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Received: The microgrid acts as a single controllable system, and by generating flexible power, it ensures the reliability
2 February 2025 of the electric grid. The use of microgrid helps to solve environmental pollution problems. The microgrid
filiieldéozs control operation is different from the grid-connected mode. Based on the nature of bus voltage, microgrids
Acclz.pte i@ are divided into two categories: DC microgrid and AC microgrid. Several studies have been conducted in
1 May 2025 the field of microgrid application and exploitation, but their expansion still faces various challenges. DC
Published online: microgrids are more reliable than ac microgrids. The purpose of this article is to review the documentation
1 June 2025 and provide a short review on the application of the droop method to control parallel converters in direct

©2025 The Author(s). Published by  CUITENt Microgrids. Droop control method is a popular and well-known technique for sharing load power,
t:z 81;&?2:::::S‘hzt::rbmu;:: which is widely used in DC microgrids. In this control strategy, the reference voltage of each source is
License, which permits use, distribu-  determined based on the nominal output voltage, output current and loss factor, where the power sharing rate
Ef{‘:v?;‘:ﬁl}"’e"i‘:;‘;zl"Lvﬁ':‘\C‘Ii)‘r‘:)? is determined by increasing the loss. The various advantages of direct current microgrids will cause them
erly cited. to be used more in the near future, so this review is for researchers as a preliminary research to study the

development of direct current microgrids based on the application of droop control methods. And improving

it can be useful.
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1. Introduction duction, unlike non-renewable energy, can be renewed by
nature in a short period of time. Given that renewable en-

Energy is a fundamental need for continued economic de- €Y sources are available in all parts of the world, and
velopment, social welfare, improvement of quality of life unlike fossil fuels, they do not have access restrictions, the
and security of society. One of the important issues is the role of new energies is well known, while fossil fuel sources
wide range of human needs for energy resources, so that &€ not only found only in certain countries, but also face
the effort to achieve permanent energy sources is consid-  increasing prices [5, 6].

ered one of the long-standing goals of man [1, 2]. Over The global need for energy has surged significantly in the
the years, energy resources have been considered one of last decade, and fossil energy sources are insufficient to
the most important factors in the economic, industrial and satisfy future evolutionary and developmental requirements
scientific life of countries, and national security and the [7, 8]. With the development of the industry and the in-
sustainability of government systems also depend to a large ~ Cr€ase in consumer demand and environmental issues, the
extent on access to energy resources. The world’s need for penetration of scattered production sources and energy pro-
energy has increased significantly in recent years, and fossil ~ duction from them in the power system has increased greatly
energy resources do not meet this need for future evolution [9, 10]. Various technical, economic and environmental
and development [3, 4]. factors have caused the expansion of distributed energy pro-

Renewable energy is a type of energy whose source of pro- duction in power systems [11, 12]. Direct connection of


https://doi.org/10.57647/j.mjee.2025.1902.34
https://orcid.org/0000-0003-2774-4694
https://orcid.org/0000-0001-8581-000X
https://orcid.org/0000-0003-2347-0374
mailto:shahgholian@iaun.ac.ir
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0

2/25 MIEE19 (2025) -192534

renewable energy resources such as solar photovoltaic, fuel
cell, water energy and wind energy to the main grid causes
problems in voltage and frequency and also protection sys-
tems [13, 14]. Microgrids have been widely considered in
studies as a possible approach for integrating distributed
energy sources with energy storage systems in the electrical
grid. The increasing use of renewable energy sources re-
quires advanced energy management in microgrid systems
for their sustainability, efficiency, and reliability [15, 16].
The intermittent nature of renewable energy sources makes
their integration into a smart grid more difficult compared
to traditional power plants with relatively constant energy
production [17, 18]. At present, microgrids supply a small
percentage of energy, but in the near future they will supply
a significant amount of energy [19, 20].

The high use of renewable energy resources like photo-
voltaic arrays and wind turbines has expanded the use of mi-
crogrids [21, 22]. Microgrid is a decentralized network and
a self-sufficient energy system, which reduces the adverse
effects of distributed generation. It also saves money in
long-distance transmission, and improves power efficiency
by reducing transmission power losses. The additional ca-
pacity provided by microgrids is used to prevent overload
situations and blackout of the national network [23, 24]. In
short, the advantages of microgrids include increasing se-
curity and energy efficiency, improving service quality and
electrical reliability, minimizing overall energy consump-
tion, improving power quality and positive environmental
effects [25, 26]. Also, the microgrid has a faster demand re-
sponse than the traditional power system [27, 28]. There are
some challenging problems to achieve and ensure the bene-
fits of microgrids. Among the disadvantages of microgrids
and the main obstacle to the widespread deployment of their
technology, we can mention high initial cost, complexity,
compliance with specific regulations, design on a limited
scale, lack of necessary standards, and technical problems.
Another disadvantage is the irregular injection of power due
to variable renewable energy sources. Also, the microgrid
needs an energy storage system [29, 30].

