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1. Introduction from COPD globally in 2019, ranking it as the third most
prevalent cause of mortality. The majority of mortality from
COPD in individuals under the age of 70 is concentrated in
low- and middle-income (LMIC) countries. Smoking is re-
sponsible for more than 70% of COPD cases in high-income
nations. Smoking is responsible for around 30 —40% of
COPD patients in LMIC [5, 6].

Thorough assessments are essential for the early diagnosis
of COPD in clinical practice. The diagnostic instruments for
early COPD are classified into four categories: risk factor
identification, physiological assessments, imaging studies,
and clinical or laboratory evaluations. Risk factors include
tobacco use, childhood infections, respiratory illnesses, air
pollution, and genetic predispositions. Physiological assess-
ments encompass airway hyperresponsiveness, cardiovascu-
lar exercise testing, and lung clearance index measurement.
Imaging studies encompass chest CT, parametric response
mapping, hyperpolarized MRI, chronic bronchitis symp-

Chronic Obstructive Pulmonary Disease significantly bur-
dens patients’ daily lives and is a dangerous long-term lung
ailment, gradually reducing lung airflow. Emphysema and
chronic bronchitis are the two most notable pulmonary phe-
notypes in the COPD spectrum [1]. The primary causes of
COPD are a history of smoking and additional risk factors,
which include exposure to biomass, outdoor air pollution,
occupational exposure to chemicals and vapors, and recur-
rent lower respiratory tract infections. The sixth most preva-
lent global cause of illness is COPD [2]. The most frequent
COPD symptoms include breathing problems, tiredness,
and a persistent cough. COPD increases the risk of other
diseases. These include heart disease, lung cancer, pneu-
monia, flu-like lung infections, brittle bones, weak muscles,
depression, and anxiety [3, 4]. The World Health Organi-
zation (WHO) documented a total of 3.23 million deaths
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toms, and the 6-minute walk test in clinical characteristics
[7, 8].

The exogenous and endogenous in origin are present in the
breath in numbers that are yet unknown. Endogenous VOCs
come from all parts of the airway because of metabolic pro-
cesses in healthy and sick people and from the bloodstream
through an interface between alveoli and capillaries. Ex-
ogenous VOCs can be changed by physical and biological
airway mechanisms [9]. Physical exercise alters the compo-
sition of exhaled volatiles, increasing breath pH. Alterations
in volatiles may account for an elevation in EBC pH [10].
Similar to physical exercise, modifications in exhaled gases
during pregnancy should be considered when conducting
breath tests on pregnant women with respiratory disorders
[11].

These molecules’ accurate detection and quantification are
achieved through gas chromatography-mass spectrometry
(GC-MS). High costs characterise GC-MS, the necessity
for large equipment, and the requirement for specialized ex-
pertise. E-noses are cost-effective and user-friendly. These
devices cannot identify and quantify molecules in gas mix-
tures; however, they can compare and discriminate gaseous
samples based on the profiles of volatile substances [12—
14].

This study employs a cost-effective e-nose system to ana-
lyze the VOC profiles of patients with COPD and healthy
controls in the exhaled air. The device aims to differentiate
COPD patients from healthy controls by analyzing varia-
tions in VOC profiles. The Bi-LSTM algorithm classifies
subjects into two distinct groups.

This paper is structured as follows: Section 2 outlines the
literature concerning the e-nose system. Section 4 outlines
the materials and methods employed in this study. Section 6
presents the results and discussion regarding the sensor ar-
ray responses and data analysis. Section 7 concludes the
work.

2. Related work

Eight gas sensors were created by Binson et al. [15] to
generate an e-nose system. Principal component analy-
sis (PCA), linear discriminant analysis (LDA), and two-
dimensionality reduction approaches were employed, and
the ensemble learning methodology XGBoost was used to
create the classification model. The system is tested on 30
COPD patients and 40 healthy controls to distinguish the
breath samples. Better classification results were obtained
by the PCA-XGBoost model, which had 90% specificity,
88.57% accuracy, and 86.67% sensitivity.

