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Abstract:
The rapid proliferation of electric vehicles (EVs) has significantly escalated the strain on the public grid by
exacerbating fluctuations and hindering widespread EV adoption. This paper presents a cutting-edge solution
with a real-time cost optimization model tailored for AC/DC microgrid energy management. Leveraging a
unique hybridization of particle-swarm optimization (PSO) and grey wolf optimization (GWO), our approach
dynamically orchestrates energy flow and EV charging schedules. The model has been developed using
MATLAB 2022a.Thus, a non-linear stochastic mathematical programming model optimizes EV charging and
distributed energy resources (DERs) generation costs. We scrutinize our model across medium scale microgrid
IEEE- 37 Node systems—via real-time digital simulator (RTDS). Our multi-level control strategy ensures both
immediate response to disturbances and long-term optimization, maintaining microgrid stability. Through
meticulous real-time monitoring and control, our hybrid PSO-GWO algorithm delivers superior performance,
slashing costs by $152.47 for medium scale microgrid while reducing execution time by 0.81 seconds as
compared to other metaheuristic algorithms. About 36.85% of the load is absorbed by EVs, with surplus
power fed back to the main grid. This comprehensive approach not only enhances the cost-effectiveness but
also fosters energy efficiency, affirming the efficacy of hybrid PSO-GWO in real-time microgrid management.

Keywords: Electric vehicle; Vehicle-to-grid; Grid-to-vehicle; Particle swarm optimization; Grey wolf optimization; Electric vehicle
supply equipment

1. Introduction

Microgrids stand as resilient, low-voltage networks adept
at efficiently distributing energy to consumers [1]. As the
demand for power surges, the integration of renewable en-
ergy resources (RERs) becomes imperative for sustainable
energy provision. RERs assume a pivotal role in microgrid
operations, meeting energy demands while curbing envi-
ronmental impact. These microgrids encompass a diverse
array of distributed energy resources (DERs) such as wind
and solar power plants, combined heat and power (CHP)
units, EVs and energy storage systems (ESS) [2]. Operat-
ing in either islanded or grid-connected mode, microgrids
offer versatility in public services. In islanded mode, they
function autonomously by drawing upon DERs whereas
in grid-connected mode, they complement conventional
energy sources (CESs), thereby promoting fossil fuel con-
servation [3]. Effective energy management stands as a
linchpin for microgrid performance in real-time scenarios.
Consequently, optimizing energy management within the
microgrid presents formidable challenges [4] by compelling

researchers to explore a plethora of meta-heuristic algo-
rithms aimed at enhancing microgrid efficiency.
Hybrid microgrids have become more common which have
been characterized by AC/DC loads and AC/DC generation
units connected to AC/DC sub-grids. This configuration
reduces the need for power conversions which can improve
overall microgrid efficiency [5]. They require efficient en-
ergy management within the sub-grids. Thus, optimizing
the flow of power ensures the grid stability and reliability
[6]. The use of RERs and EVs helps with efficient energy
management [7]. The governments incentivize the adoption
of EVs for a greener economy by offering tax subsidies to
the consumers. The EV market is expanding rapidly be-
cause the major automotive businesses have redirected their
investments towards this sector. Electric utility providers
must anticipate the growing demand from EV users by in-
vesting in charging infrastructure and scaling up energy
production capacity. With the surge in EV charging during
peak hours, a dynamic energy management strategy be-
comes imperative to meet the escalating power demand [8].
For utilities, the low operational costs and ensuring system
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stability have become top priority. Integrating RERs into the
microgrid has become crucial for meeting energy demands,
reduced emissions and ensuring seamless operations [9].
Microgrids emerge as a solution to energy and environmen-
tal disparity that adapts grid-tied and islanded installations
depending on their applications [10]. However, the inter-
mittent nature of renewable energy (RE) and fluctuating EV
charging demands pose challenges in estimating energy sup-
ply and demand accurately which potentially compromise
microgrid reliability [11]. Effective power management
strategies must incorporate energy storage, electric vehicle
supply equipment (EVSEs) demands and renewable energy
(RE) production to optimize energy efficiency. Advanced
control systems (ACS) and algorithms have become essen-
tial for balancing the supply and demand by minimizing
energy costs and by enhancing local energy management
[12]. Decentralized energy management solutions comple-
mented by real-time feedback enable dynamic adjustments
based on fluctuating energy demand and supply. AC/DC
microgrids powered by REs and managed by hybrid energy
management systems (EMSs) offers a sustainable approach
to energy provision which requires modern control systems
and decentralized management solutions to address evolv-
ing challenges effectively [13].
To achieve these objectives, the utilization of AC/DC mi-
crogrids powered by distributed energy resources (DERs)
can lead to energy and cost-efficient systems. Hybrid mi-
crogrids have emerged as pivotal players in vehicle-to-grid
(V2G) and grid-to-vehicle (G2V) scenarios, enabling direct
interaction between EVs and the microgrid. Interconnected
AC/DC sub-grids employ voltage source converters (VSCs)
to regulate power flow, albeit introducing harmonics that
may impact grid stability [14]. EV chargers can adversely
affect electric cables and transformers, elevating losses and
harmonics within the microgrid, thereby affecting EV charg-
ing/discharging performance [15]. The interconnecting con-
verters assumes a critical role, utilizing DC-link voltage and
frequency to bolster energy demand in AC/DC sub-grids
while ensuring grid stability through EV charging/discharg-
ing energy management [16]. Consequently, V2G and G2V
present promising avenues for establishing distributed en-
ergy storage systems (DESS) to store and release energy
as needed. Effective V2G operations bolster microgrid fre-
quency, voltage profiles, and power demand [17], offering
incentives to EV owners in commercial microgrids. EV
aggregators liaise with individual EV converters, orchestrat-
ing V2G or G2V operations based on grid power demand
and EV charging/discharging schedules for the distributed
system operator (DSO) [18]. In peak demand periods and
emergencies, EV aggregators collaborate with EVs to sup-
port V2G operations within the microgrid. Thus, V2G
technology garners increasing interest across diverse appli-
cations, from carbon emissions reduction to the provision
of ancillary services.
In literature, a four-stage optimization algorithm has been
developed for EV charging/discharging [19]. In [20, 21],
authors discussed the three hierarchical control levels i.e.,
primary, secondary & tertiary. The primary control level
controls the DERs to maintain the proper power flow within