1.1 Research highlights

Microgrids have been widely considered in studies as a
possible approach to integrate distributed energy sources
with energy storage systems in the electrical grid. Many
studies so far in various fields such as protection [31, 32],
power sharing [33, 34], energy management [35, 36], con-
trol [37, 38], power quality [39, 40], load sharing [41], mod-
eling [42, 43], stability [44, 45] and optimization [46, 47]
has been done for direct current microgrids.

Also, review studies have been published in various fields
of application of direct current microgrids and related chal-
lenges, some of which are mentioned in Table 1. The above
review shows that there are still huge challenges in the study
of microgrids considering the variable and random charac-
teristics of renewable energies.

Droop control is effectively employed to control microgrids
in both grid-tied and stand-alone operating conditions. In
this paper, the aim is to study the performance and applica-
tion of the droop regulation method in direct current (dc)
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microgrids. The main highlights of this review can be illus-
trated as follows:

- Classification of microgrids based on the distribution
system and stating the advantages and disadvantages
of DC microgrids.

- Presenting a number of simulation results in the field
of application of droop regulation method in DC mi-
crogrid.

- Discussing and investigating the classification of mi-
crogrid control methods based on control modes.

- Discussion and investigation of droop techniques in
microgrid control design.

- Distribution of droop control in direct current micro-
grid.

1.2 Paper structure and research method

The main aim of this article is to evaluate the current status
of studies conducted in the field of application of droop
strategy in direct current microgrids and to identify related
issues. The structure of the article is arranged in 6 sections.
After pointing out the importance of the subject and stating
the problem in this section, in section 2, the structure of
the direct current microgrid with its advantages and disad-
vantages is mentioned. Microgrid control methods are an
important field of study and application, which is mentioned
in section 3. In section 4, the droop strategy in the parallel
connection of converters in the microgrid based on the DC
microgrid is stated. In section 5, a number of studies and
simulation results of droop control in DC microgrids are
given. Finally, the conclusions and suggestions are stated in
section 6.

2. Direct current microgrid structure

In recent years, energy has become an important and influen-
tial factor in the expansion and creation of various industries,
and therefore has great importance in the industrial sector
[57, 58]. Microgrids are classified based on various factors.
Based on the system architecture and voltage characteristics,
microgrids are divided into direct current [59, 60], alternat-
ing current [61, 62] and hybrid [63, 64]. Based on the line
parameters, microgrids are usually considered as inductive
or resistive systems, so that the line parameters affect the
control of the microgrid and the selection of the controller
type. The inductive part of the line in medium and high
voltage networks is usually larger than the resistive part of
the line impedance [65, 66]. The impedance in low volt-
age networks is essentially resistance and the inductive part
of the impedance is negligible and can be neglected. In
terms of the control loops required in the microgrid, the
control levels are divided into primary control, secondary
control, tertiary control [67, 68]. Based on the control archi-
tecture criterion or any monitoring problem, there are two
different approaches: centralized control and decentralized
control. Based on the operation, microgrids are divided
into grid-independent and grid-connected. In autonomous
microgrids, decentralized control methods are often used

2345-3796[https://doi.org/10.57647/j.mjee.2025.1902.34]


https://doi.org/10.57647/j.mjee.2025.1902.34

Shahgholian et al. MIJEE19 (2025) -192534  3/25

Table 1. A number of review studies in the field of microgrids.

Subject Ref. The highlight and result of the research
Hierarchical control strategies in a dc
microgrid are investigated. Hierarchical control
strategy is divided into three primary, secondary and

(48] tertiary layers based on their performance.
Different control methods for current and voltage regulation at the first level,
power sharing and voltage error correction at the second
level and energy management for minimum power loss

reduction at the third level have been investigated.

High power quality along with cost reduction and control
Control simplicity are the advantages of dc microgrid.

The classification of different primary and secondary
control techniques for dc microgrids has been investigated.
[49] . . L
Load sharing mechanisms used in primary control are shown for

active methods and passive methods.
The classification of different methods for second

level control is also mentioned.

To implement dc microgrids, a stable control
strategy is needed. Voltage control strategy in dc microgrid
is investigated. By combining two centralized and

[50] decentralized control methods, their advantages
have been used for the control accuracy and reliability
of the power grid, and it can be an effective help in
the development of DC microgrids.