Binson et al. [16] focused on the sensor selection procedure,
the configuration of sensors into an array, the design and
execution of the circuit, the sampling technique, and an
algorithm for data interpretation. The clinical feasibility of
the system was assessed in 27 lung cancer patients, 22 in-
dividuals with COPD, and 39 healthy controls, comprising
both smokers and non-smokers. The classification model
utilizing a support vector machine (SVM) achieved an ac-
curacy of 88.79%, sensitivity of 89.58%, and specificity of
88.23% for lung cancer and 78.70%, 72.50%, and 82.35%
for COPD, respectively.
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Cuastumal, Carlos A., et al. designed and created the SOE-I,
a wireless electronic scent system for disease detection and
monitoring using exhaled breath. The sensory system has
been tested on patients with respiratory problems. A sensory
system with eight metal oxide gas sensors has been used to
condition the breath sample. The PCA method and linear
discriminant analysis approach were used to categorize the
data set, yielding a clear differentiation of the samples and
92% variance [17].

Further, the study by Maribel Rodriguez-Aguilar et al. aims
to distinguish between healthy individuals, people with
COPD who smoke (COPD-S), and people with COPD
who breathe indoor air pollution (COPD-HAP). A cross-
sectional study was done with 294 participants-88 with
smoking-related COPD, 28 with HAP, and 178 healthy
persons-. The cyranose320 electronic nose is used to an-
alyze breath prints. The diagnostic power of the test has
been assessed using receiver operating characteristic (ROC)
curves, PCA, CDA, SVM, and group data. According to
the findings, patients with COPD have a distinct breath pat-
tern from that of healthy individuals, which accounts for
93.8% of the variability, 97.8% of correctly predicted out-
comes, 100% of correctly classified outcomes, and 96.5%
and 100%, respectively, of positive and negative predictive
values [21]. The n = 364 physician-reported COPD diag-
noses have been included by Job JMH van Bragt et al. The
data analysis has used processing of the e-nose signal, a cor-
rection for ambient air, and statistics using PCA and LDA.
LDA may distinguish between patients who have recently
experienced an exacerbation and those who have not [22].

The exhaled breath profiles, as evaluated by GC-MS or E-
nose, differ between stable disease and exacerbations, as per
the theory proposed by P. van Velzen et al. These profiles
can be used as biomarkers for COPD exacerbations. Using
analysis of covariance ANCOVA, the symptom scores have
been connected to the single-variable results of GC-MS and
E-nose. Following PCA multivariate modelling, paired t-
tests were carried out. Out of 68 patients, 16 breath samples
were taken at three points, and 31 experienced an exacer-
bation. The classification of breath patterns for baseline vs.
exacerbation and exacerbation vs. recovery was 71% and
78%, respectively [23].

Martin Thomas Gaugg et al. have determined the affected
pathways by employing VOC profiles in breathed air. Using
real-time secondary electrospray ionization high-resolution
MS, they compared the exhaled breath of 26 frequent and 26
infrequent exacerbators matched for age, sex, and smoking
history. Utilizing a Wilcoxon rank-sum test, the metabolites
have been found. They have captured an ROC-AUC of 0.88
[24].

A. C. Hauschild et al. examined the breath samples of 35
healthy individuals in the control group and 84 volunteers
with COPD or both COPD and bronchial carcinoma. They
have standardized and incorporated various statistical learn-
ing methodologies to offer a thorough overview of their
capacity for differentiating the patient groups. They have
distinguished between COPD patients and healthy controls
in MCC/IMS chromatograms. They ascertained that the
accuracy of the COPD vs CG beast was 94%, and the accu-
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racy of the CG vs COPD vs COPD + BC beast was 79%
[25, 26]. Simone et al. [27] emphasize the necessity of
normalization in technical aspects, such as sensor drift and
statistical methods, as well as in sampling factors, including
expiratory flow rate and patient-related variables like diet
and smoking, to enhance the comparability of results.
Horvath et al. [28] want to establish technical standards
and guidelines for sample collecting and analytical meth-
ods while emphasizing future research goals. The current
document evaluates recent breakthroughs and technological
advancements in EBC and FeNO. The authors do not aim to
offer clinical recommendations regarding disease diagnosis
and management. Binson et al. [40] created an electronic
nose system with five metal-oxide semiconductor gas sen-
sors. The study seeks to distinguish COPD and lung cancer
from control subjects. The gadget underwent testing with
199 volunteers, comprising 93 controls, 55 individuals with
COPD, and 51 lung cancer patients. During the training
and validation phase, the ensemble learning technique XG-
Boost was employed, achieving a classification accuracy of
79.31% for lung cancer and 76.67% for COPD.