the microgrid. The secondary level control eliminates the
voltage, frequency deviations and synchronism. Similarly,
the tertiary level control maintains the power flow between
sub-grids. This scheme allows the microgrid to transfer
power and perform efficient operations when EV has been
scheduled for charging/discharging. In [22], the author
discussed energy management in microgrids which encom-
passes various optimization techniques for addressing di-
verse challenges including optimal generation allocation
and power scheduling. Optimal generation allocation aims
to enhance microgrid performance by improving the sizing
and siting of generation sources, parametric values such
as power losses and generation costs. Power scheduling
focuses on optimizing microgrid generator operation to
minimize power losses and generation costs. Researchers
have explored these optimization problems extensively as
evidenced in [23, 24], which discussed optimal allocation
strategies to minimize costs, emissions and other parame-
ters. Additionally, in [25] the author introduced a stochastic
multi-objective optimization model to reduce voltage de-
viation and operational costs in grid-connected microgrids
through simulations on IEEE 34-bus test system featuring
diverse energy sources and storage units. This approach
ensures microgrid resilience by allowing operators to bal-
ance power quality and operational costs effectively. In [26]
the author employed a modified particle swarm optimiza-
tion (PSO) algorithm for real-time energy management in
grid-connected microgrids focusing on efficient demand-
side management through optimal battery control. Results
indicate a promising reduction in operational costs by 12%
over a 96-hour period, highlighting the efficacy of advanced
optimization techniques in enhancing microgrid efficiency
and cost-effectiveness.
In [27], the authors implemented ANN-based binary PSO
and ANN-based tracking search algorithm to optimize the
scheduling of microgrids within virtual power plants. Their
aim was to achieve optimal power scheduling in microgrids
with reduced fuel consumption, low CO2 emissions, and
enhanced system efficiency. The system performance was
evaluated under diverse scenarios to assess its adaptability
in emergency conditions by utilizing both trained and un-
trained models with actual load data. Comparative analysis
against previous methodologies demonstrated the superior-
ity of the hybrid algorithms. In [28], the author introduced
a quantum-based algorithm for microgrid energy manage-
ment, employing a quantum-teaching-learning-based opti-
mization approach. This algorithm focused on optimizing
energy flow in microgrids across four seasonal scenarios
aiming at day-ahead scheduling based on DER availability.
Results indicate significant reductions in operational costs
particularly during periods of high market prices and op-
timized power scheduling in comparison with alternative
control algorithms.
Furthermore, in [29] the authors concentrated on optimizing
renewable energy microgrids in rural areas of the southern
Philippines using multi-objective PSO. Their approach in-
cludes a multi-case power management strategy to design
optimized microgrids considering factors such as load size,
renewable energy sources and diverse objective functions.
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Similarly, in [30] the authors proposed a standalone mi-
crogrid solution for rural communities utilizing renewable
energy resources by evaluating the performance using dif-
ferential evolution, PSO and GA algorithms which ensures
the affordability of the system. These algorithms facilitate
the cost-effective configurations and variability of RESs,
contributing to sustainable development in remote areas.
Notably, in [31] the authors applied an improved mayfly
optimization algorithm (MOA) for economic emission dis-
patch in islanded microgrids that achieve superior results
with respect to other metaheuristic algorithms in terms of
reducing operational costs and emissions. The MOA algo-
rithm contributes by minimizing the carbon footprint and
achieving a balance between economic and environmen-
tal objectives. The algorithm improves the performance
of the decentralized energy systems while ensuring their
cost-effectiveness and sustainability with a limitation of unit
commitment problem.
In [32], a lightning search algorithm (LSA) was imple-
mented for microgrid energy management on an IEEE 14-
bus system which focuses on optimizing renewable energy
utilization while minimizing operational costs and emis-
sions. The LSA handles the dynamic nature of RESs such
as solar and wind which effectively balances the supply
and demand within the microgrid and offers a sustainable
solution for energy management. Furthermore, [33] utilized
PSO and the rain flow algorithm (RFA) for day-ahead bat-
tery scheduling in a community microgrid which achieves
a 40% reduction in operational costs despite uncertainties
in electricity price fluctuations. The integration of these
algorithms provides more accurate forecasting and decision-
making by ensuring optimal battery usage while minimizing
redundant costs. Finally, in [34] the authors optimized a
PV microgrid using a mixed integer linear programming
(MILP) model which emphasizes cost-effectiveness and
versatility of microgrid in the face of geographic uncertain-
ties. These studies collectively contribute to the ongoing
efforts in optimizing microgrid energy management through
diverse methodologies. The algorithm addresses unique
challenges in microgrid energy management by providing
the efficient solutions for diverse operational scenarios with
a limitation of spinning reserve.
In [35], researchers employed the Markov decision process
for power scheduling within a renewable energy-based mi-
crogrid. To address the vast decision space and complex
state of the MDP, a rollout algorithm was utilized with a
limitation of cost efficiency. The study in [36] implemented
a memory-based GA for microgrid comprises of solar, wind
and combined heat and power plants (CHP) which aims
to minimize the costs through optimal energy distribution
among available generation sources. In [37], authors opti-
mized energy, heat and demand using a mathematical MILP
model for minimizing operational costs with a limitation of
spinning reserve and system frequency control. In [38] the
authors introduced an artificial hummingbird algorithm for
the optimal operation of microgrids particularly focusing on
solving deterministic incentive DR programs to reduce over-
all costs while considering load demands in grid-connected
mode. Validation of this algorithm was conducted through

two distinct case studies with RESs on IEEE 1548 and IEEE
1679 standards for validating the performance of PV mod-
ules and arrays and minimizing the costs for charging an
EV and improving the stability of the system. Similarly, re-
searchers in [39] tackled numerical optimization problems
using the cost-effective multi-verse optimizer algorithm. By
modifying the updated position mechanism in the standard
multi-verse optimization (MVO) and integrating it with a
sine cosine algorithm, they achieved balanced exploration
and exploitation, leading to significantly improved opti-
mization results. This approach was evaluated across 27
benchmark functions. Likewise, in [40] the authors em-
ployed MVO for power scheduling which minimizes the
losses within microgrids, which has been validated on IEEE
30-bus test system and minimizes the operational costs with
a limitation of non-linear loads.
The future of the power grid hinges on the integration of
EVs which challenges the power quality, voltage regulation
and frequency synchronization within microgrid systems.
Seamlessly integrating EVs into microgrids holds promise
for enhancing system flexibility and reducing electricity
costs. By incorporating intelligent microgrid energy man-
agement systems with EV charging capabilities the load
profiles can be flattened, peaks can be mitigated and DERs
maximizes the system reliability [41, 42]. In [43], an AC
microgrid with load demand-based control and onboard
charging utilizes diesel generators which faces significant
conversion and emissions challenges. In [44] the authors
explored smart charging and flexible EV charging using
power conversion methods for overcoming the phase and
overloading difficulties. Optimal charging strategies lever-
aging variable PV power has been investigated in [45]. This
paper specifically addresses the comparison between hybrid
PSO-GWO with other metaheuristic algorithm for medium
scaled microgrids for optimizing DERs generation costs
and EV charging costs which build upon previous research
efforts by targeting various performance metrics in real time
environment.
By selecting metaheuristic algorithms over traditional con-
trol strategies [46] such as PSO, GA, Simulated Anneal-
ing (SA), Jaya Algorithm (JA), Teaching-Learning-Based
Optimization (TLBO) and GWO, several advantages are
highlighted. Metaheuristic algorithms are highly versatile
and adaptable to diverse problem domains without requir-
ing an in-depth understanding of system dynamics. This
makes them well suited for applications involving nonlinear
and complex systems. They are best at finding global op-
tima within large solution spaces, where traditional control
strategies often become trapped in local optima. Unlike
conventional methods that rely on precise mathematical
models, metaheuristic algorithms can operate effectively
without explicit system equations. This is particularly ad-
vantageous in real-world scenarios where developing an
accurate model may be impractical or difficult to design as
shown in Table 1.
Hybrid PSO-GWO are designed to balance exploration and
exploitation, enabling them to identify the most optimal so-
lutions, especially in dynamic systems where adaptability is
necessary. This balance proves beneficial when dealing with
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changing environmental conditions and system variability.
Various metaheuristics have shown substantial success in
solving complex, real-world optimization problems where
traditional control strategies may fall short. Among these,
GWO stands out for providing superior solutions for cost-
effective EV charging/discharging management. Its sim-
plicity, robustness and fast convergence make it well-suited
to handle uncertainties during peak and off-peak hours,
achieving optimal solutions in shorter computation times
compared to other metaheuristic algorithms. This efficiency
establishes GWO as a preferred method for real-time EV
charging/discharging cost optimization.
However, the literature extensively explores EV charging
scenarios employing various control techniques integrated
with multi-objective PSO within distribution networks as de-
tailed in [47]. Reference [51] presents energy management
strategies for EVs including optimized charging schemes
and travel patterns, utilizing both PSO and GA. In refer-
ence [48], the author examines optimal scheduling for time-
shiftable loads through DR programs, employing advanced
algorithms such as the Cuckoo Search Algorithm (CSA)
and Symbiotic Organism Search (SOS). These studies col-
lectively aim to achieve optimal scheduling of EV charg-
ing patterns and minimize the cost of EV charging [49]
with strategies often leveraging PV systems as the primary
source of power generation. In this study, the proposed
hybrid PSO-GWO scenario for EV charging/discharging in-
corporates RESs to ascertain the most optimal cost for both
V2G and G2V support. Moreover, by deliberately managing
EV charging/discharging during peak and off-peak hours
through hybrid PSO-GWO, the exploration capabilities of
PSO with the exploitation capabilities of GWO achieve
faster convergence as compared to other algorithms. How-
ever, the hybrid PSO-GWO algorithm tends to converge
prematurely when locating charging stations (CSs) for EV
charging more quickly which leads to suboptimal solutions
without fully exploring the nearby CS search space. The hy-
brid PSO-GWO algorithm offers a balanced exploration of
the search space and nearby CSs for EV charging/discharg-
ing avoiding local optima in V2G or G2V operations within
the microgrid. This results in optimized costs, reduced com-
putational time, improved stability and reliability.
In previous studies, the researchers employed various
metaheuristic algorithms and control techniques integrated
within microgrid framework which facilitates the grid stabi-
lization and cost minimization through strategic EV charg-
ing/discharging which effectively mitigates power fluctua-
tions. However, these approaches compromise the system
reliability, necessitating a balanced strategy to ensure both
performance and robustness of the system. Thus, focusing
on the limitations of the previous studies, the manuscript
discusses the strategic real-time EV charging/discharging
scenario using hybrid PSO-GWO algorithm for a reliable,
stable and cost-efficient system in V2G and G2V frame-
work. Thus, the major contributions of this manuscript are
distributed into following points:

• Integrating RE systems with EVs offers twofold ben-
efits: It mitigates harmful emissions while improving
resource efficiency by harnessing the energy storage

capabilities inherent in EVs.

