the temperature increases,
the output power of the panel decreases, and vice versa.
This is due to the sensitivity of photovoltaic cells to heat,
which affects their efficiency in converting solar energy into
electricity.

6. Quality indices of fuzzy partitions and the
recursive adaptation factor

From figures 22 and 23, the difference between the two
approaches (fuzzy logic and fuzzy logic adapted by the
recursive least square method) in terms of correlation and
regression becomes clear to us.

Which means that the effectiveness of the recursive ap-
proach in fuzzy logic.

After figure (Fig. 24), it is observed that the recursive fuzzy
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Figure 21. (a) The fuzzy (S1) control output, (b) The fuzzy (S2) control
output, (c) The fuzzy (S3) control output

method smooths the data and reduces variations compared
to the classic fuzzy method. This is due to the adaptive and
smoothing nature of the recursive method, which allows it
to better handle fluctuations and noise in the data.
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Recursive Fuzzy Logic fuels and mitigating the effects of climate change. The
o rod dam application of fuzzy logic in solar panel diagnostics

fuzzy modell4 represents a promising approach to improving the reliability

o and efficiency of these systems by accounting for the

complex and variable nature of the data. The study
presented demonstrates the effectiveness of this method,
supported by convincing results from several case studies,
enabling rapid and accurate problem identification and
promoting proactive maintenance. The integration of fuzzy
logic with the recursive least squares method constitutes
a notable innovation, providing robust evaluation even
with incomplete or noisy data. However, this approach has
limitations, such as its complexity, sensitivity to outliers,
and challenges related to parameter tuning and result

0 L 1 1 1 L
0 5 10 ‘xs 20 25 30 interpretation. Looking ahead, promising prospects include
the development of machine learning algorithms to refine
Figure 22. The recursive fuzzy approach. fuzzy logic, the exploration of combinations with other
techniques like neural networks, and the extension of
Fuzzy logic this method to large-scale solar installations, paving the
35 : way for new approaches to managing sustainable energy
: & red data infrastructures.
L fuzzy model[ "™ A
20 S
> Nomenclature
15 ----------------------
10 : Abbreviations Definition of the term
: : Xi Variable
o o """""""""""""" A; Input variable
0 i i UA;(x;) The membership functions of (A;)
0 10 20 30 0 , ,
X I’ (X) The linear consequence function
¥ System output
Figure 23. The normal fuzzy approach.
R; Fuzzy logic rules
15 . Comparizon cllfFuzzy Disgrlwsﬁc r.ha'chu:u:lsI o Degree of activation
_ Efgf;;ﬁi:ﬁt‘:z t?u o p) The covariance matrix
A The forgetting factor value
RLS Recursive least squares
g Voc Open circuit voltage
% Prax Maximum power at PPM
c
§ Isc Short circuit current
STC Testing Standard Conditions
T Temperature (°C)
P, The recursive algorithm

PowerError

Fig. 24 Comparison of fuzzy diagnostic methods

Figure 24. Comparison of fuzzy diagnostic methods.

7. Conclusion

Solar systems play a crucial role in the transition to
renewable energy, reducing our dependence on fossil

2345-3796[https://doi.org/10.57647/j.mjee.2025.1902.28]


https://doi.org/10.57647/j.mjee.2025.1902.28

Boulanouar & Boualem

Authors contributions
Authors have contributed equally in preparing and writing the
manuscript.

Availability of data and materials
The data that support the findings of this study are available from
the corresponding author upon reasonable request.

Conflict of interests

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.

[1

[2

(3]

[4

[5

[6

[7

(8]

[9

[10]

[11

[12]

References

Power FS. Global market outlook.
solarpowereurope.org.

—

2016. URL http://www.

—

A. Triki-lahiani, A. B. Abdelghani, and I. Slama-belkhodja. “Fault
Detection and Monitoring Systems for Photovoltaic Installations:
A Review.”. Renewable Sustainable Energy Review, pages 0-1,
2017.

DOI: https://doi.org/10.1016/j.rser.2017.09.101.

L. Bun. “Detection et localisation de defauts dans un systeme pho-
tovoltaique.”. Hal-1d, Detection et Localisation de Defauts pour un
Systeme PV, 2012. URL https://theses.hal.science/tel-00647189v1.

—

G. Ball, B. Brooks, J. Johnson, A. Rosenthal, M. Albers, and T. Zgo-
nena. “Inverter Ground-Fault Detection Blind Spot.”. Mitigation
Methods’, Prepared by Solar America Board for Codes and Stan-
dards.

DOI: https://doi.org/10.13140/RG.2.1.3836.8720.

—

D. L. King, M. A. Quintana, J. A. Kratochvil, D. E. Ellibee, and
B. R. Hansen. “Photovoltaic Module Performance and Durability
Following Long-term.”. Field Exposure, page 241-56, 2000.
DOTL: https://doi.org/10.1002/(SICI)1099-159X(200003/04)8:2.