Rosdiana et al. [41] developed an electronic nose system for
the diagnosis of tuberculosis (TB) and chronic obstructive
pulmonary disease (COPD) via the artificial neural network
(ANN) approach. The study seeks to ascertain the role of
the electronic nose in identifying tuberculosis and chronic
obstructive pulmonary disease, as well as to evaluate the
sensor response in the design of the electronic nose utilizing
Arduino ATmega for illness detection. The data is analyzed
quantitatively. Following data analysis, the ANN testing
method was conducted to compare COPD and TB using the
pattern graph. Tuberculosis exhibits a pattern of (22110
1), while Chronic Obstructive Pulmonary Disease displays a
patternof (21110 1). Anant et al. [42] sought to assess the
efficacy of exhaled breath profiles by e-nose in differentiat-
ing COPD and pulmonary TB from lung cancer. The study
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analyzed data from 80 healthy individuals: 70 patients with
COPD, 60 patients with pulmonary tuberculosis, and 113
patients with lung cancer. R programming was employed to
differentiate the algorithms. The classification accuracy for
distinguishing lung cancer from COPD and TB was 70%
and 80%, respectively.

Using metabolic instruments, Binson et al. [43] devel-
oped breath fingerprints in human exhalation to promptly
diagnose lung cancer, COPD, and asthma. The study as-
sessed breath samples from 218 individuals, comprising
48 lung cancer patients, 52 COPD patients, 55 asthma pa-
tients, and 63 healthy controls. The KPCA-XGBoost model
achieved an accuracy of 91.74%, sensitivity of 90.57%, and
specificity of 92.65% for lung cancer prediction; 89.84%,
88.14%, and 91.30% for COPD prediction; and 70.66%,
68.75%, and 72.41% for asthma prediction, respectively.
Binson et al. [44] differentiate lung cancer and COPD from
healthy controls with a metal oxide semiconductor sensor-
based electronic nasal system. The clinical feasibility of
the system was assessed in 32 lung cancer patients, 38 in-
dividuals with COPD, and 72 healthy controls, comprising
both smokers and non-smokers. Supervised classification
algorithms were employed to categorize exhaled breath sam-
ples and quantify the concentration of VOCs inside them.
In distinguishing lung cancer from controls, the k-nearest
neighbours achieved an accuracy of 91.3%, sensitivity of
84.4%, and specificity of 94.4%. For COPD discrimination,
the support vector machine yielded superior results with an
accuracy of 90.9%, sensitivity of 81.6%, and specificity of
95.8%. Table 1 shows the summary of COPD detection.

3. Analytical platforms

The volatiles in exhaled breath samples can be examined
using various analytical spectrometric methods. Numerous
factors must be considered when selecting an analytical
process. The benefits and drawbacks of a specific analytical

Table 1. Summary of the COPD detection.