• This synergy enables the surplus RE produced during
peak generation periods to be stored in EV batteries
and subsequently deployed during times of heightened
demand, thus diminishing reliance on conventional,
fossil fuel-based power generation.

• The deployment of a hierarchical control system, cou-
pled with integrated circuits (ICs), voltage source con-
verters (VSCs) and EV aggregators, proficiently over-
sees the charging/discharging of EVs within an AC/DC
microgrid powered by DERs. This holistic strategy not
only optimizes generation costs but also ensures the
effective utilization of RE, thereby fortifying system
reliability and sustainability.

• Employing a hybrid PSO-GWO algorithm, integrated
with MATLAB and RTDS, streamlines the optimiza-
tion of EV charging (G2V) and generation costs within
the microgrid. The incorporation of hybrid PSO-GWO
technique enhances system performance by maximiz-
ing grid stability and minimizing evaluation time en-
suring seamless operation in real-time scenarios.

• Furthermore, the bidirectional power flow capability
of EVs supports the additional services like frequency
regulation, spinning reserves and load balancing which
contributes to overall stability, resilience, efficiency
and optimized generation costs of the microgrid.

The paper is organized as follows: Section 2 presents system
architecture and mathematical modelling which discusses
the modelling of PV array, wind power plants constraints,
combined heat and power constraints, EV charging scheme
with different control arrangements, SOC estimation and
their objective cost function. Section 3 discusses the hybrid
PSO-GWO methodology and their integration with micro-
grids in real time environment for better performance and
obtaining the optimized costs. Section 4 discusses the re-
sults which optimizes the generation costs and EV charging
costs for medium scale microgrid (IEEE-37 node test feeder)
integrated with RTDS for improving its performance and
evaluation time. Section 5 discusses the conclusions that
the hybrid PSO-GWO outperforms all other metaheuristics
algorithms in less evaluation time and reduced generation
and EV charging costs in real time environment.

2. System architecture and mathematical
modelling

The AC/DC microgrids with EV charging infrastructure
requires a comprehensive system architecture for efficiently
managing the power flow, ensuring the stability and optimiz-
ing energy usage. At its core, the AC/DC microgrid archi-
tecture encompasses various components such as power con-
verters, energy storage systems, renewable energy sources
and grid interconnections as shown in Fig. 1. In this section,
the AC/DC microgrid combined with DERs using RSCAD
paired with RTDS. The interconnecting converter and AC
microgrid have a step-size of 3.72−10 µs in sub-step envi-
ronment and 50 µs in main-step environment. In sub-step
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Figure 1. Representation of IEEE-37 node microgrid.

environment IC-VSC and PV boost converters have been
designed using resistive switching model whereas bidirec-
tional DC/DC converters have been designed by average
model. In the main step environment, the average model has
been designed by integrating DER converters. To distribute
the burden on three cores of the RTDS, two sub-step en-
vironment and main-step environment constructs the draft
case of the microgrid using C-builder which provides user
to build new components in the RSCAD by importing con-
trol system model from MATLAB 2022a to RTDS. It is also
used to build and implement microgrid average and control
system models specifically for power converters.

2.1 PV array dynamics
Some of the places worldwide is ample with sunlight. So-
lar energy emerges as a plentiful and dependable resource
accessible for extended periods throughout the year. PV
panels adroitly harness this energy by transforming it into
DC electrical power. For seamless integration of PV panels
into existing electrical grids, the inverters assume a criti-
cal role in converting the DC power into AC power. The
output of a PV plant remains susceptible to diverse fluctuat-
ing factors such as solar radiation and ambient temperature
by rendering its electrical output variable. To achieve pre-
cise forecasts of energy generation, stochastic modeling
becomes indispensable. Through the analysis, the stochas-
tic PV array model can proficiently estimate the electrical
energy output of the PV plant by furnishing invaluable in-
sights for effective energy planning and management. The
current output of a single PV array model (IPV cell) can be
calculated using Eq. (1):

IPV cell = Ipg − IRev ∗ e{((
V+RsI

ηVt
)−1)−(V+RsI

Rp )} (1)

where Ipg is photogenerated current, IRev is reverse current,
η represent ideality factor of the diode, Rs & Rp are series
resistance and shunt resistance respectively. These cells are
connected in series to form the module and similarly these

modules continue to form PV array. The maximum power
of the PV array can be calculated through Eq. (2):

PMPPT =VMPPT ∗ IMPPT (2)

where, VMPPT and IMPPT are maximum power point voltage
and current. The PV array is connected to the DC sub grid
through boost converter with breaker and startup control
logic. The boost converter is essential for efficiently increas-
ing the DC voltage generated by the PV array for ensuring
the optimal power transfer to the sub-grid. The breaker
serves as a safety mechanism by enabling isolation of the
PV array from the sub-grid during maintenance or in the
event of faults. The startup control logic initiates and regu-
lates the operation of the converter for ensuring smooth and
reliable system at the time of energy production. Also, for
extracting maximum power from the PV array MPPT tech-
nique has been employed. I-VSC is the most vibrant part of
the AC/DC microgrids which manages the balance between
the two sub grids consisting of outer power controller, mid-
dle voltage controller and inner current controller. The d-q
frame for I-VSC control works with modified droop charac-
teristics [15] for active control, reactive power control and
frequency control.
Where ωinst , ωre f are instantaneous and reference frequency
in rad/sec which has been provided in Eqs. (3-4),

ωinst = ωre f −D
IC(P−dre f )(KIC

p +s∗KIC
d )

p (3)

Vinst =V re f
d =V re f ( f −D

IC(q−qre f )(KIC
p +sKIC

d )
q ) (4)

where, D
IC(P−dre f )(KIC

p +s∗KIC
d )

p is IC-VSC and V re f ( f −

D
IC(q−qre f )(KIC

p +sKIC
d )

q ) is Q (reactive power) -V (voltage)
droop coefficient. ‘ f ’ is the frequency, ‘DP’ is the droop
coefficient, ‘d’ is the direct axis, ‘q’ is the quadrature axis,
dre f is the reference direct axis and qref is the reference
quadrature axis.
KIC

pC
is IC-VSC proportional coefficient power control loop
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& KIC
d is derivative coefficient in power control loop at

grid converter side. The reference current in PV array can
be calculated through d-q axis which can be expressed in
Eqs. (5-6),

Ire f
d = (V re f

d −Vd)(KIC
PV +

KIC
i
S

−ωC fVq) (5)

Ire f
q = (V re f

q −Vq)(KIC
PV +

KIC
i
S

−ωC fVd) (6)

where, V re f
d and V re f

q are reference voltage control loop for
d-q component, KIC

PV is IC-VSC voltage control loop, ‘C f ’ is
the capacitive frequency, Vd is the Voltage at direct axis, Vq
is the voltage at quadrature axis, Ki is the integral IC-VSC
constant. The inner current controller can be expressed by
the following equations (7-8):

V re f
d = (Ire f

d − Id)(KIC
PC +

KIC
i
S

−ωL f Iq) (7)

V re f
q = (Ire f

q − Iq)(KIC
PC +

KIC
i
S

−ωL f Id) (8)

where, KIC
PC and KIC

PC are IC-VSC proportional and integral
coefficient in the current control loop. ‘L f ’ is inductive fre-
quency, ‘Id‘ is current at direct axis and ‘Iq’ is the current at
quadrature axis. The secondary controller (SC) monitors the
DC bus voltage and tunes the reference value to reduce the
deviations occurred during operation with droop-controlled
converters [15]. The primary objective of this hierarchical
controller is to maintain the nominal voltage condition of
the microgrid. The DC bus reference voltage can be tuned
using PI controller and can be expressed in Eq. (9),

V re f
DC = (

KSC
P +KSC

i
S

)(V rated
DC −V inst

DC ) (9)

where, V rated
DC and V inst

DC are rated and instantaneous DC bus
voltage. KSC

P and KSC
i are proportional and integral coeffi-

cients of secondary controller [16]. The PV array power
generation limit and the power balance equation can be writ-
ten as Eqs. (10-11), where Pi is the maximum demand of
PV grid.

PPV (t)≤ Pmax,PV (10)

PGrid(t)+PPV (t) = Pi (11)

where, Pmax,PV is the maximum PV power; PPV (t) is the
maximum PV power at time (t); PGrid(t) is the grid power.