Protection is one of the challenges of expanding the use of
direct current microgrids, and creating a suitable protection plan
is one of the problems of protecting the grid.

51] In this study, the problems and protection schemes of direct
current grids in modern power systems have been
analyzed and investigated. Protection methods for direct
current microgrid have been compared and different methods for

solving protection problems have been discussed.

Protection

The challenges of protecting the direct current microgrid
system have undermined its booming benefits. The nature
(52] of the fault current and the time change of
the microgrid architecture have an effect on the protection plan.
In this study, direct current microgrid protection techniques
with protection requirements have been investigated.

Renewable energy sources have been used to meet
the energy demand in the power system.
Direct current microgrids have high performance and
good reliability, but they are still weak in terms
(53] of network architecture and control system.
In this study, various methods and

Energy strategies related to energy management in microgrid
management have been investigated. The energy management system has

been considered in terms of cost and optimization
in direct current microgrids.

Exploiting the potential of microgrids in smart grids with

renewable energy will be accompanied by various challenges.

The development of direct current microgrids and various
[(54] challenges such as power quality and operation,
appropriate control and energy management strategies are
reviewed in this study. Energy control and
management strategies have a great impact on other microgrid

performance indicators such as operating cost and greenhouse gas emissions.
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Continued of Table 1.

Subject Ref.

The highlight and result of the research

Integration of
renewable
energy

When a large number of renewable energy sources
are integrated in direct current microgrids,
the microgrid faces problems, for which several approaches
[55] have been proposed, including droop control and virtual
inertial control. In this study, the challenges and
opportunities due to the integration of renewable energies
in direct current microgrids have been investigated.

[56]

When integrating large amounts of renewable energy sources,
DC microgrids face problems due to voltage regulation,
energy management, inertia control, and uncertainty management.
Various approaches such as droop control, centralized control,
distributed control, virtual inertia control, and uncertainty
management algorithms have been proposed so far to address
the above problems. The challenges and opportunities arising from
the integration of renewable energy into DC microgrids
are discussed in this paper. An evaluation of the advantages and
disadvantages of the existing methods is provided.

and the maximum power of consumers is limited [69, 70].

Microgrids based on architecture (system topology) or dis-
tribution system into three groups: direct current microgrid
[71, 72], alternating current (AC) microgrid [73, 74] and
hybrid microgrid [75, 76] are divided according to Fig. 1.
The choice between microgrids depends on the purpose
of their application. Around the globe, many microgrids
based on renewable energy have been installed and used to

generate decentralized electricity in order to supply elec-
tricity to remote areas [77]. Today, DC microgrids are used
for power distribution networks in automotive industries,
electric vehicles, residential buildings, commercial centers,
marine industries, and manufacturing industries, as well
as in remote areas. A direct current microgrid is usually
composed of distributed energy storage systems (ESSs) and
energy resources (DERs) [78, 79]. Direct current microgrid

Microgrid classification based on distribution system
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Figure 1. Classification of microgrids based on the distribution system and display of an example of direct current and alternating current microgrid

system.
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is a power distribution system that consists of several dc
power sources, and dc loads are provided by dc/dc power
converters and variable loads are supplied by dc/ac invert-
ers [80, 81]. The dc microgrid is linked to the main network
through the main dc/ac power inverter at the common con-
nection point. Various energy sources like batteries, wind
plants, solar panels, and fuel cells can exist in the dc mi-
crogrid, which work independently or in combination, and
meet the power requirement of the microgrid [82, 83].

DC microgrids, like ac and hybrid microgrids, work in two
main modes [84, 85]: Connected to the grid [86] and inde-
pendent from the grid [87]. The island microgrid can work
freely and without connection to the large-scale power grid.
Ancillary services to the main power grid are provided by
the microgrid in the state connected to the grid, but in the
island state, maintaining the demand and generation balance
is the responsibility of the microgrid [88]. Islanded micro-
grids increase the flexibility of the energy system [89, 90].
In DC microgrid operation in an island way, power is not
transferred between the primary network and the microgrid,
and the demand is balanced locally. In the grid-tied state,
the dc microgrid can act as an uncontrolled load in the main
grid or a controlled ac load with regulated output power.
According to the intermittent character of the production of
scattered resources and their unavailability, there is a need
for power storage units in microgrids. High efficiency com-
bined with simple architecture with the ability to directly
integrate distributed resources has led to the application of
dc microgrids in modern energy systems [91, 92]. Different
kinds of distributed generation sources are used in dc mi-
crogrid [93, 94]. Photovoltaic panels [95, 96] and fuel cells
[97, 98] that produce dc voltage are more suitable for use,
but wind turbine generators [99, 100] that produce variable
frequency, need a converter to connect to the DC bus. DC
microgrids have faster transient dynamics than ac micro-
grids, because the rotating machines are separated from the
dc grids using converters [101, 102]. In the dc microgrid,
reactive power changes have no effect. And only the effect
of dc voltage is considered. Also, harmonics, frequency and
phase have no effect on DC microgrids [103, 104].

