Document Type : Reseach Article

Authors

1 Faculty of Electrical and Electronic Engineering, University Tun Hussein Onn Malaysia, Johor, Malaysia.

2 Liming Vocational University, Quanzhou, China.

3 Faculty of Engineering Technology, University Tun Hussein Onn Malaysia, Pagoh, Johor, Malaysia.

10.57647/j.mjee.2025.1902.30

Abstract

In this study, reduced graphene oxide (rGO) was synthesized by reducing graphene oxide (GO) using Vitamin C (VC) as a reducing agent, to create a conductive electrode material. The structural and property effects of VC/GO mass ratios, reaction temperature and time on rGO were investigated in detail. Structural characterization and conductivity assessments of both GO and rGO were conducted using powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, and a four-probe conductivity tester. The results showed that VC as a reducing agent effectively reduces the functional groups on the GO surface, forming C=C bonds, while also increasing the d-spacing of rGO. The increase of reaction temperature promotes the ionization and decomposition of VC, thereby improving the reaction efficiency. The synthesized rGO exhibited a porous network with an irregular structure formed by interconnected, wrinkled nanosheets. Optimal conditions were
observed when the VC/GO mass ratio was 1:1, the reaction temperature was 100 °C, and the reaction time was 3 hours. Under these conditions, the synthesized rGO material achieved a resistivity of 1.82 Ω·cm and a resistance value of 2.75 Ω, positioning it as an excellent electrode material. 