2.2 Wind power plant (WPP) and combined heat and
power (CHP) constraints

The (PWPP) power generated by a WPP is dependent on
wind speed. There is a maximum power Pmax that can be
generated at a given time as shown in Eqs. (12-13),

PWPP(t)≤ Pmax (12)

PWPP(t)≥ Pmin (13)

where, Pmin is the minimum power generated in WPP.
Similarly, the CHP system generates electricity and heat. It

has a maximum electricity generation capacity PCHP,elec at
any time as shown in Eq. (14),

PCHP,elec(t)≥ Pmax,elec (14)

The power balance Equation for grid, wind plant and CHP
can be calculated as (15),

PGrid(t)+PWPP(t)+PCHP(t) = Pi (15)

These constraints ensure that the total power from the grid,
WPP and CHP system meets the total demand. The WPP
and CHP operate within their generation limits, and the CHP
system operates within its combined capacity for electricity
and heat generation.

2.3 EV state-of-charge (SOC) estimation
SOC refers to the amount of energy stored in EV battery as
a percentage of its total capacity. It indicates the available
driving range and is crucial for efficient trip planning. Mon-
itoring SOC helps drivers avoid running out of power for
promoting a smoother and more reliable journey. Moreover,
maintaining the optimal SOC levels prolongs battery life.
As EV technology advances, the accurate SOC readings,
which become increasingly important for enhancing driv-
ing experience and fostering widespread adoption of EVs.
The SOC estimation for EVs and EVSEs per trip can be
calculated through Eq. (16),

SOCtrip = σ
M

Mmax
(16)

where, ’σ ’ is the driving efficacy during EV charging/dis-
charging, ‘M’ is the distance travelled by EV per trip and
Mmax is maximum distance travelled by the EV for the
whole day. The SOC during EV charging (SOCEV

ch ) can be
calculated through Eq. (17), and EV discharging (SOCEV

disch)
can be calculated through Eq. (18),

SOCEV
ch = SOCEV

I +Cch ∗ εch ∗T EV
ch (17)

SOCEV
disch = SOCEV

I +Cdisch ∗ εdisch ∗T EV
disch (18)

where, SOCEV
I is EVs initial stage, Cch and Cdisch are EV

battery charging/discharging efficacy and its performance,
εch and εdisch are the EV charging/discharging rate, T EV

ch and
T EV

disch are dedicated scheduling for EV charging/discharging
process. The battery SOC constraint for EV charging/dis-
charging is shown in Eq. (19),

0 ≤ SOCEV
I ≤ SOCmax (19)

2.4 EV power equation
The EV control scheme plays a pivotal role in managing
the growing demand for sustainable transportation. This
scheme employs sophisticated algorithms and smart tech-
nologies to optimize charging operations by ensuring a har-
monious balance between grid stability, user convenience
and energy efficiency. By leveraging real-time data anal-
ysis, it dynamically adjusts charging rates based on grid
load, renewable energy availability and user preferences.
This intelligent system minimizes peak loads, fosters grid
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resilience and encourages off-peak charging by reducing
electricity costs and carbon emissions which support grid
stability during fluctuations.
In this segment, the EVs can be implemented in two modes:
dispatched mode and voltage droop control mode. In normal
conditions, the dispatched control mode has been used by
scheduling EV for charging/discharging at EVSEs. In case
of EVs discharged battery energy storage system (BESS),
the voltage droop control is used to maintain the DC bus
voltage.
In the dispatched mode, the constant power flow has been
achieved by controlling the inductor current using the PI
controller. In voltage droop control mode, each EV controls
the DC bus voltage using cascade PI control loops which
gives power-sharing in accordance with their power rating
[22]. Droop controlled in DC sub grid can be calculated
using Eq. (20),

V inst Bus
DC =V re f

DC − IDCRdroop (20)

where, V inst Bus
DC and V re f

DC are DC bus instantaneous and ref-
erence voltage, IDC is the DC bus current for EV converter
and Rdroop is the droop coefficient for EV converter. During
dispatchable mode the current reference depends upon the
power reference and can be calculated in equation (21),

Ire f
EV =

Pre f

VDC
(21)

where, Ire f
EV and Pre f are the reference current and power for

EV respectively. During voltage-droop mode the current
reference can be calculated through Eq. (22),

Ire f
EV = (V re f

DC −VDC − IDC ∗Rdroop)(KEVV

P +
KEVV

i
S

) (22)

where, KEVV

P and KEVV

i are proportional and integral coef-
ficient in voltage control loop for EV converter. A large
value of the virtual resistor provides better load sharing but
produces more voltage deviation. Droop coefficient (DP) is
the ratio of maximum deviation in DC bus voltage as shown
in Eq. (23), when maximum power is fed back to microgrid.
To have proportional power-sharing the product of power
droop coefficient (Dp) and the maximum power of all EV
unit must be equal.
Inductor current control [42] in DC/DC converter can be
calculated through Eq. (23),

Dp =
(Ire f

EV − IEV )(KEVC

P +
KEVC

i
S )

VDC
(23)

where, KEVC

P and KEVC

i are proportional and integral coeffi-
cient in current control loop for EV converter.

Pi = ∑SOCEV
ch −SOCEV

I ∗Dp +VMPPT ∗ IMPPT (24)

where, Pi is the total power generated by the available DERs
calculated in Eq. (24).

2.5 Cost function
The microgrid encompasses a diverse array of variable load
and intermittent generation sources, such as PV arrays,
diesel generator (DG) units and EV batteries. Due to the
dynamic nature of demand and fluctuating power genera-
tion, the primary objective is to efficiently meet the demand
load requirements. Numerous strategies exist for allocating
energy among DERs with a paramount focus on minimiz-
ing EV charging costs for the optimal energy management
approach within the microgrid ecosystem.

C j = β j ∗P2
j +α j ∗Pj +δ j (25)

where, β j, α j and δ j are the cost coefficients of the micro-
grid. C j represents the total cost. Pj represents the power
in jth generation in MW/hour calculated in Eq. (25). A
quadratic cost function is employed for each generation unit
to effectively minimize overall generation expenses. The
total cost incurred in each hour is determined by summing
up the costs associated with all DERs utilized during that
period. The primary objective remains the fulfillment of
load requirements through power generation at the lowest
possible cost. Additionally, this approach assumes that
generation will consistently match the load demand.

2.6 Equality constraints
For seamless implementation, it is crucial to ensure that the
generated power consistently exceeds or at least matches
the demand power at any given moment. DERs fall short
of meeting the demand, thus the deficit is supplemented by
drawing from the utility grid. In this study, we operate under
the assumption that the available load capacity consistently
meets the demand, rendering external energy procurement
from the utility grid unnecessary. This can be formulated in
Eq. (26):

DER

∑
i=1

Pi = Pt (26)

where, Pi is the total power generated from available DERs,
Pt is the power demanded at a particular hour of the day. The
hourly generated power is determined by aggregating the
power outputs of all generation units within the microgrid.
This study examines medium scale microgrid configura-
tions, each characterized by varying number of generation
units. It is imperative that each generation unit operates
within its specified limits. This operational constraint can
be succinctly represented in Eq. (27):

Pi min ≤ Pi(t)≤ Pi max (27)

where, i = 1, 2, · · · , MDER and t = 1, 2, 3, · · · , 24. This
equation stipulates that, at time ’t’, the power output from
any generation unit must consistently fall within a prede-
fined range. ’Pi min’ denotes the minimum allowable power
output for any generation unit, typically set to zero, while
’Pi max’ represents the maximum power output or total de-
mand achievable based on the rated power capacity. These
values effectively delineate the lower and upper bounds by
forming the boundary for the generation vector.
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2.7 Objective function
Each generation unit serves as a decision variable in the
pursuit of cost minimization. Consequently, the scale of
microgrid dictates the variance in decision variables. The
total EV charging costs is computed as the summation of
costs incurred by all utilized generation units. Employing
equality constraints, the energy management system strives
to harmonize generation power with the demanded load.
Hence, the overarching objective of the optimization algo-
rithm is to leverage generated power from available units by
minimizing the overall EV charging costs in V2G and G2V
scenarios. To address this power scheduling challenge, the
optimization function outlined in Eqs. (28-29) [51] must be
tackled.

Minimize C( j) =
DER

∑
j=1

β j ∗P2
j +α j ∗Pj +δ j (28)

DER

∑
i=1

Pi = Pt (29)

Indeed, ensuring that the generated power remains within
the specified range poses a significant challenge in opti-
mization problems. To effectively manage this constraint,
introducing a penalty function proves to be a viable solu-
tion. By incorporating a penalty function, the optimization
process can be guided in a more balanced manner, facilitat-
ing the achievement of optimized outcomes while adhering
to operational constraints. The equation for the objective
function incorporating the penalty function, as outlined in
[45] and Eq. (30),

C( j) =
DER

∑
j=1

[β j ∗P2
j +α j ∗Pj +δ j]+Pf

DER

∑
i=1

Pi (30)

where, C( j) represents the total cost in dollars, β j, α j and
δ j are the cost coefficients and Pf is the penalty factor that
maintains the balanced equations for the microgrid.