Ref. Comparison Sample Sample size Analytical Statistical Biomarkers Accuracy
platform approach
[18] COPD  vs. End-Tidal 20-Copd, GC-DMS PLS-DA, VOC:s Patterns 84%
Healthy Breath 6-Healthy ANOVA,
Smokers smokers Kruskal-
Wallis
[19] COPD  vs. Expiratory vi- 30-Copd, E-nose PCA VOC:s Patterns 96%
Asthma tal capacity 20-Asthma,
Vs. Non- 20-Non-
smoking smoking
control s, control, 20-
Smoking Smoking
Control
[20] COPD Vs, —- 52-Healthy TD-GC-MS ANOVA, Linear Alkanes, 89.4%-
Smokers non-smokers, PCA, LDA, Alcohols, Alde- COPD-
VSs. Non- 52-COPD Newman- hydes,  Aromatic = ExSmokers,
Smokers ex-smokers, Keuls test Compound 82.6%-
49- Healthy COPD-
smokers, smokers
37-Smokers
with COPD
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Ref. Comparison Sample Sample size Analytical Statistical Biomarkers Accuracy
platform approach
[29] COPD vs. Alveolar 118-COPD, 63- GC-MS J48, JRIP, Isoprene, Benzene, 73.4%
Healthy Healthy PART Toluene, Hexanal,
Benzaldehyde, Non-
adecane
[30] COPD vs. Mixed 25-COPD, 25- MS Mann- Whit- Acetone —
non-smoking non-smoking ney U test,
controls  vs. controls, 11- KNN.
smoking smoking
controls controls
[31] COPD vs —- 682-COPD, E-Nose PCA, LDA VOCs Pattern 83%
Lung Cancer 211-Lung Can-
cer
[32] COPD Vs, —- 22-COPD, SESI-HRMS  PCA, Amino acids and re- 89%
Control 14-Controls Whitney- lated compounds
Mann U test
[33] COPD vs. Alveolar Air  57-COPD, 100- GC-MS Logistic Re- Hexanal, Heptanal, —-
Healthy Healthy gression Nonanal, Propanoic
acid, Nonanoic acid
[33] COPD vs. Alveolar Air 57-COPD, 100- GC-MS Logistic Re- Hexanal, Heptanal, —-
Healthy Healthy gression Nonanal, Propanoic
acid, Nonanoic acid
[34] COPD vs. End-tidal 45-COPD, 23- MCC/IMS Kolmogorov-  VOCs Patterns 70%
Healthy breath Healthy smok- Smirnov
ers, 28-Healthy test, Kruskal
non-smokers Wallis test
[35] AECOPD Alveolar Air  30-COPD, TD-GC-toF- ANOVA, Cyclohexane, n- 92%
vs. COPD vs. 24-Healthy MS Random butane, 4-heptanone,
Healthy Forest 2-pentanone, n-
heptane, = Methyl
propyl sulfide
[36] COPD vs. Tidal Breath 10- with COPD, E-nose LDA, Mann- VOCs Pattern —_—
with & with- 23-without AAT, Whitney
out AAT 10-Healthy U test,
deficiency vs. Wilcoxon
Healthy signed rank
test
[37] COPD vs. Mixed 50-COPD, GC-MS SVM, Ran- Isoprene, C 16 92%
Healthy 29-Healthy dom Forest hydrocarbon,4, 7-
dimethyl undecane,
2,6- dimethyl-
heptane, 4-methyl-
octane, Hexadecane,
3, 7-dimethyl, 1, 3,
6-octatriene, 2, 4,
6-trimethyl-decane,
Hexanal, Terpineol,
Benzonitrile, Oc-
tadecane, Undecane
[38] COPD vs — 60- Asthma, 21- E-nose PC.A., Carbon Monoxide 88%-COPD
Asthma Fixed asthma, C.D.A. VS. Fixed
39-Classic Asthma,
asthma, 40- 83%- COPD
COPD vs.  Classic
Asthma
[39] COPD vs. —— 23-COPD, FGC E-nose PCA, CDA, Hydrocarbons, Al- —
Healthy 33-Healthy Mann Whit- cohols, Aldehydes
ney U test, or Ketones
Kolmogorov-

Smirnov test
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approach must be considered, and it is necessary to check
whether offline or online sampling is required. The section
below describes the main analytical tools used to study
breath volatiles.

3.1 GC-MS based instrumentation

The most effective method for offline measurements is GC-
MS. It has a high sensitivity that can occasionally fall into
the ppb range and has great potential in identifying and
quantifying unidentified components from complicated bio-
logical matrices. Samples must be collected in specific bags
or absorbent materials and transferred to the laboratories
for GC-MS analysis. As a result, samples must be held for
days or weeks before examination [45].

3.2 PTR-MS and SESI-MS based instrumentation

While breath samples have been analyzed offline using PTR-
MS and SESI-MS, their effectiveness is most significant
when utilized online. Accurate identification of the volatiles
depends on the success of real-time analysis to detect abrupt
changes in volatile concentrations. However, storing the
samples is unnecessary because the tests may be performed
in the patient’s presence. It prevents errors in storage and
breath sample deterioration [46].

PTR-MS and SESI-MS demand competent operators as
GC-MS requires them. There are fewer PTR-MS studies
than GC-MS research because PTR-MS instruments are
expensive. A SESI-MS is inexpensive than a GC-MS but
hasn’t been utilized much [47].

3.3 SIFT-MS based instrumentation

Selected Ion Flow Tube Mass Spectrometry (SIFT-MS)
is designed to allow direct and real-time quantification of
metabolites in humid breath. This method does not require
collecting samples into bags or onto a trap. It might pre-
concentrate trace VOCs or may damage the breath sample.
With a fair degree of precision, SIFT-MS has been used
to identify individual metabolites linked to specific clinical
and physiological states and to directly identify and quantify
many VOC:s in a single breath exhalation from a patient or
volunteer. The sample volume is less than one part per
billion, a detection threshold [48].