[t}

J. Han, J. D. Jeong, 1. Lee, and S. H. Kim. “Low-Cost Monitoring
of Photovoltaic Systems at Panel Level in Residential Homes
Based on Power Line Communication.”. /EEE Transactions on
Consumer Electronics, pages 441-425, 2017.

DOI: https://doi.org/10.3390/fr12050881.

—

I. Cristaldi, G. Leone, and S. Vergura. ‘“Performance Index of
Photovoltaic Fields for Diagnostic Purposes.”. 2016.
DOTL: https://doi.org/10.1049/cp.2016.0556.

S. R. Madeti and S. N. Singh. “A comprehensive study on different
types of faults and detection techniques for solar photovoltaic
system.”. Solar Energy, 158:161-185, 2017.

DOIL: https://doi.org/10.1016/j.solener.2017.08.069.

[t

A. Mellit, G. M. Tina, and S. A. Kalogirou. “Fault detection and
diagnosis methods for photovoltaic systems: a review.”. Renew-
able Sustainable Energy Review, 91:1-17, 2018.
DOIL: https://doi.org/10.1016/j.rser.2018.03.062.

E. Garoudja, F. Harrou, Y. Sun, K. Kara, A. Chouder, and S. Silvestre.
“Statistical fault detection in photovoltaic systems.”. Solar Energy,
150:485-499, 2017.

DOIL: https://doi.org/10.1016/j.solener.2017.04.043.

] Y. Hirata, S. Noro, T. Aoki, and S. Miyazawa. “Diagnosis Photo-
voltaic Failure by Simple Function Method to Acquire I-V Curve
of Photovoltaic Modules String.”. 2011.

DOI: https://doi.org/10.1109/PVSC.2008.4922833.

B. Cak. “A novel voltage-current characteristic based global max-
imum power point tracking algorithm in photovoltaic systems.”.
page 112, 2016.

DOI: https://doi.org/10.1016/j.energy.2016.05.121.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

MIJEE19 (2025) -192528 13/14

N. Aouchiche, M. Becherif, A. HadjArab, M. S. Aitcheikh, H. S.
Ramadan, and A. Cheknane. “Dynamic Performance Comparison
for MPPT-PV Systems using Hybrid Pspice/Matlab Simulation.”.
Int J Emerg Electr Power Syst, 17:529-39, 2016.

DOI: https://doi.org/10.1515/ijeeps-2016-0074.

N. Bizon. “Global Extremum Seeking Control of the power
generated by a Photovoltaic Array under Partially Shaded Con-
ditions.”. Energy Conversion Management, 109:71-85, 2016.

DOIL: https://doi.org/10.1016/j.enconman.2015.11.046.

B.-M. Bernadette. “Logique floue, principes, aide a la décision.”.
Lavoisier, 2003. URL https://hal.science/hal-01533303.

G. Kamingu. Théorie des ensembles flous, lareq one pager. Buildings,
11(1):37-45, . URL http://www.lamsade.dauphine.fr/mcda/biblio/
Category/thesis.html.

P. Angelov and X. Zhou. “Evolving fuzzy-rule-based classifiers
from data streams.”. Fuzzy Systems, IEEE Transactions, 16(6):
1462-1475, 2008.

DOL: https://doi.org/10.1109/TFUZZ.2008.925904.

E. Lughofer and P. Angelov. “Handling drifts and shifts in on-
line data streams withe volving fuzzy systems.”. Applied Soft
Computing, 11(2):2057-2068, 2011.

DOI: https://doi.org/10.1016/j.as0c.2010.07.003.

L. M. Karmacharya and R. Gokaraju. “Fault Location in Un-
grounded Photovoltaic System Using Wavelets and ANN.”. [EEE
Trans. Power Del., 33(2):549-559, 2018.

DOI: https://doi.org/10.1109/TPWRD.2017.2721903.

L. Chen and X. Wang. “Adaptive fault localization in photovoltaic
systems.”. IEEE Trans. Smart Grid, 9(6):6752-6763, 2018.
DOIL: https://doi.org/10.1109/TSG.2017.2722821.

L. A. Zadeh. “Fuzzy sets, fuzzy loqic and fuzzy systems.”.
DOI: https://doi.org/10.1142/2895.

Y. Liu, M. Li, X. Ji, X. Luo, M. Wang, and Y. Zhang. “A compar-
ative study of the maximum power point tracking methods for
PV systems.”. Energy and Conversion Management, 85:809-816,
2014.

DOI: https://doi.org/10.1016/j.enconman.2014.01.049.

T. Zhou and W. Sun. “Study on maximum power point tracking
of photovoltaic array in irregular shadow.”. International Journal
of Electric Power Energy System, 66:227-234, 2015.