Keywords

  1. Ahmed, A. Singh, S. J. Young, V. Gupta, M. Singh, and S. Arya, “Synthesis Techniques and Advances in Sensing Applications of Reduced Graphene Oxide (RGO) Composites: A Review,” Composites Part A: Applied Science and Manufacturing, vol. 165, pp.107373 , Dec. 2022. Available:https://doi.org/10.1016/j.compositesa.2022.107373
  2. M. Dimiev and J. M. Tour, “Mechanism of Graphene Oxide Formation,” ACS Nano, vol. 8, no. 3, pp. 3060-3068, Mar. 2014.Available:https://doi.org/10.1021/nn500606a
  3. Buzaglo, M. Shtein, S. Kober, R. Lovrinčić, A. Vilan, and O. Regev, “Critical Parameters in Exfoliating Graphite into Graphene,” Physical Chemistry Chemical Physics, vol. 15, no. 12, pp. 4428-4435, Jun. 2013. doi.org/10.1039/C3CP43205J
  4. Castaldo, R. Avolio, M. Cocca, M. E. Errico, M. Lavorgna, J. Šalplachta, C. Santillo, and G. Gentile, “Hierarchically Porous Hydrogels and Aerogels Based on Reduced Graphene Oxide, Montmorillonite and Hyper-Crosslinked Resins for Water and Air Remediation,” Chemical Engineering Journal, vol. 430, pp.133162 , Feb. 2022. https://doi.org/10.1016/j.cej.2021.133162
  5. Chen, L. Li, and L. Guo, “An Environment-Friendly Preparation of Reduced Graphene Oxide Nanosheets via Amino Acid,” Nanotechnology, vol. 22, no. 32, pp. 325601, July.2011. doi.org/10.1088/0957-4484/22/32/325601
  6. Das, B. Mandal, and S. Gumma, “Engineering of Structural and Surface Functional Characteristics of Graphite Oxide Nanosheets by Controlling Oxidation Temperature,” Applied Surface Science, vol. 504, pp. 144444, Feb.2020. doi.org/10.1016/j.apsusc.2019.144444
  7. Fang, Y.Zhang, C.Miao, K.Zhu, Y.Chen , F. Du, J. Yin , K.Ye, K. Cheng, J.Yan, “MXene-derived defect-rich TiO 2@ rGO as high-rate anodes for full Na ion batteries and capacitors, ” Nano-Micro Letters, vol.12,pp. 1–16. Jun.2020. doi.org/10.1007/s40820-020-00471-9
  8. J. Fernández-Merino, L. Guardia, J. I. Paredes, S. Villar-Rodil, P.Solís-Fernández, A.Martínez-Alonso, J. M. D. Tascón, "Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions," The Journal of Physical Chemistry C,vol.114,no.14,pp. 6426–6432. March. 2010. doi.org/10.1021/jp100603h
  9. Gao, F. Liu, Y.Liu, N.Ma, Z.Wang, X. Zhang, "Environment-friendly method to produce graphene that employs vitamin C and amino acid,"Chemistry of Materials, vol.22,no.7,pp. 2213–2218, Feb. 2010. doi.org/10.1021/cm902635j
  10. Ikram, M. A. Bari, M. Bilal, F.Jamal, W. Nabgan, J.Haider, A.Haider, G.Nazir, A. D.Khan, K.Khan, A. K.Tareen, Q. Khan, G.Ali, M.Imran, E.Caffrey, M. Maqbool, "Innovations in the synthesis of graphene nanostructures for bio and gas sensors," Biomaterials Advances, vol.145, pp. 213234 , Dec. 2022. doi.org/10.1016/j.bioadv.2022.213234
  11. Joshi, A. De Adhikari, A. Dey, I. Lahiri, "Green reduction of graphene oxide as a substitute of acidic reducing agents for supercapacitor applications," Materials Science and Engineering: B, vol.287, pp.116128, Jan. 2023 doi.org/10.1016/j.mseb.2022.116128
  12. Kumar, W. Dias, R. J. G. Rubira, A. V.Alaferdov, A. R.Vaz, R. K.Singh, S. R.Teixeira, C. J. L. Constantino, S. A. Moshkalev, "Simple and fast approach for synthesis of reduced graphene oxide–MoS 2 hybrids for room temperature gas detection,". IEEE Transactions on Electron Devices, vol.65,no.9,pp. 3943–3949, Jul.2018. doi.org/ 10.1109/TED.2018.2851955
  13. Kumar, E. Joanni, W. K.Tan, A. Matsuda," Microwave-aided ultra-fast synthesis of Fe3O4 nanoparticles attached reduced graphene oxide edges as electrode materials for supercapacitors," Materials Today Communications, vol.38, pp.108438. Mar.2024. doi.org/10.1016/j.mtcomm.2024.108438
  14. Kumar and A. Kaur, “Significantly Enhanced Photo Response of Hydrazine Hydrate Reduced Graphene Oxide Films Modified with Swift Heavy Ion Irradiation of Silver (Ag8+) Ions,” Optical Materials, vol. 152, pp. 115528,Jun.2024. doi.org/10.1016/j.optmat.2024.115528
  15. K. Lee, S. Lee, Y. I. Kim, J. G. Kim, B. K. Min, K. I. Lee, Y. Park, and P. John, “The Seeded Growth of Graphene,” Scientific Reports, vol. 4, article c, pp. 1-5, July.2014. doi.org/10.1038/srep05682
  16. Liu, P. Wang, C. Liu, Y. Deng, S. Dou, Y. Liu, J. Xu, Y.Wang, W.Liu, W. Hu, "Nanomanufacturing of RGO‐CNT hybrid film for flexible aqueous Al‐ion batteries," Small, vol.16,no.37,pp. 2002856. Mar .2020. doi.org/10.1002/smll.202002856