3.4 IMS based instrumentation

Ion mobility spectrometry is an analytical tool that can
analyze VOC:s in real-time or close to it. It analyses on
its own or in conjunction with GC columns offering pre-
separation. The instrumentation costs are significantly lower
than the above-described mass spectrometric methods. The
size and power requirements are notably reduced because
no hoover system is needed. IMS, specifically GC-IMS,
is well suited for clinical situations from the maintenance
point of view because of its simplicity and robustness. GC-
IMS and MCC-IMS are also used to increase the analytical
dimensionality [49].

3.5 E-noses based instrumentation

Simple sensors and electronic noses (E-noses) are also com-
ponents of analytical equipment used for online measure-
ments. They are cheap, simple to use, and can monitor real-
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time data using algorithms for pattern recognition. Their
fundamental shortcomings are a lack of selectivity, inability
to detect VOCs, and the possibility of interferences affect-
ing reproducibility, which reduces their dependability and
robustness [50].

4. Material and methods

Convolutional Neural Network (CNN) is a popular deep
learning technique used mostly for image recognition, ob-
ject detection, and picture classification. The CNN network
used real-time tools like Amazon product recommendations,
Facebook face detection, and Google picture search. Con-
volutional, pooling, and fully connected are the three main
layers of the CNN model [51, 52].

The LSTM network, a variant of the RNN, performs ex-
ceptionally well in managing sequential data, time series
analysis, weather forecasting, picture captioning, and text
synthesis tasks [38, 53]. The lengthier sequences network is
recursive in the LSTM sequences using a gating mechanism
that helps it to remember previous data [54]. The network
receives processed input data from the input layers. The
network uses memory cells and cell states to store historical
data. The forget gate determines whether specific informa-
tion is necessary or should be deleted [55].

The Bi-LSTM network is an expanded variant of the LSTM
network and is a successful model for processing textual
data. The ability to read encoder unit contents from hidden
decoder unit layers is applied forward and backward [52].

4.1 Dataset description

Mendeley has provided the raw data for the dataset used in
this investigation.
(https://data.mendeley.com/datasets/hSpcn99zw4/5). The
SP-3, MQ-3, TGS-822, MQ-138, MQ-137, TGS-813, TGS-
800, and MQ-135 sensors have been employed. Data col-
lection was conducted involving three distinct groups: in-
dividuals with COPD, smokers, and healthy individuals.
Seventy-eight samples were collected from Pasto Narifo,
Colombia. Among the 78 participants, there were 40 sam-
ples from individuals with COPD, 8 samples from smokers,
20 from the control group, and 10 from the air. Figure 1
illustrates the sampling protocol.

[ Fast Before the Acquisition ]

[Data Acquistion Carried Qut 7 am-8 am]

( Acquisition Time is 3 min j

( Purging or Cleaning Process j

[ Samples Again Collected for Analysis ]
i.e. Baseline

Figure 1. Sampling procedure.
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The participant must fast before measurement acquisition
to reduce inaccuracy caused by scents or consumed items
that may interfere with the exhaled VOCs. The data was
collected from 7 am to 8 am. Furthermore, the acquisition
duration was approximately 3 minutes. The study’s inclu-
sion criteria include participants aged 18 and older, those
diagnosed with COPD, and the signed informed consent
form requirement. The patient must position their mouth
on the disposable mouthpiece affixed to the device’s inlet;
using a nasal clip is unnecessary. The acquisition occurs
when the operator activates the device by pressing the ac-
quisition button, which emits a beep signalling the patient
to commence exhalation. During exhale, the sensor array
detects the introduced VOC:s in the sensor chamber, and the
data is collected and stored.

The participants were instructed to exhale continuously and
comfortably for the volunteers. Upon completion of the
acquisition, the device undergoes a purging or cleaning pro-
cess, wherein synthetic air or oxygen is introduced under
pressure to cleanse the chamber and restore the sensor to its
original state [56].

4.2 Proposed methodology

The COPD Mendeley dataset, an open source used in this
study to evaluate the model, distinguishes between COPD
diseases, smoking, and healthy individuals. This implemen-
tation uses the input sequence, Bi-LSTM, fully connected,
softmax, and classification output layers. Figure 2 shows
the block diagram for the Bi-LSTM. Figure 3 shows the
designed Bi-LSTM architecture.

Table 2 contains the parameter values and training parame-
ters for the designed Bi-LSTM architecture.