3. Real-time cost optimization for EV
charging/discharging using hybrid

PSO-GWO algorithm
This section elucidates the hybridization of PSO and GWO
algorithm and its efficacy in achieving optimized generation
costs for microgrids and EV charging costs. It delves into
a cost-effective variant of hybrid PSO-GWO algorithm by
examining it with other metaheuristic algorithms for mini-
mizing the costs within microgrid.
PSO was proposed by Dr. James Kennedy and Dr. Russell
Eberhart in 1995. They introduced the concept while work-
ing at the Kennedy Space Centre, NASA, USA, inspired
by the social behaviour of birds flocking and fish schooling.
It iteratively updates a group of candidate solutions (parti-
cles) based on their own experience and the best solution
found by the swarm aiming to converge towards optimal
solutions. GWO is a metaheuristic algorithm inspired by
the social hierarchy and hunting behaviour of grey wolves.
The algorithm was introduced in 2014 by Mirjalili et al.,
it divides the population into alpha, beta and delta wolves

representing solutions. The wolves iteratively update their
positions based on alpha leadership, beta and delta and
prey proximity. GWO effectively balances exploration and
exploitation by demonstrating competitive performance in
solving optimization problems across various domains.
The hybrid PSO-GWO algorithm combines the strengths of
two prominent optimization techniques by leveraging their
complementary features to enhance search efficiency and
solution quality. PSO is inspired by the collective behaviour
of bird flocks and fish schools where particles in the search
space iteratively adjust their positions based on their own
experience and the best solution found by the swarm. On
the other hand, GWO mimics the social hierarchy and hunt-
ing behaviour of grey wolves by dividing the population
into alpha, beta, and delta wolves to exploit exploration and
exploitation capabilities effectively.
In the hybrid PSO-GWO algorithm, the particles interact
within the swarm according to PSO principle, while the
global best solution guides their movement. At the same
time, the wolf pack hierarchical structure and hunting strat-
egy from GWO provide additional guidance for exploration
and exploitation. By hybridizing PSO-GWO algorithm,
it aims to strike a balance between exploration and ex-
ploitation by ensuring robust convergence towards opti-
mal solutions and maintaining the computational efficiency.
Through hybridization, the PSO-GWO algorithm inherits
the ability of PSO to quickly explore the search space and
the exploitation capability of GWO to refine solutions lo-
cally. This synergistic combination enables the algorithm to
effectively tackle complex optimization problems like opti-
mizing microgrid generation costs by integrating EVs with
various IEEE bus standards using pattern recognition and
machine learning. The universal steps for solving a problem
using the hybrid PSO-GWO algorithm are as follows:

Step 1: Initialize the population of particles represent-
ing candidate solutions and the positions of the wolves
in the search space.

Step 2: Evaluate the fitness of each particle and wolf
position using the objective function associated with
the problem being solved.

Step 3: Update the personal best positions of particles
and the global best position found by the swarm.

Step 4: Update the velocity and position of each parti-
cle using the PSO equations by incorporating personal
and global best positions.

Step 5: Update the positions of alpha, beta and delta
wolves using the GWO equations by considering the
hierarchy and hunting behavior.

Step 6: Combine the movements of particles and
wolves by potentially adjusting the weights or pro-
portions of PSO and GWO influences.

Step 7: Check convergence criteria such as maximum
iterations or reaching a satisfactory solution.

Step 8: If convergence criteria are met, terminate the
algorithm; otherwise, return to step 2.
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Step 9: Determine the best solution found by the algo-
rithm as output.

These steps iterate until a termination condition is met i.e.,
when a satisfactory solution will be obtained, or a maxi-
mum number of iterations has reached. The hybridization
of PSO and GWO allows for a balanced exploration and
exploitation of the search space which enhances the algo-
rithm effectiveness in finding optimal solutions to various
optimization problems. Adjustments to parameters and
strategies may be made to improve performance for specific
problem instances. The flow chart of hybrid PSO-GWO
algorithm.
Optimizing EV charging costs is a critical concern amid the
transition towards sustainable transportation. The hybrid
PSO-GWO algorithm offers a promising avenue to address
this challenge effectively. By integrating the strengths of
PSO global search capability and GWO hierarchical explo-
ration, the hybrid approach can navigate the complex search
space of charging schedules and energy tariffs efficiently.
The algorithm optimizes EV charging schedules by con-
sidering factors such as battery SOC, microgrid charging
loads and user preferences. PSO adjusts charging rates and
time scheduling for EV charging iteratively by minimiz-
ing the costs and ensuring timely completion of charging
tasks. Meanwhile, GWO dynamically adapts the charging
strategy by leveraging the hierarchical structure to balance
exploration and exploitation of the solution space effec-
tively. Meanwhile, the real-time digital simulator provides
a virtual environment to simulate various charging scenar-
ios for medium scaled microgrids integrated with EVs and
assess their impact on grid performance and user costs. By
integrating RTDS enables rapid prototyping and testing of
charging strategies in a risk-free environment by allowing
for the evaluation of different optimization objectives and
constraints. Additionally, real-time simulation facilitates
the implementation of adaptive charging algorithms that re-
spond to sudden changes in grid conditions or user require-
ments. The hybridization of PSO-GWO can be modelled
by the following equations (31-47);

α j = αch +αdisch (31)

β j = βch +βdisch (32)

δch =
αch

βch
(33)

δdisch =
αdisch

βdisch
(34)

Thus, δ j can be calculated through eq (35),

δ j =
EVCh

∑
i=1

EVdisch

∑
j=1

α j ∗β j (35)

where, α j, β j and δ j are the cost coefficients integrated with
EVs for charging/discharging as shown in Eqs. (31-35).
αch, βch is the EV customer behaviour while charging, δch
and δdisch is the peak load demand utilized for EV charg-
ing/discharging. αdisch, βdisch is the EV customer behaviour
while discharging.

Thus, optimizing the operation of DERs along with EV
charging/discharging minimizes the costs. It involves a
complex interplay of factors such as electricity prices, DER
capacities, EV battery constraints and user requirements
using hybrid PSO-GWO. The integration of hybrid PSO-
GWO with real time environment has been modelled. The
equations of hybrid PSO-GWO are as follows:

Pj+1 = σ ∗Pj +C ∗ r1(Pj −SOCi)+(SOCEV
disch −SOCi)

(36)
SOCi+1 = SOCi +Pj+1 (37)

where, Pj+1 represents EV charging/discharging rate at ith
iteration, SOCi is the SOC of EV at ith iteration. The mean
waiting time (Wt) for EV charging/discharging can be cal-
culated using Eq. (38),

Wt = β j −1
initial

∏
0

[δ j]
−2 (38)

Thus, determining the alpha, beta and delta wolves using
Eqs. (39-46)

A = 2br1 −b (39)

C = 2r2 ; a = 2r3 (40)

where, t is the current iteration, A, C are the coefficient
vectors of grey wolf; r1 , r2 and r3 are random uniformly
distributed between 0 and 1 and a is linearly decreasing
coefficient from 2 to 0.
1. Alpha, beta, and delta wolves: GWO maintains three
special wolves in equations (41-43);

Z⃗1 = Z⃗α̈ −A∗SOCi (41)

Z⃗2 = Z⃗
β̈
−A∗SOCi (42)

Z⃗3 = Z⃗
δ̈
−A∗SOCi (43)

a. Alpha wolf: The wolf with the best fitness value can be
obtained from equation (44);

Z⃗α = SOCi+1 − Z⃗1 · r1|C · Z⃗1 −SOCi+1| (44)

b. Beta wolf: The wolf with the second-best fitness value in
equation (45);

Z⃗β = SOCi+1 − Z⃗2 · r2|C · Z⃗2 −SOCi+1| (45)

c. Delta wolf: The wolf with the third-best fitness value in
equation (46);

Z⃗δ = SOCi+1 − Z⃗3 · r3|C · Z⃗3 −SOCi+1| (46)

Thus, alpha, beta and delta wolves are participating in the
hunting process for obtaining the best cost for EV charg-
ing/discharging.
Updating Positions: All other wolves in the population
adjust their positions based on the positions of the alpha,
beta, and delta wolves. This mimics the social behaviour of
wolves where other wolves in the pack follows the leaders.
Exploration and Exploitation: GWO balances exploration
(searching for new, potentially better solutions) and ex-
ploitation (focusing on the best-known solutions) by using
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mathematical equations to guide the wolves’ movements.
The generated power costs for EV charging/discharging
using hybrid PSO-GWO are formulated in Eq. (47):

DER

∑
i=1

Pj =
Z⃗α + Z⃗β + Z⃗δ

3
+Wt ∗SOCtrip (47)

