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Abstract:
Emotions play an important role in our daily activities, decision-making, and artificial intelligence needs
to identify emotions to interact constructively with its audience. In this paper, an intelligent method for
two-dimensional emotion recognition is proposed. The ECG signal available in the DREAMER database
has been used to recognize emotions because of the high correlation of this signal with emotions and easy
recording. First step for valence and arousal recognition, the ECG signal is entered into the deep learning
network, which is a combination of CNN and LSTM. CNN performs feature extraction and LSTM performs
data classification. The attention mechanism aims to optimize the weights and improve the performance
of the network, overseeing the proposed deep learning network. Using the proposed method, valence and
emanation were identified with 95% and 94% accuracy, respectively. The proposed hybrid network is very
suitable for high-dimensional data, and the use of the attention mechanism helps to improve the performance
of the network by preventing overfit and getting stuck in local optimal.
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1. Introduction

Emotions are one of the critical factors in creating human
desires, choices, and behaviors [1]. Therefore, recogniz-
ing emotions plays a significant role in improving people’s
mental quality and human-computer interaction [2]. Us-
ing smart devices, robots, and artificial intelligence without
recognizing human emotions and feelings is practically im-
possible. In the future, intelligent systems will not work
without emotional interaction with humans [3]. By creating
systems that understand and analyze human emotions well,
we can hope for efficient human-computer interaction [2].
Emotions are identified in two classical and dimensional
ways [4]. In the classic system, a limited number of emo-
tions are labeled, such as anger, anger, disgust, etc., and
a person’s emotions are placed in several different groups.
Due to the complexities of emotions, the classical method
cannot be helpful. In dimensional diagnosis, various di-
mensions of a person’s emotions are examined. One of the
most famous dimensional models is the two-dimensional

model that Russel introduced in 1980 [5], which explores
the valance and arousal state for emotions and examines the
momentary feeling of a person according to the low or high
level of each [6]. Fig. 1 shows the two-dimensional diagram
of emotions. The complexity of emotional states is more
challenged in dimensional models. It is believed that in the
discrete model, due to the oversimplification of emotions,
some emotional experiences are ignored, and some are lost
[6, 7].
Valence concerning an emotional state expresses the degree
of pleasantness of the feeling [8]. Arousal expresses the
intensity of an emotional state. According to figure 2, in
the two-dimensional model, four states express the person’s
feelings: high valance-high arousal (HVHA), high valance-
low arousal (HVLA), low valance-high arousal (LVHA)
and low valance-low arousal (LVLA). Suppose a person is
in a situation that is high in terms of valance and high in
terms of arousal. In that case, he is probably experiencing
a positive and intense emotional state, such as excitement.
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Figure 1. 2D emotion state.

Our primary goal in the proposed method is to identify these
four emotional regions.
Artificial intelligence must identify people’s emotions to
interact efficiently with its audience. For this reason, much
research has been presented in recent years to provide in-
telligent emotion-recognition systems [9–11]. Intelligent
methods of identifying emotions are classified into two cat-
egories: non-contact methods (using photos (facial images)
[12, 13], writing and text [14], audio, visual modalities [15],
eye movement [16], and speech [17]) and contact methods
(using physiological signals such as EEG [18], ECG [19],
GSR [20]). Among the mentioned methods, physiological
signals are the best option because a person can hide his
feelings in facial images or sounds. Still, they cannot in-
terfere with the physiology of their body [21]. EEG and
ECG are the most popular for identifying emotions among
the physiological signals. However, EEG is complex to
record, and because of its valuable information, it is only
helpful for clinical purposes [22]. The ECG signal offers
less information than the EEG, but its easy recording can be
beneficial for many purposes. There is also a special rela-
tionship between emotion and ECG signal [23]. Therefore,