Table 2 and figure 3 demonstrate the utilization of five Bi-
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LSTM layers. Based on the information acquired from
these layers, the categorization of individuals into either
COPD or a healthy state is provided as input to the fully
connected layer. The classification process is then finalized
using Softmax. This method utilizes parameter values in the
suggested architecture, such as the number of neurons in
the hidden layer, activation functions, etc. During the train-
ing phase, the Adam optimization progressively decreases
the error in each iteration. Adam optimization is tailored
explicitly to train deep neural networks.

5. Bi-LSTM model

1. Input sequence: Bi-LSTM accepts a token or vector input
sequence as its input.

2. Forward LSTM equations: The input sequence X is
processed from left to right by the forward LSTM. It saves
a hidden state vector at every step that records the pertinent
historical data. The previous hidden state is /7(r — 1), and
the previous cell state is c;(t — 1) for the input at step ¢.
Here are the forward LSTM equations:

a. Forget gate:
fro=0Wsp-xi+Us-hf_ +byy) M
b. Input gate:
ifp =0(Wir-x+Uir-hy | +bif) 2)
c. Candidate cell state:
gfr = tanh(Wes X +Ucy-hy,_, +bey) ©)
d. New cell state:

Cft:fft'cf,,l‘f‘ift'gft )

Input with & BILSTM Layer with Fully Connecected Layer Softmax Layer Cl?ltﬁscl:ﬂcatlontﬂutput Il_aafer
Dimension 50 Hidden Units with 4 Dimensions 4 Activation Function w rosrusrt]a;iroor:]yex 08

N

COPD Healthy
Predicated

Figure 2. Proposed block diagram of the Bi-LSTM.

COPD
Disease

N f
Input Sequence Time \ B .
Series Data :
! t
| Lsu | Lstw
Bi-LSTM Layer

Mumber of Hidden Units

Healthy
Person

Softmax

Fully Connected Layer
Layer

Output
Layer

Figure 3. Shows the Bi-LSTM architecture.
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Table 2. Hyperparameters of layers used for architecture and training options.

Bi-LSTM

Number of hidden units State activation function

Gate activation function Output Size

100 tanh

sigmoid 8

Training Parameters

Optimizer Max. Epoch  Mini Batch Size  Input Size  Number of Hidden Units =~ Number of Classes  Loss Function
Adam 200 25 8 60 4 Crossentropyex
e. Output gate: 6. Results and discussion

Oft :G(Wof‘xt‘FUof‘hf,,l +b0f) 5)

f. Hidden state:

(6)

3. Backward LSTM equations: The input sequence X is
processed by the backward LSTM in the opposite direction,
going from right to left. A time step is always maintained,
and a hidden state vector h;, keeps track of the pertinent
information from the future. The previous hidden state is
hy, (time step ¢ + 1), while the previous cell state is ¢;, (time
step #). These are the backward LSTM equations:

hf[ =0 tanh(cf,)

a. Forget gate:

fou=0Wpp-xi+Uspp -y, +byp) @)
b. Input gate:
i = 6(Wip X +Upp - b, +Dbipy) (®
c. Candidate cell state:
gor = tanh(Wep - x; +Ucp - by, +bep) 9)
d. New cell state:
Cor = Jfor " o,y ibr * br (10)
e. Output gate:
op = 6 (Wop - x; + Uppy -y, +bop) (1)
f. Hidden state:
hpe = Opy - tanh(Cpy) (12)

4. Fully connected layer: It adds a bias vector after multi-
plying the input by a weight matrix. This implementation
has four classes: COPD, healthy, smoking, and ambient air.

13)

Layers = fully — connected layer (numClasses)

5. Softmax and classification layer: A softmax layer is used
to apply a softmax function to the input. A softmax layer
for classification issues typically follows the final, fully
linked layer and a classification layer afterwards.

The corresponding algorithm for the training process of the
BiLSTM model is described in algorithm 1.

This study uses the Bi-LSTM model to detect the exhaled
breath of a patient with COPD. The data collected is pro-
cessed using the Bi-LSTM in deep learning and artificial
intelligence. Bi-LSTM models are commonly employed
to classify sequential data and acquire knowledge about
underlying processes. These networks identify enduring
connections between the time phases of the data. The col-
lected data is categorized into four groups: ambient air,
smoking, control, and COPD patients. The sensor subse-
quently partitions the data. In figure 4 (a)-(d), the time
steps are represented by a horizontal line, while vertical
lines show the sensor’s analogue responses for each breath
sample.