Iterative Process: The algorithm continues through multiple
iterations or generations. In each iteration, the positions of
the wolves are updated based on the positions of the alpha,
beta, and delta wolves, and the fitness of the new solutions
has been evaluated by finding a suitable search space for
best solution using PSO routine.
The algorithm tries to minimize charging during peak elec-
tricity demand times to reduce costs. The algorithm takes
decisions about when and where to charge/discharge the
EVs by considering arrival time, departure time and the
peak demand. This system will efficiently manage the EVs
within a microgrid and reduce the operational expenses. The
EV charging/discharging process within the microgrid min-
imizes the EVs charging costs at EVSEs and power utilized
by EVs for charging using hybrid PSO-GWO. This system
calculates an optimized cost using equation (30) and input
price profiles provided in Algorithm 1 pseudo code. It finds
the most cost-effective path for EVs charging/ discharging.
This implies that EVs have multiple options for charging
and the system needs to decide which EVSE will be used
by EVs.
Thus, hybrid PSO-GWO determines a desired search space
i.e., nearest EVSEs with respect to the EVs and then sim-
ulates a pack of wolves consisting of alpha, beta and delta

wolves for EV charging/discharging. These represent the
lead wolves in the pack. The algorithm initializes a popu-
lation of wolves which represents a potential solution for
V2G and G2V support. The alpha, beta, and delta wolves
determine fitness values.
The alpha wolf shows the best solution, the beta wolf shows
the second-best solution, and the delta wolf shows the third
best solution. Each wolf updates its position based on the
positions of the alpha, beta and delta wolves in the form of
EVs data. This step is designed to balance exploration and
exploitation. The new position of a wolf is calculated using
a search equations (44-46) that involves the positions of the
alpha, beta and delta wolves using equations (41-46) and
the PSO determines the solution space using equations (36-
37).
The equation guides the search towards potentially better
solutions. If EVs moves outside the search space bound-
aries, it must be brought back inside the boundaries using
suitable boundary-handling techniques for charging. After
updating the positions, the alpha, beta and delta wolves will
be redefined based on their new fitness values in the form
of SOC. The algorithm repeats the steps until a stopping
criterion has been met. Common stopping criteria includes
a maximum number of iterations that reaches a specific fit-
ness threshold or a time limit.
Through this hybridization, the algorithm can find near-
optimal charging schedules that minimizes the costs for
EV owners while considering constraints such as charging
station availability and grid demand. Such optimization
not only reduces charging expenses for users but also pro-

Algorithm 1 pseudo code: Function handling for EV charging/discharging using hybrid PSO-GWO

Input: EV Profiles

Output: EV Scheduling for charging or discharging

Initializing the number of EVs.

Updating the EVs data (select EV having minimum waiting time.

If [new vehicle plugged in]−→[set the charging demands]

Else

Update the nearest EVs data

Endif

Initializing the load parameters SOC, α , β and δ

Assigning the initial values - Z⃗1, Z⃗2, Z⃗3

Determining the load parameters with respect to the fitness function for charging or discharging of EV.

Update the best values - Z⃗α , Z⃗β , Z⃗δ , Pj+1, SOCi+1

If SOCEV<SOCBDT

EV is scheduled for the charging

Endif

If SOCEV>SOCBDT

EV is scheduled for discharging

Endif

EV�MG: Microgrid updates the EV charging/discharging process with other DERs within medium scale microgrid and determines

the performance in real-time environment.
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motes grid stability by distributing charging loads intelli-
gently. Overall, the hybrid PSO-GWO algorithm interacts
with RTDS, allowing it to receive system state information
for performing optimization iterations and adjusting sys-
tem parameters as needed during simulation runs as shown
in Fig. 2. It provides a great potential in enhancing the
affordability, performance and efficiency of EV charging in-
frastructure by facilitating the widespread adoption of EVs
in the transition towards sustainable mobility and obtaining
minimized generation costs in less evaluation time.

4. Results and discussion
In this section, experimental and simulation descriptions
have been provided. Furthermore, the performance of the

proposed algorithm is assessed by implementing it across
a medium scale microgrid model using RTDS as shown in
Fig. 3.

4.1 Experimental setup and data set description

The hybrid PSO-GWO has been implemented using MAT-
LAB 2022a and these cost parameters were incorporated
in hierarchical AC/DC microgrid model using Real time
digital simulator (RTDS Technologies NovaCor Model-1A)
as shown in figure 3. These experiments were executed
on a computer with a Windows 10 64-bit operating sys-
tem specification, Intel (R) core (TM) i7 and 16 GB RAM.
The algorithms have been implemented using MATLAB
and cost-optimized EV aggregator parameters which were

Figure 2. Flow chart of real time cost optimization of DERs generation costs and EV charging costs using hybrid PSO-GWO.

2345-3796[https://doi.org/10.57647/j.mjee.2025.1902.33]
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Figure 3. Real time digital simulation (RTDS Technologies NovaCor Model-1A) arrangement with MATLAB 2022a for overall solution procedure of
IEEE-37 node microgrid.

evaluated through IEEE-37 node feeder (medium scale mi-
crogrid) using RTDS to determine its overall performance.
An EV aggregator participates in and solves the optimal
scheduling problem using RTDS. AC/DC Microgrid has
been classified into small-scale and medium-scale category
based on factors such as generation capacity, demand and
evaluation time.
In this research, we focus on microgrid operating in grid-
connected and islanded mode, where the collective output
of available generation sources expects to meet the demand
every hour. Islanded mode entails that the microgrid meets
its demand using renewable energy sources and Combined
Heat and Power (CHP). We employ a cost-effective hy-
brid PSO-GWO algorithm to optimize the distribution of
demand power among diverse DERs. The algorithm priori-
tizes efficient power allocation among available sources to
minimize generation costs while ensuring load satisfaction.
The proposed cost-effective hybrid PSO-GWO algorithm
in comparison with other algorithms has been implemented
for small scale and medium-scale AC/DC microgrids. A set
of 100 EVs for charging/discharging mode are considered

for the V2G and G2V framework with 30 EVSEs. The pa-
rameter setting for the hybrid PSO-GWO is to calculate the
scheduling time for the EVs during peak and off-peak hours
with 40 KW battery rated capacity. The optimal solution for
scheduling EV for charging/discharging has been carried
out using MATLAB 2022a and the time for computing the
total path is 0.170 seconds. To find the nearest EV parking
system for charging, the Poisson distribution function has
been used for hybrid PSO-GWO. It has been observed that
each EV requires 30 minutes for full charging. Each EV
travels at a speed of 50 km/hour and has touch screen panels
for checking the SOC. If SOCEV < SOCBDT, then the EV
will move for charging and if the SOCEV > SOCBDT, then
the EV will be in discharged mode. The designed data will
be operated in terms of travel frequency, duration per trip,
starting time of the trip and driving mileage per trip [46] for
V2G and G2V scenario (as shown in Fig. 4) by evaluating
its performance in real time environment. The generation
data and all algorithms were tested using the same dataset
for fair comparison in terms of cost optimization. Results
demonstrate that the proposed hybrid PSO-GWO algorithm

Figure 4. EV charging/discharging travelling analysis using hybrid PSO-GWO.
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outperforms other investigated meta-heuristic algorithms.
Each algorithm underwent 60 runs for a 24 h load dataset
with unbiased evaluation for obtaining the best optimized
cost. Uniform population size and maximum iteration num-
bers were maintained across all algorithms for consistency,
while other parameters were adjusted as per microgrid stan-
dards. The parameter settings of all algorithms such as

universe size, learning factors, crossover/mutation prob-
abilities and inertia weights have been chosen based on
convergence speed, robustness and stability which impacts
convergence efficiency, system performance and solution
accuracy in managing load and DERs in microgrids as pro-
vided in Table 2.
The medium scale microgrid configurations are described in

Table 2. Parameter settings of all algorithms, DERs capacity quantities and load data (in KW) for medium scale.