In short, the advantages of direct current microgrids are:

A- Less need for electronic power converter: Due to the
fact that most sources of energy production work in DC
mode, less number of electronic power converters are
needed and the steps of power conversion are reduced,
so the efficiency of the microgrid is improved [105,
106].

B- No need for synchronization: Three variables of volt-
age, frequency and phase are used in ac microgrid to
determine the power flow, but in dc microgrid only
dc bus voltage is used for energy balance in dc link.
Therefore, the dc microgrid does not need frequency
coordination and reactive power management. Also,
the control of distributed generation sources in the mi-
crogrid is done based on DC voltage and does not
need synchronization, therefore, synchronizing the
available distributed generation sources is easily done
[107, 108].
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C- No effect of voltage reduction: Voltage reduction from
the network in the case of connecting the DC microgrid
to the network does not affect the internal units of the
microgrid [109, 110].

D- Non-production of additional power: It does not have
a standard voltage, and no additional power stage is
needed to produce voltage like the ac microgrid [111].

E- Skin effect: There is no skin effect in the dc microgrid,
but there is a skin effect in the ac microgrid [112, 113].

F- Integration of dc loads is done easily, but in ac micro-
grid, a rectifier is needed to integrate dc loads, which
reduces the efficiency of the system [114].

G- Line transmission capacity: In the dc microgrid, there
is no need for long transmission lines or lines with
high capacity [115].

The disadvantages of direct current microgrids are:

A- Loads with high voltage: The connection of high volt-
age loads is accompanied by bulky and expensive con-
verters [116, 117].

B- Initial cost: It requires initial investment, and due to
having higher current levels and less time to fix the
fault, there are risks of electric arc and electrocution
[118].

C- Standard voltage: Due to the lack of direct connection
of ac loads to the microgrid and non-standard voltage
of dc loads, additional power steps are needed to adapt
the dc bus level or produce ac voltage [119, 120].

D- Protection: The dc microgrid has not been developed
acceptable in terms of fault resolution and lacks basic
protection equipment. It has a complex protection
and the protection schemes used are influenced by the
time change of direct current microgrid architecture
[121, 122].

E- Configuration: It is not possible to reconfigure the
network [123, 124].

F- Integration with the main grid: Integrating the dc mi-
crogrid with the primary ac network is not easy and
requires network reconstruction, which requires a lot
of investment [125, 126].

3. Classification of microgrid control methods

Control is one of the important parts of systems and its
design must be based on the system’s operating conditions
[127, 128]. It is difficult to control different types of dis-
tributed generation sources in the microgrid system to coor-
dinate to create a stable voltage and frequency. The stable
and economic operation of microgrids requires proper con-
trol [129, 130]. Due to the dual function of microgrids, their
centralized management is not easy, so the control system
in microgrid is an important research area [131, 132]. The
control algorithm for the microgrid in the grid-tied operat-
ing mode is much simpler than the control algorithm for the

2345-3796[https://doi.org/10.57647/j.mjee.2025.1902.34]
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microgrid in the independent mode [133, 134]. Also, due
to the fact that the characteristics and capacity of electricity
production in distributed energy sources are different, there-
fore, the microgrid of the island state needs to be quickly
adjusted compared to the microgrid of the state connected
to the grid [135, 136].

A group of microgrid resources such as generators, batter-
ies and controllable combined heat and power production
and another group such as solar cells, water turbines and
wind turbines are possible (uncontrollable) distributed gen-
eration, which are used to generate power [137, 138]. An
important issue in microgrid control is related to control-
lable resources. Therefore, in order to control the microgrid,
the presence of at least one of the controllable resources in
the microgrid is necessary for the stability of the microgrid
[139, 140]. With the development of dc microgrids, their
control strategies have attracted more attention [141, 142].
Control methods have an important effect on the transient
behavior of dc microgrids, so they will have a significant
effect on their protection aspects [143, 144].

Different microgrid control methods are shown in Fig. 2.
Control strategies play a key role in improving the imple-
mentation and efficiency of DC microgrids.