The training portion of the first sequence, i.e., Xtrain, and
the testing portion of the second sequence, i.e., Ytrain, com-
prises the training and testing data set. The declaration of
the lengths of the sequences for each observation is pri-
oritized initially. The variable Xtrain quantifies the total
number of observations. Depending on the quantity of ob-
servations, the sequence is extracted, and the length of the
series is specified. Each iteration of the loop results in ei-
ther an increase or decrease in the sequence length. The
Bi-LSTM network architecture comprises five layers and
necessitates an input layer with a size of 8. Figure 5 shows
the training and testing of the COPD data, and figure 6
shows the 5x1 Bi-LSTM layer.

The final element of the sequence will be output by the
Bi-LSTM layer, which has 60 hidden units. The neural
network architecture incorporates a fully connected layer
whose dimensions are determined by the ailment being con-
sidered. It is followed by a softmax and classification layers
responsible for assigning classes to the input data. The
training choices are configured such that the solver ‘Adam’
and the gradient threshold are set to 1. The upper limit for
the number of epochs is set at 200, while the mini-batch
size is fixed at 25. The central processing unit (CPU) is
considered a more appropriate choice for training because
the mini-batches used in the training process consist of a
limited number of concise sequences. The execution envi-
ronment known as the CPU has been chosen. Once the test
set is loaded, the sequences are categorized and sorted into
the Xtest and Ytest groups.

There are 23 values selected for Testing. The test values
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Maruti Mule & Durgesh Patil

2. For i =1 to size, do

3. End for

6
7. For each epoch, do
8. For each batch, do

9. End for
10. End for

12. Return the prediction matrix

2.1 Obtain the time series X7 with (1);

. Get sequence lengths for each observation

Input: Exhaled breath gases: Time series data {X1, X2,..., XT'}
Output: Classification of COPD disease and healthy persons

1. Load datasets and downsample by 10 to reduce training time

8.3 Generate ht and ct via the Bi-Lstm model using the following equation.
-
I’lt = LSTM(/’lt71 ,XI,C[71)7t8[1 s T]
T = LSTM(hyy1, %0, 111 ), 1€[T, 1]

With the input X; and A, _{

11. Generate fully connected layer and softmax layer

4. Divide datasets into the number of samples taken X Train = cell ([78,1]);
/l COPD = 40, Healthy = 20, Smoker = 8, Air = 10, Train = 1
5. Train BiLSTM network

8.1 The equations for the forward pass of the Bidirectional LSTM model are as follows: 1 through 6
8.2 The equations for the backward pass of the Bidirectional LSTM model are as follows: From 7 to 12

1.8
S B - SP-3
e — —] —MQ-3
) e —— TGS 822
Sl MQ-138
—MQ-137
1.4 TGS-813
—TGS-800
———MQ-135
1.2
1
0.8
0.6
0.4
0.2
0 100 200 300 400
Time Step
Smoker samples
SP-3
MQ-3
TGS 822
MQ-138
———MQ-137
TGS-813
TGS-800
MQ-135

0.2

0 100 200

Time Step

300

400

Control samples

25

5P-3
— MQ-3
TGS 822
——MQ-138
MQ-137
TGS-813
— TG5-800
MQ-135

1] 100 200
Time Step

COPD samples

300

14

——=5F3
—MQ-3
TGS 822
—MQ-138
—MQ-137
TGS-813
— TG5-800
—MQ-135

200
Time Step

300

400

Figure 4. (a) Ambient air samples, (b) Control samples, (c) Smokers samples, (d) COPD Samples
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Figure 5. Training and testing of the COPD data.

are set to the output of the randperm (78, 23), which pro-
duces a row vector of 23 distinct numbers drawn at random
from a range of 1:78. The eight sensors are SP-3, MQ-
3, TGS-822, MQ-138, MQ-137, TGS-813, TGS-800, and
MQ-135. Xtest is a sequence cell of an array dimension
of varied length, and Ytest is a categorical vector of labels
corresponding to each of the eight sensors.