the ECG signal is also used in the proposed method.
In line with the automatic identification of emotions us-
ing physiological signals, the studies are divided into two
categories: classical machine learning methods and deep
learning methods. The first categories of signal processing
and emotion recognition operations are usually performed
using manual feature extraction and feature classification us-
ing classic classifiers [24]. Dujaili et al. [25] used SVM and
KNN classifiers to identify emotions. The extracted features
were classified using speech features such as Fourier, SVM,
and KNN. Liu et al. [26] Identified people’s feelings using
the optimized combination of genetic algorithm and SVM
classifier. Hasnul et al. [27] Identified emotional states
using the ECG signal and the K-nearest neighbor classifier.
Gao et al. [28] recognition of three emotional states, happy,
neutral, and sad, using wavelets feature extraction and SVM
classifier. By manually extracting the features, it is possible
to lose important information, and selecting the appropriate
features and classification is challenging. In this article, an
attempt has been made to automatically perform the steps
manually using the machine learning method.
Researchers have very welcomed the use of deep learning

Figure 2. Flowchart of the proposed method.
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networks in recent years. One of the advantages of these
networks is the automatic performance of operations related
to signal processing. Fan et al. [23] identified arousal and
valance in emotions using ECG signals and deep learning
networks. Their proposed method uses the attention mecha-
nism in the convolutional deep learning network, improving
work performance. Wang et al. [29] a combination of EEG
and ECG signals was used to study emotions. They fed
the raw signal into a deep LSTM network and discretely
identified emotional states. Wang et al. [30] Emotions are
continuously identified using a deep convolutional network
and a combination of EEG signals and facial expressions.
EEG signals are complex to record and cannot be used daily.
In this article, an attempt has been made to use a signal
related to emotions, which has a more straightforward struc-
ture than EEG. The classical method is highly dependent on
parameter setting. It is also challenging to find the appropri-
ate feature, and such information may need to be recovered
during manual feature extraction. Deep learning methods
have solved these two defects of the classical method. Deep
learning methods automatically perform processing oper-
ations and provide the desired output. In addition, deep
learning networks are resistant to noise [31].
Due to being sensitive to noise and high sensitivity to setting
parameters and features, machine learning methods cannot
be suitable for identifying emotions. On the other hand,
deep learning networks such as CNN, which were recently
used to identify emotions, do not have high accuracy in clas-
sification and cannot be a suitable option for everyday use.
In this method, we are trying to combine machine learning
and deep learning methods to provide a deep multitasking
network using the capabilities of any deep learning network.
In this paper, a deep learning hybrid network is used to
detect the dimensions of emotions using an ECG signal.
Since each deep learning network has its Advantages, we
have tried to achieve the desired results in this study by
using their combination. For this reason, a CNN-LSTM
hybrid network is used. The convolutional neural network
has a high ability to identify the feature map and learn the
model. Due to its memory structure and previous informa-
tion review, the LSTM network can highly classify data
among deep learning networks. Using this ability of LSTM
and CNN’s high ability in preparing feature maps leads to
improved classification. ECG information. To optimize the
weights and improve the performance of the CNN-LSTM
model, the attention mechanism is used in the proposed
method, which updates the weights during all processing
stages to reach the optimal weight. The proposed attention-
based network is very suitable for high-dimensional and
large-volume data. In high-dimensional data, it is essential
to adjust the weight so the network can be trained well (not
stuck in an optimal place or overfit).
Contributions in this paper include:

• Using a hybrid deep learning network that uses two
separate deep networks for automatic feature map ex-
traction and classification. LSTM has a high ability in
classification, and CNN has a high ability to prepare
feature maps. In this article, the capabilities of these
two networks are used to design a hybrid deep-learning

network.

• Optimizing the weights of the combined network us-
ing the attention mechanism to achieve the highest
accuracy of the CNN-LSTM network.

• ECG signals are used to identify emotions with easy
registration and high interaction with emotions.

The article’s sections are as follows: in the second part, the
data used, the CNN and LSTM network, and the attention
mechanism are discussed. In the third part, we examine the
results of network attention-based CNN-LSTM simulation,
and in the last part, the discussion and conclusions are
discussed.