3.1 Regulatory control system (hierarchical control)

Due to the application of direct current microgrid, a reliable
and efficient control scheme such as hierarchical control is
required to control dc microgrids, and for this reason, this
method has been widely proposed in studies by researchers
[145, 146]. In a microgrid, to further enhance stability, dif-
ferent control levels are used sequentially, each of which
has a duty in relation to stability. In the regulatory con-
trol system method (hierarchical control) or in other words
multi-level control, microgrids work using several control
loops [147, 148]. In general, hierarchical control is used to
standardize the performance and capabilities of microgrids
[149, 150]. The hierarchical control structure includes local,
first-level, second-level, and third-level controllers, ranging
from milliseconds to hours or days [151, 152]. Each stage
is responsible for microgrid regulation at various levels,
whose basic tasks are organized in Fig. 3 [153, 154].

Management of the appropriate power sharing rate between
distributed energy sources is performed at the primary level

Shahgholian et al.

control, which is typically distributed without communica-
tion connections. In order to decrease voltage fluctuations
and enhance energy quality, secondary level control is em-
ployed [155]. Tertiary level control is used for long-term
electricity market information planning [156, 157]. Table 2
depicts the comparison of control levels in the microgrid
in terms of the task and purpose of the control level. The
hierarchical structure of direct current microgrid is divided
into two groups of two-stage regulation architecture and
three-level control architecture. For the dc microgrid, there
are three levels of control from the bottom up, including the
converter control level (control of various topologies of the
converter), the voltage coordination level (coordinating the
power flow in the power network), and the level of energy
management (optimizing functions in a wider range using
the information network) is defined. Therefore, the reliance
on communication decreases and the strength of the control
system increases [158, 159]. Fig. 4 shows the hierarchical
control structure in a direct current microgrid [160, 161].

3.2 Supervisory controller (based on communication
method)

Communication is one of the main elements of the con-
trol system. Microgrid controllers are divided into three
fundamental control sections, including centralized regula-
tion, semi-centralized regulation, and distributed regulation
based on the communication link and control architecture
of power systems [162, 163]. Each of these three control
methods has specific characteristics, but having better per-
formance and stability for microgrids is their common goal
[164, 165]. Fig. 5 shows a sample of the above designs.

Proper management of continuous energy between produc-
tion units and consumption loads is possible through a cen-
tralized control system with communication between differ-
ent units. Direct current microgrids allow for centralized
control through the use of a central controller and a digital
communication network that links sources and loads. Hi-
erarchical control is more reliable than centralized control.
One of the weaknesses of this method is being affected by
the communication line. Decentralized coordination is one
of the control strategies of DC microgrids. Digital commu-
nication between different system units is not required in
decentralized control, and therefore decentralized control
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Figure 2. Division of control methods in microgrids.
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Figure 3. The role of hierarchical control levels in microgrids.

is a reliable and simple control scheme [166, 167]. This
method is inherently functionally limited because the infor-
mation of other units is not exchanged, and the effectiveness
and reliability of the method is also affected by the accuracy
of the sensors. The decentralized control approach is usu-
ally funded on the droop regulation method [168, 169]. In
the distributed method, every local regulator communicates
with its neighboring controllers to achieve some of the ad-
vantages of the centralized method for the microgrid [170].
Distributed control is different from central control, in other
words, there is no central unit and the digital communica-
tion line is the interface between local controllers. One of
the main advantages of this method is the complete preser-
vation of performance when some communication links fail
[171]. By comparing the characteristics of the architectural
arrangements of the control systems, it is clear that the ma-
jority of the computational burden and computational cost
for the central controller of the microgrid is imposed in the
centralized control, while the least amount will be imposed

in the local controllers. Both centralized and decentralized
control are also more difficult to implement than the more
complex distributed control [172].

The advantages and disadvantages of the three supervisory
control methods for comparing their performance are sum-
marized in Table 3 [173].

3.3 Classification based on control methods

Control strategies in microgrids are divided into three
groups, master-slave, peer-to-peer, and hybrid based on
control modes [174, 175]. A master-slave regulation ap-
proach is simple and easy. A master-slave control strategy
is a common example of a centralized regulation method.
The master-slave approach is a model of communication
or asymmetric control in which a distributed source as the
master unit controls one or more distributed sources as a
slave unit [176, 177]. In the master-slave control structure
to sustain the microgrid in island operating condition, the
voltage and frequency of one of the distributed generation

Table 2. Comparison of performance levels in hierarchical control for a microgrid.