The expiratory flow rate, breath-holding duration, and
anatomical dead space may considerably influence “breath
prints.” The aspects above may impact the classification
accuracy of electronic noses in distinguishing diseases from
health; by modifying collection-related factors, the discrim-
ination capability may be enhanced [57]. Specific investiga-
tions identified notable disparities in the volatile chemical

layers =

Sx1 Layer array with layers:

patterns of exhaled breath between healthy individuals and
lung transplant recipients, demonstrating a significant cor-
relation with the “breath print” in lung transplant patients.
Patients with transplanted lungs can be distinguished from
healthy individuals by the profile of exhaled breath volatile
organic compounds (VOCs). Post-lung transplantation treat-
ment must be considered while utilizing an e-nose since
medicine can significantly affect breath prints [58].

This study has analyzed and displayed the classification
results using smokers, healthy individuals, COPD patients,
and ambient air data. Various performance indicators are
computed to assess performance, including accuracy, recall,
specificity, sensitivity, precision, F1 score, and area under
curve (AUC). Table 3 displays the performance metrics of

1 Sequence Input Sequence input with 8 dimensions

2 B1LSTM BiLSTM with 60 hidden units

3 Fully Connected 4 fully connected layer

4 Softmax softmax

5 Classification Output crossentropyex
| |
| Epoch | TIteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning |
| | | (hh:mm:ss) | Accuracy | Loss | Rate
| |
| 1| 1| 00:00:02 | 40,008 | 1.2625 | 0.0010 |
| 17 | 50 | 00:00:30 | 100, 00% | 0.16562 | 0.0010 |
| 24 | 100 | 00:00:42 | 100, 00% | 0.0419 | 0.0010 |
| 50 | 150 | 00:00:53 | 72.008% | 0.9603 | 0.0010 |
| 57 | 200 | 0E:01:05 | 100,008 | 0.0413 | 0.0010 |
| 84 | 250 | 0E:01:19 | 100,008 | 0.0144 | 0.0010 |
| 100 | 300 | 0E:01:32 | 100,008 | 0.0825 | 0.0010 |
| 117 | 350 | 0E:01:45 | 100,008 | 0.0307 | 0.0010 |
| 124 | 400 | 00:01:57 | 100, 00% | 0.0059 | 0.0010 |
| 150 | 450 | 00:02:00 | 100, 00% | 0.0102 | 0.0010 |
| 167 | 500 | 00:02:21 | 100.005% | 0.0213 | 0.001Q |
| 184 | 550 | 0E:02:33 | 100,008 | 0.0035 | 0.0010 |
| 200 | 500 | 0R:02:45 | 100,008 | 0.0039 | 0.0010 |
| |

Figure 6. 5x1 Bi-LSTM layer.
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Table 3. Performance metrics of the proposed architecture.

Accuracy Recall Precision F1 Score Sensitivity  Specificity AUC
99% 1 1 99% 99% 99%
the suggested architecture, while Figure 7 exhibits the ROC
curves. ~ N

This work’s scientific uniqueness is in selecting a MOS
sensor capable of providing precise results in predicting
COPD using a deep learning algorithm. The E-nose system
is economical, highly portable, and suitable for deployment
in distant locations. Most prior studies on respiratory disor-
ders employing electronic noses utilized ten or more sensors.
The utilized data yielded favourable outcomes with a mini-
mum of eight gas sensors. The Bi-LSTM time series deep
learning method, as presented in Table 3, exhibits an accu-
racy, sensitivity, and specificity of 99%, along with a recall,
precision, and Fl-score of 1. This indicates that control
data and patients may be easily distinguished. This study
compared COPD patients to healthy controls; nevertheless,
the sample size was limited.

Receiver Operating Characteristic (ROC) Curve

1.0 -
08 e
) S
s P
] -
o S
o 06 P
= gl
=
G
[=] ’
a ok
g 0.4
=
0.2 —
e —— ROC curve (AUC = 1.00)
0.0
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 7. Receiver operating characteristic curve.

7. Conclusion

This study recommends the Bi-LSTM algorithm for
differentiating between people with COPD and healthy
people. The outcomes demonstrate that the system can
distinguish between people with COPD, ambient air,
controls, and smokers; the classification achieved is also
99%. In an exhaled breath of COPD patients, acetone,
ethanol, benzene, hexane, carbon monoxide, ammonia,
toluene, alcohol, and hydrogen gases are more sensitive
than the control group. Alcohol gas is more sensitive
in smokers than in COPD and control group. This
technology benefits hospitals and health facilities, where it
is envisioned as a diagnostic aid. The system is used for
early disease diagnosis but is limited only to COPD disease,
so more diseases are included in the future for real-time
disease diagnosis.
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