Algorithm Parameter Value DERs Capacity Hour

Load (KW)
IEEE 37
(medium

scale
microgrid)

hybrid
PSO-GWO

universe size 60
EV rated

power 275 KW 1 1771

number of
iterations 1500

EV rated
capacity 85 KWh 2 1625

explorations
& exploitation 0.8 to 0.3 controller parameter – EV 3 1563

learning factor 2
droop

coefficient
RDroop = 0.06,
Dp = 1×10−3 4 1529

inertia weight 0.8 to 0.3
voltage

controller
KEVV

p = 3.68,
KEVV

I = 181.08
5 1529

PSO

universe size 60
current

controller
KEV c

p = 0.157,
KEV c

I = 19.5
6 1621

number of
iterations 1500 IC-VSC 7 1809

learning factor 2
droop

coefficient
DIC

P = 1.5708×10−4,
DIC

Q = 1.7×10−3 8 1963

inertia weight 0.8 to 0.3
power

controller
KIC

P = 2×10−5,
KIC

d = 2×10−7 9 1957

GWO
universe size 60

voltage
controller

KIC
PV

= 0.11,
KIC

iv = 2.2
10 1943

number of
iterations 1500

current
controller

KIC
Pc

= 0.16,
KIC

ic = 200
11 1952

explorations
& exploitation 0.8 to 0.3 filter parameter 12 1966

GA

universe size 60 IC VSC
L f = 10mH,

C f = 400µF ,
CDC = 13000µF

13 1939

number of
iterations 1500

PV boost
converter

L f = 8mH,
CDC = 5000µF 14 1942

crossover
probability 0.8 EV converter

L f = 10mH,
CDC = 1000µF 15 1940

mutation
probability 0.4 line parameter 16 1976

MVO

universe size 60
line parameter

of AC DER
Rlder1&2 = 0.0075Ω,
Llder1&2 = 0.15mH 17 2220

number of
iterations 1500

line parameter
of IC VSC

RIC
L = 0.015,

LIC
L = 0.00175

18 2514

Min 0.2
line parameter

of PV RPV
L = 0.0025Ω 19 2682

Max 1
line parameter

of EV REV re f

L = 0.001 to 0.05 20 2682

P 6

line parameter
for BESS RBESS

L = 0.001

21 2627

CMVO
universe size 60 22 2474

number of
iterations 1500 23 2203

WEP 0.3

24 2682AHA
universe size 60

number of
iterations 1500

migration
coefficient 2n
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Table 3. The data set parameter has been tested for medium-
scaled IEEE-37 node test feeder. The capacities of all DERs
integrated with the microgrid have been described in Ta-
ble 2 with IC-VSC, controller, filter and line coefficients
quantities.

4.2 Medium scale microgrid experimental results

This microgrid comprises three wind plants, two PV plants,
one CHP system and EVs. The load area is modeled for
IEEE 37-bus test system as illustrated in Table 3. The gen-
eration and load data for this microgrid has WPP of 750
KW, PV plant of 650 KW, CHP of 1000 KW and single
EV as 275 KW rated capacities. The wind and PV plants
exhibit intermittent output, varying their power generation
each hour, whereas the CHP system maintains a consistent
output throughout the day. In this analysis, we assume the
generation sources which maintain the continuous opera-
tion by enabling the microgrid to function independently in
islanded mode without depending on the main grid.
The wind and PV plants are characterized by their intermit-
tent nature which results in varying power outputs every
hour. In contrast, the CHP system consistently provides the
same amount of power throughout the day. This analysis
assumes continuous operation of the generation sources,
ensuring the microgrid functions independently in islanded
mode without reliance on the main grid. The load dataset
for medium scale microgrid is detailed in Table 2 and the
cost coefficients for medium scale microgrid has been de-
scribed in Table 3.
In the experimental results, the performance of medium
scale microgrid is elucidated based on evaluation time and
reduced generation and EV charging costs. These results
are derived from medium scale microgrid, each with their
corresponding dataset and initialized parameters. Each algo-
rithm underwent 1500 iterations and the optimal outcomes
were selected for a comprehensive and unbiased evaluation.
This section delves into the optimization results for medium
scale microgrid which employs seven different metaheuris-
tic algorithms on the provided dataset. We are assuming
that the generated power consistently meets the demanded
power by satisfying the equality constraint. Table 4 show-
cases the hourly generation power of all seven DERs - WP1,

WP2, WP3, PV1, PV2, CHP and EVs. The load data per-
tinent to this microgrid is outlined in Table 2. The Table 4
presents the outcomes derived from the GWO detailing the
generation power of all DERs with total generation cost of
$1292.51. Table 4 displays the results obtained through PSO
showing a total generation cost of $1317.99. Table 5 and
Table 6 delve into the generation power outputs for MVO
algorithm with total generation cost is recorded as $1376.11
and $1352.59 for CMVO, $1407.71 for AHA and for GA
$1391.87 respectively. Table 7 delves the overall genera-
tion cost of our proposed algorithm hybrid PSO-GWO with
$1255.24. These tables offer a comparative view of various
algorithms employed for the optimal power scheduling of
all available generation units within the hour, shedding light
on their respective performance in achieving cost-effective
and efficient solutions for medium scale microgrid.
Table 8 illustrates the total generation cost resulting from
optimal power scheduling across various available DERs,
as implemented for different algorithms. From the data
in Table 8, it becomes evident that the hybrid PSO-GWO
algorithm demonstrates remarkably improved results i.e.,
$1255.24. This algorithm achieves optimal scheduling at a
lower cost compared to all other algorithms studied. Specifi-
cally, the total costs incurred by CMVO, MVO, PSO, AHA,
GA and GWO amount to $1352.59, $1376.11, $1317.99,
$1407.71, $1391.87 and $1292.51 respectively. This analy-
sis reveals varying degrees of daily cost reduction, ranging
from $10.05 to $152.47 in comparison with all metaheuris-
tic algorithms. Furthermore, the average time taken by each
algorithm per hour differs significantly: hybrid PSO-GWO
at 0.21 s, CMVO at 0.29 s, MVO at 0.36 s, PSO at 0.34 s,
AHA at 0.88 s, GA at 0.65 s and GWO at 0.24 s. In Table 8,
the mean and standard deviation for each algorithm is de-
tailed. This finding suggests that the proposed algorithm is
not only more stable but also more cost-effective than the
other algorithms under investigation.
Fig. 5 depicts the convergence graph for the 12th hour which
highlights the optimal outcomes across all operating hours.
This graph illustrates the efficient convergence of the pro-
posed algorithm by exploring the search space. The conver-
gence graph plots the best solution against the generation
iteration number.

Table 3. Medium scale microgrid configurations and cost coefficients.

microgrid 1
Plant

α β δ

IEEE test system IEEE 37-node test feeder medium scale microgrid

scale medium WP1 0.0026 16.82 4.47

no. of solar plants 2 WP2 0.0027 17.41 4.46

no. of wind plants 3 WP3 0.0025 17.32 4.45

no. of CHP 1

PV1 0.0054 28.32 4.47

PV2 0.0054 28.91 4.47

CHP 0.0082 74.71 5.28

V2G 0.0060 36.80 4.91
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Table 7. Generation power (in KW) by hybrid PSO-GWO for medium scale microgrid.

hour WP1 WP2 WP3 PV1 PV2 CHP V2G cost($)

1 397.39 296.98 273.39 276.98 0 259.73 7.98 35.94

2 396.75 247.29 227.75 247.69 0 202.00 25.99 29.68

3 206.98 217.01 206.78 217.98 0 185.89 5.95 28.28

4 197.20 193.22 192.20 197.22 0 195.73 5.98 26.82

5 181.35 193.22 192.20 197.22 0 195.73 9.98 33.63

6 227.75 244.69 227.75 247.69 0 212.00 0 36.25

7 211.75 245.42 227.75 247.69 0 222.00 0 39.25

8 497.02 497.45 307.10 307.75 0 285.46 0 44.74

9 497.15 497.67 297.11 277.67 0 287.98 0 39.16

10 517.78 496.02 282.09 283.99 0 282.98 0 39.02

11 483.00 484.64 297.11 277.67 0 265.98 0 45.02

12 302.07 322.44 307.07 313.39 0 312.25 0 46.75

13 0 596.20 285.20 313.20 0 313.46 0 47.02

14 276.10 479.97 285.10 303.57 21.07 312.00 0 48.62

15 263.09 475.09 265.09 303.75 0 312.89 0 49.42

16 265.98 462.09 285.98 313.75 33.64 313.98 0 65.98

17 307.30 484.09 307.10 383.67 36.01 309.09 0 69.73

18 296.00 420.59 307.00 583.75 44.94 514.03 0 79.02

19 297.10 596.09 317.10 597.67 0 513.39 0 78.69

20 402.12 197.02 337.40 597.75 0 613.29 0 72.51

21 466.02 475.29 478.10 473.66 0 478.10 0 73.02

22 415.43 406.42 423.43 420.53 0 425.99 0 74.02

23 273.10 298.64 285.10 303.57 0 313.46 1.29 61.02

24 510.75 475.86 534.75 487.98 0 418.63 2.35 52.40

This performance surpasses all other algorithms in terms
of efficiency and accuracy, which swiftly moves towards a

more promising region in fewer generations which yields
superior results.