Level number Controller aim Controller implementation
. . . . * Prevent voltage or frequency collapse
Primary * Primary stability of frequency or angular velocity ) o
Basic control working in a few seconds
* Creation of steady state error in basic variables
Secondary * Frequency or voltage droop control due to events such as fragmentation,
load change and error occurrence
. . . . . * Creating coordination by the
. * Controlling extensive microgrids with . . . .
Tertiary ] main control in the micro-grid
multiple controllable voltage sources . . .
Power management control in the microgrid
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Figure 4. Hierarchical control structure in direct current microgrids.

sources or power storage (master controller), for other dis-
tributed generation sources and loads (slave controller), as
the base value is considered. Each slave controller makes a
decision based on the main controller for its operation mode.
One of the disadvantages of this method is the excessive
dependence on the main unit [178, 179]. At the moment
when there is no reactive or active power in the network, it
depends only on the main unit to adjust the system. The
control strategy of the main unit during network failure has
an important effect on the microgrid stability [180, 181].
Fig. 6 shows a display of master-slave control that the sys-
tem has one master unit and two slave units.

In peer-to-peer regulation, all distributed generation re-
sources in the microgrid control system have the same status.
In this method, the controllers use the measurement signal
(voltage and frequency) at the connection point to control

et central controller AR
. 1

each part of the microgrid under the same conditions. In
other words, control does not depend on communication
and there is no hierarchy among controllers. By connecting
or disconnecting any generator, the microgrid can continue
to work and energy needs can still be met. The peer-to-peer
control architecture can take advantage of the flexibility and
resilience of microgrids [182, 183].

4. Droop control

The microgrid may have multipurpose power electronic
converters that connect sources, loads, and storage systems
to the bus [184, 185]. Coordination of the performance
of supervisory control systems, energy management and
protection in microgrids is done using advanced power
electronic converters [186, 187]. Parallel use of electronic
power converters to achieve power sharing is one of the

" —

local
controller

local
controller

1

=] Y

(b) Decentralized control

1

local
controller

3ystem

(c) Distributed control

Figure 5. Division based on control system architecture.
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Table 3. Advantages and disadvantages between three methods in microgrid supervisory controller for comparison.

Method
Centralized | Decentralized Distributed
Quantity
Control accuracy High Low Medium-High
Scalability Medium High Medium
Computational and communication burden High Low Medium-High
Response speed Low High Medium
Economic performance Medium Low Medium-High
Computational complexity High Low Low
Two-way communication infrastructure Medium Low High
Implementation difficulty Low Medium High
Network management complexity Medium High Low

important aspects in a dc microgrid. In case of coordina-
tion between electronic power converters, it is possible to
direct the energy flow in the microgrid system [188, 189].
Various methods have been presented for the parallel oper-
ation of microgrids, which are divided into two groups of
load sharing and droop controller based on the connected
communication network [190, 191]. Droop regulation is a
widely used approach in dc microgrid to equalize current
distribution between converters like reactive power distri-
bution in ac microgrid. Conventional droop control works
by adding virtual resistance in the line to equalize the cur-
rent distribution. Droop regulation is a typical example of
decentralized regulation methods that are widely utilized
in dc microgrids [192, 193]. Decentralized load distribu-
tion approaches are usually implemented at the first level to
achieve proper resource and load management. Droop con-
trol is used to achieve the goal of plug-and-play operation
in microgrids [194, 195].

Droop control is more reliable than other types of control
strategies for DC systems because there is no breakdown
point and only bus voltage details are required [196, 197].
Droop control methods are classified into two groups based
on the variable selected for feedback in the voltage source

converter according to Fig. 7 [198, 199]. Fig. 8 shows the
active current-power droop strategy for two cases where
the dc voltage is calculated, and the injected power or cur-
rent is managed based on the droop curve. Fig. 9 shows
the current-voltage droop strategy for two cases where the
power or current is calculated, and the dc voltage is adjusted
based on the droop curve.

Droop control methods are classified into conventional
droop control and advanced droop control [200, 201].

4.1 Common droop control

To equalize load sharing between distributed generation
units in dc microgrids, automatically like sharing reactive
power in ac microgrids, the droop method can be used
[202, 203]. Droop regulation is a scheme to share current
among power converters in DC microgrid [204, 205]. When
using conventional droop regulation, there is a trade-off
among dc bus voltage stability and power sharing between
distributed generation sources [206]. The equal current in
the normal droop control causes a decrease in the DC bus
reference voltage and the non-uniformity of the voltage reg-
ulation in each node, so that as the current share approaches
the regulation point, the bus voltage deviation increases. Im-
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Figure 6. Schematic representation of master-slave control.
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-
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Voltage-Power
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Figure 7. Classification of droop control methods in direct current microgrid voltage converter based on feedback variable.

provement of voltage deviation causes imbalance of current
sharing [207]. The traditional droop control approach uti-
lizes constant droop resistance, likely with the control goals
of precise current sharing and voltage management. The
voltage variation is increased by an uneven line resistance
because the current sharing error is decreased [208, 209].
A dc micro grid’s stability (limited droop gain) and load
distribution accuracy (high droop gain) are two competing
goals when implementing droop management [210].