DOI: https://doi.org/10.1016/j.ijepes.2014.10.030.

S. Nema, R. K. Nema, and G. Agnihotri. “MATLAB/Simulink
based study of photovoltaic cells/modules/array and
their experimental verification.”. International journal
of Energy and Environment, 1(3):487-500, 2010. URL
https://www.researchgate.net/publication/44024846_Matlab_
simulink_based_study_of_photovoltaic_cells_modules_array_and_
their_experimental_verification.

Johnson et al. “Photovoltaic DC arc fault detector testing at
Sandia National Laboratories.”. Conf. Rec. IEEE Photovolt. Spec.
Conf., pages 003614-003619, 2011.

DOL: https://doi.org/10.1109/PVSC.2011.6185930.

G. Kamingu. “Théorie des ensembles flous.”. Lareq One Pager, 11
(1):37-45, .
DOIL: https://doi.org/10.13140/RG.2.2.31700.81286.

E. Lughofer and P. Angelov. “Handling drifts and shifts in on-
line data streams withe volving fuzzy systems.”. Applied Soft
Computing, 11(2):2057-2068, 2011.

DOI: https://doi.org/10.1016/j.as0¢.2010.07.003.

Y. Sun, A. Chouder, S. Silvestre, E. Garoudja, K. Kara, and F. Harrou.
“Statistical fault detection in photovoltaic systems.”. Sol. Energy,
150:485-499, 2017.

DOIL: https://doi.org/10.1016/j.solener.2017.04.043.

2345-3796[https://doi.org/10.57647/j.mjee.2025.1902.28]


http://www.solarpowereurope.org
http://www.solarpowereurope.org
https://doi.org/10.1016/j.rser.2017.09.101
https://theses.hal.science/tel-00647189v1
https://doi.org/10.13140/RG.2.1.3836.8720
https://doi.org/10.1002/(SICI)1099-159X(200003/04)8:2
https://doi.org/10.3390/fr12050881
https://doi.org/10.1049/cp.2016.0556
https://doi.org/10.1016/j.solener.2017.08.069
https://doi.org/10.1016/j.rser.2018.03.062
https://doi.org/10.1016/j.solener.2017.04.043
https://doi.org/10.1109/PVSC.2008.4922833
https://doi.org/10.1016/j.energy.2016.05.121
https://doi.org/10.1515/ijeeps-2016-0074.
https://doi.org/10.1016/j.enconman.2015.11.046
https://hal.science/hal-01533303
http://www.lamsade.dauphine.fr/mcda/biblio/Category/thesis.html.
http://www.lamsade.dauphine.fr/mcda/biblio/Category/thesis.html.
https://doi.org/10.1109/TFUZZ.2008.925904
https://doi.org/10.1016/j.asoc.2010.07.003
https://doi.org/10.1109/TPWRD.2017.2721903
https://doi.org/10.1109/TSG.2017.2722821
https://doi.org/10.1142/2895
https://doi.org/10.1016/j.enconman.2014.01.049
https://doi.org/10.1016/j.ijepes.2014.10.030
https://www.researchgate.net/publication/44024846_Matlab_simulink_based_study_of_photovoltaic_cells_modules_array_and_their_experimental_verification
https://www.researchgate.net/publication/44024846_Matlab_simulink_based_study_of_photovoltaic_cells_modules_array_and_their_experimental_verification
https://www.researchgate.net/publication/44024846_Matlab_simulink_based_study_of_photovoltaic_cells_modules_array_and_their_experimental_verification
https://doi.org/10.1109/PVSC.2011.6185930
https://doi.org/10.13140/RG.2.2.31700.81286
https://doi.org/10.1016/j.asoc.2010.07.003
https://doi.org/10.1016/j.solener.2017.04.043
https://doi.org/10.57647/j.mjee.2025.1902.28

14/14 MIEE19 (2025) -192528

[29]

[30]

[31]

[33]

[34]

[35]

R. Araneo and S. Celozzi. “Transient behavior of wind towers
grounding systems under lightning strikes.”. Int J Energy Environ
Eng, 2015.

DOI: https://doi.org/10.1007/s40095-015-0196-7.

J. A. Smith et al. “Enhancing solar power forecasting accuracy
using machine learning.”. Renewable Energy, 2022.
DOI: https://doi.org/10.1016/j.csite.2024.104924.

H. Kim and D. Lee. “Probabilistic Solar Power Forecasting Based
on Bivariate Conditional Solar Irradiation Distributions.”. IEEE
Transactions on Sustainable Energy, 12(4):2031-2041, 2021.

DOTL: https://doi.org/10.1109/TSTE.2021.3077001.