Table 8. Total evaluation time and the total cost for medium scale microgrid.

algorithm total cost total time mean standard deviation

hybrid PSO-GWO 1255.24 0.21 1299.12 21.28

CMVO 1352.59 0.29 1398.25 38.45

MVO 1376.11 0.36 1421.65 40.54

PSO 1317.99 0.34 1362.17 36.24

GWO 1292.51 0.24 1301.25 23.24

GA 1391.87 0.65 1530.50 44.36

AHA 1407.71 0.88 1682.65 47.65
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Figure 5. Convergence graphs for medium scale microgrid at 12th hour.

Table 9 and Fig. 6 discusses the EV charging best costs
graph for medium scale microgrid in which the proposed
hybrid PSO-GWO algorithm outperforms all other meta-
heuristic algorithms by obtaining reduced charging cost.
The best EV charging cost obtained through hybrid PSO-
GWO is $70.36 for EV as compared to PSO, GWO, MVO,
CMVO, AHA and GA. Also, algorithm navigate the best
search space and converges towards optimal solutions by
demonstrating its potential for superior performance in real
time environment.
The generation data for a medium-scale microgrid optimizes
through the hybrid PSO-GWO algorithm which highlights
the efficacy of strategic power scheduling across various
DERs. Table 7 delineates the hourly generation outputs for

wind power (WP1, WP2, WP3), photovoltaic sources (PV1,
PV2), CHP and V2G systems, along with the corresponding
operational costs per hour for hybrid PSO-GWO. The data
shows a judicious distribution of energy resources aimed at
cost minimization. The algorithm proficiently directs fluc-
tuations in RE parameters such as variations in wind speed
and solar irradiance by merging the exploratory strengths
of PSO with the exploitation precision of GWO facilitat-
ing dynamic adaptations to sustain cost-efficient operations.
However, despite its inherent flexibility, the algorithm may
encounter challenges including heightened sensitivity and
premature convergence with respect to parameter configu-
ration, which hinders the scalability and compromises real-
time performance swiftly with changing conditions. During

Table 9. EV charging best optimized cost for medium scale microgrid.

iterations (1-1000)/ algorithms MVO AHA GA PSO CMVO GWO hybrid PSO-GWO

iteration 300 $110.25 $70.56 $87.94 $90.42 $59.50 $100.25 $70.36

iteration 600 $61.25 $64.98 $64.87 $55.65 $59.50 $40.28 $30.01

iteration 900 $61.25 $63.35 $64.87 $55.65 $59.50 $40.28 $30.01

iteration 1200 $61.25 $62.50 $60.22 $55.65 $59.50 $40.28 $30.01

iteration 1500 $61.25 $62.50 $60.22 $55.65 $59.50 $40.28 $30.01

Figure 6. Best EV charging costs for medium scale microgrid.
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peak generation periods i.e., 8thh and 9thh when wind and
PV outputs are at their highest, the system influences these
sources predominantly, supplemented by V2G operation
when needed. During lower generation intervals i.e., 1sth
to 5thh, dependence on CHP and V2G systems intensifies
leading to elevated costs due to reduced renewable input.
The hybrid PSO-GWO algorithm while proficient at opti-
mizing EV charging/discharging costs within microgrids is
not without its limitations. It is prone to premature conver-
gence because of its extremely sensitive way of parameter
selection and faces scalability challenges as the problem
size expands which can impede its ability to thoroughly
explore the solution space and adapt effectively to rapid
fluctuations in grid conditions. Moreover, computational
time for larger-scale applications may become a significant
block in real-time approaches. The major perceptions from
the data include the sustained deployment of CHP to uphold
grid stability during diminished RE generation and the tacti-
cal engagement of the V2G system during specific hours to
fine-tune costs and enhance charging/discharging efficacy.
The hourly cost varies significantly with a low of $26.82
at 4thh and a high of $79.02 at 18thh reflecting the intricate
balance between generation and consumption managed by
the microgrid. These findings emphasize the hybrid PSO-
GWO algorithm capability to optimize power generation
and costs effectively, while pointing out the areas where
further optimization approaches could mitigate peak costs
and reinforce overall system performance.

5. Conclusion
This paper presents the hybrid PSO-GWO algorithm,
designed to optimize power allocation in medium-scale mi-
crogrid enhancing both global and local search efficiencies.
By combining the exploration strengths of PSO with the
exploitation abilities of GWO, the algorithm minimizes
generation and EV charging/discharging costs considerably
improving microgrid efficiency. It also incorporates a
comprehensive EV scheduling framework, strengthening
system reliability and operational efficacy. The real-time
functionality is rigorously validated through extensive
testing, where the EV controller continuously monitors
DC bus voltage and load profiles, eliminating the need
for auxiliary battery energy storage systems (BESS) and
reducing operational complexity. A comparative analysis
confirms the superiority of the hybrid PSO-GWO algorithm
particularly in V2G and G2V scenarios with hourly costs
fluctuating between $26.82 and $79.02, demonstrating
effective management of generation and consumption. The
algorithm is highly adaptable across various microgrid
configurations and complies with IEEE standards for both
islanded and grid-connected systems. Future integration
of AI and machine learning will enhance scheduling
optimization, while hybridization with other algorithms and
multi-objective optimization will improve scalability and
efficiency. The PSO-GWO algorithm has transformative
potential for smart grids and urban energy networks.
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Nomenclature

Index terms Abbreviations

IPV cell
current output of a

single PV array model EV Electric Vehicle

Ipg photogenerated current PSO Particle Swarm Optimization

IRev reverse current GWO Grey Wolf Optimization

η ideality factor I-VSC Interleaved Voltage Source Converter

Rs&Rp series resistance and shunt resistance IC-VSC
Interline Cascade Voltage

Source Converter

VMPPT , IMPPT
maximum power point

voltage and current DESS Distributed Energy Storage System

ωinst , ωre f
instantaneous and reference

frequency in rad/sec IEEE
Institute of Electrical and

Electronics Engineers

KIC
pC

IC-VSC proportional coefficient
power control loop SA Simulated Annealing

KIC
d

derivative coefficient in
power control loop at

grid converter side
DER Distributed Energy Resources

V re f
d , V re f

q
reference voltage control
loop for d-q component RES Renewable Energy Sources

KIC
PV IC-VSC voltage control loop RER Renewable Energy Resources

C f capacitive frequency ML Machine Learning

Vd Voltage at direct axis AI Artificial Intelligence

Vq voltage at quadrature axis RTDS Real Time Digital Simulator

Ki integral IC-VSC constant RSCAD
Real-time Simulation Computer

Aided Design

V rated
DC , V inst

DC rated and instantaneous DC bus voltage PV PhotoVoltaic

KSC
P , KSC

i
proportional and integral coefficients

of secondary controller WPP Wind Power Plant

Pmin minimum power generated in WPP CHP Combined Heat and Power

Pmax maximum power ESS Energy Storage system

PCHP,elec
maximum electricity

generation capacity in CHP BESS Battery Energy Storage System

σ
driving efficacy during

EV charging/discharging CES Conventional Energy Sources

M distance travelled by EV per trip RE Renewable Energy

Mmax
maximum distance travelled
by the EV for the whole day EVSE Electric Vehicle Supply Equipment

SOCEV
ch SOC during EV charging CS Charging Station

SOCEV
disch SOC during EV discharging ACS Advanced Control Systems

SOCEV
I EVs initial stage V2G Vehicle-To-Grid

Cch and Cdisch
EV battery charging/discharging

efficacy and its performance G2V Grid-To-Vehicle

εch and εdisch EV charging/discharging rate ANN Artificial Neural Networks
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Index terms Abbreviations

T EV
ch , T EV

disch
dedicated scheduling for EV
charging/discharging process MOA Mayfly Optimization Algorithm

V inst Bus
DC , V re f

DC
DC bus instantaneous and

reference voltage LSA Lightning Search Algorithm

Dp power droop coefficient RFA Rain Flow Algorithm

KEVC

P , KEVC

i

proportional and integral coefficient
in current control loop for

EV converter
MILP Mixed Integer Linear Programming

IPV cell
current output of a

single PV array model EV Electric Vehicle

β j, α j, δ j cost coefficients of the microgrid MDP Markov Decision Process

C j total cost MVO multi-verse optimization

Pj
power in jth generation

in MW/hour
GA Genetic Algorithm

Pi
total power generated
from available DERs DR Demand Response

Pt
power demanded at

a particular hour of the day WT Wind Turbine

Pi min
minimum allowable power output

for any generation unit DG Distributed Generation

Pi max

the maximum power output or
total demand achievable based on

the rated power capacity
TLBO Teaching Learning-Based Optimization

SOCi SOC of EV at ith iteration SOC State-Of-Charge

Wt mean waiting time MPPT Maximum Power Point Tracking

Zα alpha wolf EM Energy Management

Zβ beta wolf JA Jaya Algorithm

Zδ delta wolf DSO Distributed System Operator
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