The control scheme based on virtual basis is a suitable
method in converters to modify their dynamic profiles
[211, 212]. Virtual impedance is a lossless circuit-based
control concept. In the dc-based energy system, the con-
stant load creates an incremental negative resistance that
may worsen the stability of the entire system [213, 214].
The droop control method in dc microgrid, like ac micro-
grid, is not based on production power, and for its imple-
mentation, feedback is taken from the output current using a
virtual resistor. Concepts of virtual impedance in dc micro-
grid are different from ac microgrid. In ac microgrid, virtual
impedance is used to change the output impedance of the
power converter, so that the effect of reactive and active
energy coupling can be neutralized, but in dc microgrid,
virtual impedance is used streamlet for power distribution.
Conventional droop control is used to share equal current
between converters by adding virtual resistance in different
lines. Droop control prevents circulating currents between

! _—

=) —| dc voltage |
1.U droop == Voltage e
Characteristic | | SoME ( i
! Converter | output ‘
". current
output base
current

(a) Current-voltage droop strategy

converters. Figs. 10 and 11 show how to implement droop
control in dc and ac microgrids, respectively [215, 216].
Droop control is similar to primary frequency regulation in
a traditional electric power system. One of the advantages
of the Droop strategy is that there is no need for commu-
nication signals between parallel units. However, imple-
menting droop control without dropout communication has
poor performance, and may even cause voltage instability
[217]. Poor transient performance, ignoring load dynamics,
inadequate distribution network performance, failure to of-
fer precise distribution of power with output are common
disadvantages of droop control method, which limits its
application in a modern power system [218].

In islanded dc microgrids, the inertia is very low and the dc
bus voltage will be very sensitive to disturbances. In the case
of microgrid operation as an island, the distributed genera-
tion source that uses the droop control strategy is effective
in managing the frequency and voltage in the microgrid. In
the parallel dc regulation framework, the droop regulation
approach is widely used, in which the power distribution
rate is defined by increasing the loss. When the droop gains
are set at a fixed value, the output current of each distributed
energy source has a fixed slope. It is obvious that the droop
control with constant droop coefficient cannot deal with the
situation where the impedance of the line is unbalanced,
because the difference of the impedance of the transmission
line will cause the deviation of the terminal voltage and the

[ ] "

- —l-| dc voltage
P droop i \éoltage | |
Characteristic [ | = e (i
E Converter output
v current
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(b) Active voltage-power droop strategy

Figure 8. Active current-power mode droop regulation.

2345-3796[https://doi.org/10.57647/j.mjee.2025.1902.34]


https://doi.org/10.57647/j.mjee.2025.1902.34

Shahgholian et al.

base dc

voltage
; i |
: - —»| dc voltage

Uldoop || | P
Characteristic c i f
onverter _.{ output
[ current

(a) Active power-voltage droop strategy

MIJEE19 (2025) -192534  11/25

base de
voltage
3 = .
: Voltage _>| e maliage |
L i»  Source .
Characteristic = N
Converter —b‘ output }_‘
current

Fy Y

‘ active power |

(b) Active voltage-power droop strategy

Figure 9. Current-voltage droop control.

phase of the parallel inverter. Conventional droop controller
techniques are not easily able to provide satisfactory perfor-
mance, because the selection of high droop controller gain
for fast power sharing reduces the system stability [219].

4.2 Advanced droop control

Common methods of voltage and current droop due to load
increase cannot correct the transient system response with-
out losing the accuracy of power sharing. Also, the addi-
tion of distributed energy sources, due to having different
characteristics and capacities, makes the system need to
be adjusted quickly. Advanced droop regulation includes
inverse droop regulation [220], nonlinear droop regulation
[221, 222] and adaptive droop regulation [223, 224] is di-
vided [225].

A. Reverse droop regulation

Inverse droop regulation is an alternative approach em-
ployed for low voltage microgrids. The inverse droop regu-
lation scheme is similar to the common droop control and
its implementation is simple [226]. In reverse droop control,
active power is controlled by a voltage droop and reactive
energy is managed by a frequency droop. Among the dis-
advantages of reverse droop regulation, it can be pointed
out that it is not compatible with high pressure lines, which
are mainly inductive, and the failure to implement active
power dispatch performed by transmission system operators
at very high levels of the network [227, 228].