2. Materials and methods
This article uses a hybrid deep learning method using CNN
and LSTM networks based on the attention mechanism.
The single-channel ECG signal is entered into the proposed
network to identify the dimensions of emotions. Figure 2
shows the block diagram of the proposed method. 1D-CNN
prepares the feature map, which goes to LSTM for classifica-
tion. Finally, the desired classes are classified in the softmax
layer. The proposed method uses the DREAMER database
along with the CNN-LSTM network. Single-channel ECG
is considered to be the input of the deep network. The out-
puts of the proposed network are examined in two stages.
In the first stage, high and low valence and arousal values
are calculated and discussed in 2 classes. Then, HAHV,
HALV, LAHV, LALV modes are calculated and analyzed
in a 4-class classification. First, the DREAMER database is
examined.

2.1 Database
The DREAMER database was introduced in 2018 and in-
cludes ECG and EEG signals from 23 people (For each per-
son, we have 18 signal recordings using different stimuli)
[32]. Audio and visual stimuli stimulate people’s feelings,
and then each person’s feelings are labeled by experts in
terms of capacity and arousal. People’s EEG and ECG sig-
nals are recorded by wearable and portable systems that
allow recording in different situations of daily activities.
This database considers the numbers 1-5 for each valance
and arousal state. Numbers 4 and larger are considered
“high,” and numbers smaller than 4 are considered “low”
[33]. Table 1 shows the additional information from the
database.

2.2 Proposed network (attention-based CNN-LSTM)
The proposed network comprises CNN, LSTM, and an at-
tention mechanism. We will examine each of these parts
below.

1. Convolutional Neural Network

Convolutional neural networks (CNN) are a type of MLP
artificial neural network with more hidden layers and neu-
rons, which can learn complex patterns using their hidden
layers [34]. Each CNN consists of three essential parts: the
convolutional, pooling, and Fully connected layers. The
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Table 1. Information on the DREAMER database.

Class Full class name Class distribution Number of ECG sample

HAHV High arousal-high valence 18% 76

HALV High arousal-low valence 26% 105

LAHV Low arousal-high valence 21% 87

LALV Low arousal-low valence 35% 146

convolutional layer uses network vision by using the rela-
tionship of its neurons and recognizes the pattern between
the input data [35]. The pooling layer is placed after each
convolutional layer and performs the feature dimension re-
duction operation [34]. The Fully Connected layer is placed
at the end of the network architecture and performs data
classification operations.
In the proposed method, five conventional layers are used,
and the filter dimensions of the layers are 8, 16, 32, 32,
and 64, respectively. The ReLu activator function is added
after each conventional layer to achieve a unified feature
map. The 1D-CNN network’s Full connection layer has
been moved to the end of the network architecture. Before
using the fully connected layer, the LSTM network was
used, and we will examine this network in the following.

2. Long Short-Term Memory Network

An advanced, recurrent neural network (RNN) type is
long short-term memory (LSTM), first introduced in 1997.
LSTM networks have a strong memory, and according to
their memory, they can consider before and after the time
series and make the best choice for data classification [36].
These networks also have a forgetting gate and can remove
redundant data over time to make the best decision.
Due to their high classification ability, these networks have
been used for data classification in the proposed method.
The LSTM classifier is placed before the softmax layer, and
combining LSTM and softmax provides the best sentiment
classification results.

3. Attention mechanism

LSTM network is used for high-dimensional data, gradient
distortion occurs due to the large volume of data, leading
to the network’s inefficiency. For this reason, an attention
mechanism has been introduced to optimize the weights
and provide network training with the highest classification
accuracy [37].
Fig. 3 shows the layout of the proposed deep-learning net-
work. As shown in figure 3, the proposed network consists
of 5 convolutional layers, one LSTM layer, one attention
mechanism layer, and softmax. To get the best number of
convolutional layers, several recent articles were reviewed
in this regard [2, 23, 38], and then five layers were selected
through different iterations. The size of the 5-layer convolu-
tional filter three and the number of filters are 16, 32, 32, 64,
and 64, respectively. Also, the LSTM used in the proposed
method has 128 hidden units (neurons). Hyperparameter
information of the proposed network is shown in Table 2.