  17. Lundstedt, R. Papadakis, H. Li, Y. Han, K. Jorner, J. Bergman, K. Leifer, H. Grennberg, and H. Ottosson, “White‐Light Photoassisted Covalent Functionalization of Graphene Using 2‐Propanol,” Small Methods, vol. 1, no. 11, pp. 1700214,Oct.2017. Available:https://doi.org/10.1002/smtd.201700214
  18. Ma, F. Tang, B. Yang, Q. Guo, P. Li, and L. Yu, “Vitamin C-Reduced Graphene Oxide/Fe3O4 Composite for Simultaneous Removal of Aflatoxin B1 and Benzo(a)Pyrene in Vegetable Oils,” LWT, vol. 203, pp. 116342, July. 2024. doi.org/10.1016/j.lwt.2024.116342
  19. R. Madhuri, K. Kavyashree, A. R. Lamani, H. S. Jayanna, G. Nagaraju, and S. Mundinamani, “Reduction of Graphene Oxide by Phyllanthus Emblica as a Reducing Agent – A Green Approach for Supercapacitor Application,” Materials Today: Proceedings, vol. 49, pp. 865-869, 2021. Available:https://doi.org/10.1016/j.matpr.2021.06.173
  20. Mindivan, M.Göktaş,"Effects of various Vitamin C amounts on the green synthesis of reduced graphene oxide," Materialpruefung/Materials Testing, vol.61, no.10, pp.1007–1011, Sept. 2019.Available:https://doi.org/10.3139/120.111416
  21. B. Murphy, N. V. Apollo, P. Unegbu, T. Posey, N. Rodriguez-Perez, Q. Hendricks, F. Cimino, A. G. Richardson, and F. Vitale, “Vitamin C-Reduced Graphene Oxide Improves the Performance and Stability of Multimodal Neural Microelectrodes,” iScience, vol. 25, no. 7, pp. 104652, July.2022.Available:https://doi.org/10.1016/j.isci.2022.104652
  22. Palanisamy, V. Velusamy, S. W. Chen, T. C. K. Yang, S. Balu, and C. E. Banks, “Enhanced Reversible Redox Activity of Hemin on Cellulose Microfiber Integrated Reduced Graphene Oxide for H2O2 Biosensor Applications,” Carbohydrate Polymers, vol. 204, pp. 152-160, Sep. 2018.Available:https://doi.org/10.1016/j.carbpol.2018.10.001
  23. Rani, R. Dahiya, M. Bulla, R. Devi, K. Jeet, A. Jatrana, and V. Kumar, “Hydrothermal-Assisted Green Synthesis of Reduced Graphene Oxide Nanosheets (RGO) Using Lemon (Citrus Limon) Peel Extract,” Materials Today: Proceedings, May. 2023.Available:https://doi.org/10.1016/j.matpr.2023.04.419
  24. A. Sahito, K. C. Sun, A. A. Arbab, and S. H. Jeong, “Synergistic Effect of Thermal and Chemical Reduction of Graphene Oxide at the Counter Electrode on the Performance of Dye-Sensitized Solar Cells,” Solar Energy, vol. 190, pp. 112-118,Sept.2019.Available:https://doi.org/10.1016/j.solener.2019.08.012
  25. Sahoo, A. Milton, A. Sood, R.Kumar, S. Choi, C. K. Maity, S. S. Han,"Microwave-assisted synthesis of perovskite hydroxide-derived Co3O4/SnO2/reduced graphene oxide nanocomposites for advanced hybrid supercapacitor devices," Journal of Energy Storage, vol.99, pp.113321. Oct. 2024. Available:https://doi.org/10.1016/j.est.2024.113321
  26. D. Sontakke, S. Tiwari, and M. K. Purkait, “A Comprehensive Review on Graphene Oxide-Based Nanocarriers: Synthesis, Functionalization and Biomedical Applications,” FlatChem, vol. 38, pp.100484, Jan. 2023.Available: https://doi.org/10.1016/j.flatc.2023.100484
  27. Tasis, K. Papagelis, P. Spiliopoulos, and C. Galiotis, “Efficient Exfoliation of Graphene Sheets in Binary Solvents,” Materials Letters, vol. 94, pp. 47-50,Mar.2013.Available:https://doi.org/10.1016/j.matlet.2012.12.027
  28. Xian, R. You, J. Zhang, J. Wang, M. Ni, X. Zhang, S. Liu, Y. Zhang, and Y. Lu, “Preparation of Urea-Modified Graphene Oxide-Gold Composite Detection of Nitrite,” Applied Surface Science, pp. 152917, 2022. doi.org/10.1016/j.apsusc.2022.152917
  29. Yang, Z. Tao, Q. Kong, J. Li, X. Li, X. Yan, J. Liu, Y.Tong, Z. Liu," Preparation of graphitic foil with high thermal conductivity using Vitamin C as reductant and binder," Chemical Engineering Journal, vol.473, pp.145330, Oct. 2023. doi.org/10.1016/j.cej.2023.145330
  30. Zhang, H. Wang, J. Liu, and C. Bao, “Measuring the Specific Surface Area of Monolayer Graphene Oxide in Water,” Materials Letters, vol. 261, p.127098,Feb.2020.Available:https://doi.org/10.1016/j.matlet.2019.127098
  31. Zhang, L. Zhang, and C. Zhou, “Review of Chemical Vapor Deposition of Graphene and Related Applications,” Accounts of Chemical Research, vol. 46, no. 10, pp. 2329-2339,Mar.2013.Available:https://doi.org/10.1021/ar300203n