B. Pratap, P. Sharma, L. K. Patel, A. T. Singh, S. N. Oulkar, and
M. Thamban. “Surface melting of a debris-covered glacier and
its geomorphological control—A case study from Batal Glacier,
western Himalaya”.”. Geomorphology. Elsevier., 2023.

DOI: https://doi.org/10.1016/j.geomorph.2023.108686.

P. Lopez, S. Cristina, E. Lucchi, and G. Franco. “ACCEPTANCE
OF BUILDING INTEGRATED PHOTOVOLTAIC (BIPV) IN
HERITAGE BUILDINGS AND LANDSCAPES: POTENTIALS,
BARRIER AND ASSESSMENT CRITERIA”. Construction
Pathology, Rehabilitation Technology and Heritage Management,
2020. URL http://repository.supsi.ch/id/eprint/12136.

Y. Wang et al. “Long short-term memory networks for solar
irradiance prediction.”. Solar Energy, 222:41-49, 2021.
DOIL: https://doi.org/10.1109/LGRS.2021.3107139.

N. Priyadarshi, P. Kiran Maroti, F. Azam, and M. G. Hussien. “An
improved Z-source inverter-based sensorless induction motor-
driven photovoltaic water pumping with Takagi—Sugeno fuzzy
MPPT.”. IET Renewable Power Generation. IET Renew. Power
Gener., pages 1-14, 2022.

DOIL: https://doi.org/10.1049/rpg2.12654.

[36]

[37]

[38]

[39]

[40]

[41]

Boulanouar & Boualem

N. Priyadarshi, S. Padmanaban, J. Bo Holm-Nielsen, F. Blaabjerg,
and M. Sagar Bhaskar. “An Experimental Estimation of Hybrid
ANFIS-PSO-Based MPPT for PV Grid Integration UNDER
Fluctuating Sun Irradiance.”. /IEEE Systems Journal, 2019.

DOI: https://doi.org/10.1109/JSYST.2019.2949083.

N. Priyadarshi, S. Padmanaban, M. S. Bhaskar, F. Azam, Baseem
Khan, and M. G. Hussien. “A novel hybrid grey wolf optimized
fuzzy logic control based photovoltaic water pumping system.”.
IET Renewable Power Generation. IET Renew. Power Gener., pages
1-12,2022.

DOI: https://doi.org/10.1049/rpg2.12638.

N. Priyadarshi, S. Padmanaban, M. S. Bhaskar, F. Azam, 1. B. M.
Taha, and M. G. Hussien. “An adaptive TS-fuzzy model based
RBF neural network learning for grid integrated photovoltaic
applications.”. IET Renewable Power Generation, .

DOI: https://doi.org/10.1049/rpg2.12505.

N. Priyadarshi, S. Padmanaban, M. S. Bhaskar, and Baseem Khan.
“An experimental performance verification of continuous mixed
P-norm based adaptive asymmetrical fuzzy logic controller for
single stage photovoltaic grid integration.”. IET Renewable Power
Generation, .

DOI: https://doi.org/10.1049/rpg2.12410.

N. Priyadarshi, P. Kiran Maroti, and Baseem Khan. “An adap-
tive grid integrated photovoltaic system with perturb T-S fuzzy
based sliding mode controller MPPT tracker: An experimental
realization.”. IET Renewable Power Generation, .

DOI: https://doi.org/10.1049/rpg2.12738.

A. Singh Chauhan, R. Singh, N. Priyadarshi, B. Twala, S. Suthar, and
S. Swami. “Unleashing the power of advanced technologies for
revolutionary medical imaging: pioneering the healthcare fron-
tier with artificial intelligence.”. Discover Artificial Intelligence,
2024.

DOI: https://doi.org/10.1007/s44163-024-00161-0.

2345-3796[https://doi.org/10.57647/j.mjee.2025.1902.28]


https://doi.org/10.1007/s40095-015-0196-7
https://doi.org/10.1016/j.csite.2024.104924
https://doi.org/10.1109/TSTE.2021.3077001
https://doi.org/10.1016/j.geomorph.2023.108686
http://repository.supsi.ch/id/eprint/12136
https://doi.org/10.1109/LGRS.2021.3107139
https://doi.org/10.1049/rpg2.12654
https://doi.org/10.1109/JSYST.2019.2949083
https://doi.org/10.1049/rpg2.12638
https://doi.org/10.1049/rpg2.12505
https://doi.org/10.1049/rpg2.12410
https://doi.org/10.1049/rpg2.12738
https://doi.org/10.1007/s44163-024-00161-0
https://doi.org/10.57647/j.mjee.2025.1902.28

	Introduction
	Methodology
	Fuzzy system architecture adapted by RLS
	Defects encountered in the study panel
	Design of fuzzy logic descriptor
	Voltage/current measurement
	Power loss analysis
	Temperature-based models and heat exchange

	Quality indices of fuzzy partitions and the recursive adaptation factor
	Conclusion