Table 2. Deep learning model parameters.

Parameters Value

1 Number of convolutional layers 5

2 Number of LSTM layer 1

3 Maximum epoch 400

4 Mini Batch Size 128

5 Initial Learn Rate 0.95

6 Learn Rate Drop Factor 0.2

7 L2 Regularization 0.01

Figure 3. Layout of the proposed deep-learning network.
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3. Results

In this article, A network is presented to identify emotions
using a combination of two networks, 1D-CNN and LSTM;
it performs ECG signal processing and provides the output
of different emotional states regarding valance and arousal.
The simulations of the proposed method have been done
in MATLAB 2023b. The k-fold method is used in the pro-
posed evaluation method, and all the values are presented
after the review. The black curve in Fig. 4 shows the accu-
racy values after the evaluation.
Table 3 shows the accuracy, sensitivity, and specificity val-
ues for different classifications of emotions. In identifying
continuous emotions, we face multi-class problems; first,
high and low states for valence and arousal are identified,
then in a four-class (HAHV, HALV, LAHV, LALV) classifi-
cation.
Fig. 4 shows the proposed network’s convergence and re-
duction of classification error for different classifications of
Valance and Arousal.

Fig. 5 shows the confusion matrix resulting from the pro-
posed method’s simulation. According to figure 5, the pro-
posed method can identify the low valence and low arousal
classes.
Much research has been done on two-dimensional identifi-
cation of emotions in recent years. Table 4 shows the results
of some research compared to the proposed method. The
ECG signal is one of the best options for examining emo-
tions due to its high relationship with emotions and easier
recording than EEG. However, due to the limited informa-
tion on ECG, recent research providing different machine
learning and deep learning methods could not provide high
accuracy to the identification of emotions using this signal,
and this issue makes it impossible to use these methods in
the clinic in the future. As shown in Table 4, the results of
the proposed method improve the overall performance of
emotion recognition.

Figure 4. Convergence and reduction of classification error of the proposed network. (a): High-low valance, (b): High-low arousal, (c) 4 Class (HAHV,
HALV, LAHV, LALV).

Table 3. Accuracy, sensitivity, and specificity for different classifications of emotions.

Emotion class Sensitivity Specificity Accuracy

Low-high valence 0.89 0.91 0.95

Low-high arousal 0.925 0.92 0.94

4 Class 0.89 0.87 0.92
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Figure 5. Confusion matrix of simulation of the proposed method.

4. Conclusion

A hybrid deep-learning method for valence and arousal
detection has been presented. The deep network combines
CNN and LSTM, where CNN prepares the feature map
from the ECG signal, and the data is classified by LSTM.
The performance of the hybrid deep network should be
such that it considers the advantage of each deep learning
network. CNN has a high ability to extract features, LSTM
has a high ability to classify data, and the combination of
these two networks provides good results in identifying
emotions. One of the strengths of the proposed method is
the use of the attention mechanism in the deep network,
which, with its performance, optimizes the weights and
increases the classification accuracy. The proposed hybrid
network is very suitable for high-dimensional data (such as
emotion data).
In future research to identify emotions, it is better to
determine the domain dimension in addition to valence
and arousal to understand all feelings better. It is also
possible to increase the accuracy of emotion classification
by providing other deep hybrid networks to the point where
it is suitable for daily use.
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Table 4. Results of some research compared to the proposed method.

Ref. Year Database Signal Method Accuracy

Hsu [39] 2017 Self-record ECG LS-SVM
Valance: 82%
Arousal: 72%

Nita [40] 2022 Dreamer ECG CNN
Valance: 95%
Arousal: 85%

Cheng [21] 2020 Dreamer EEG Deep Forest
Valance: 89%
Arousal: 90%

Khan [41] 2023 Dreamer ECG Adaboost ML
Valance: 74%
Arousal: 75%

Proposed method 2024 Dreamer ECG
Attention-based

CNN-LSTM
Valance: 95%
Arousal: 94%
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