B. Adaptive droop control

Adjusting the controller parameters in an adaptive control

system is done automatically to compensate for the chang-
ing conditions of the process [229]. In this scenario, the
closed-loop framework will be periodically tested and the
test characteristics of the new controller settings will be
determined automatically [230, 231].

Choosing a high droop gain weakens the voltage regulation,
and choosing a low droop gain weakens the load sharing,
so in adaptive droop control, the droop gains changes dur-
ing the operation according to the circuit data to determine
the purpose; for power sharing [232, 233]. In the adaptive
droop control, more parameters need to be defined than the
normal PI controller.

To address nonlinearity in the system, dc microgrids can
use an adaptive droop technique, as illustrated in Fig. 12
[234]. Two regulation loops, one with proportional-integral
feedback and the other with droop, make up this circuit.
The PI controller is used to set the droop resistance, which
eliminates the error of sharing the micro grid’s current. In
addition, the secondary loop makes use of an adaptive PI
controller to change the dc bus voltage via adjusting the
droop lines. This approach solely requires the transmission
of DC bus current and voltage to individual units via low-
bandwidth communication channels in the microgrid.

C. Non-linear droop control

In conventional droop configuration, a constant droop resis-
tor is used to make a trade-off among the voltage regulation
and power distribution accuracy. To improve the perfor-
mance of both areas in traditional droop regulation, the
use of nonlinear droop regulation for multiple parallel dis-
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i loop
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Inner loop

Gnd
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Figure 10. Implementation of droop control in direct current microgrid (initial level control).
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Figure 11. Implementation of droop control in alternating current microgrid (initial level control).

tributed sources in a DC microgrid is presented [235, 236].
In the non-linear droop control, instead of the linear droop
relationship, the non-linear droop with the slope of the
droop curve can be used to adjust the increase in current
distribution. In nonlinear droop control, the droop resis-
tance changes as a function of the power converter output
current, and increasing the output current of the converter
increases the value of the droop resistance. Fig. 13 illus-
trates the comparison of the droop regulation design curve in
two modes conventional droop design and nonlinear droop
design [237]. The nonlinearity in the droop feature indi-
cates that the droop coefficient is high and low at maximum
load and light load, respectively, so it improves the general
operating implementation of the droop regulation.

5. Literature review

Load sharing and optimal voltage regulation are affected by
various factors such as sensor calibration errors and cable
resistance. Three high droop coefficient approaches, poly-
nomial droop curve approach and polynomial droop curve
approach with voltage compensation, all three methods are

VG er —bQ
PI

controller

PI

controller

completely decentralized are presented in [238]. These ap-
proaches reduce the effect of cable resistance and sensor
calibration errors, and only require local information.
Decentralized reverse droop control for the configuration of
dc-dc converters with parallel connection at the output and
series connection at the input for high input voltage and low
output voltage applications is presented in [239].

This approach does not need a central regulator, and the
modules are independent, and the voltage reference in-
creases as the load rises. The characteristic of adjusting
the output voltage is unaffected by the input voltage.

Fault detection and fault current control in photovoltaic-
based dc microgrids have been investigated in [2021-202]
[240], where an adaptive droop scheme is proposed for fault
current control, using virtual resistance droop and converter
output reference voltage control. The droop method is used
to control power sharing among converters with reference
control.

Voltage regulation and load sharing among multiple dis-
tributed generators are the objectives of the control system,
and distributed control techniques have been widely adopted

Communication
center

DC-DC

converter

peo]

saw
tooth

Figure 12. An example of adaptive droop control including two loops.
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Figure 13. Comparison of the design curve of droop control in two
conventional and non-linear modes.

to achieve these two objectives. Most distributed methods
use two additional regulatory terms to adjust the deviation
caused by conventional droop control. A cooperative dis-
tributed controller for droop control of distributed genera-
tors is presented in [2025-49] [241], which determines the
average voltage regulation and proportional current sharing
based on an integrated approach. Therefore, it does not re-
quire further correction conditions and has a simple control
structure. The stability of the control system is analyzed
using a small signal model and the effectiveness of the pro-
posed method is demonstrated.

In order to ensure that the converters in a dc microgrid
are sharing current fairly and that voltage recovery is func-
tioning properly, the authors of [242] suggest a distributed
secondary control approach. Droop gain and line resistance
are used to define a quantity referred to as “virtual voltage
droop” in the suggested method. One more thing: The feed-
back signal doesn’t need any dc bus voltage. Considering
that there is no requirement for loads, the control method
can be used for resistive loads and constant power loads.
The secondary control signal for resistance loads and con-
stant power is shown in Fig. 14 and 15.

A hybrid master-slave control strategy for operating multi-
ple distributed production units in a microgrid is proposed
in [243]. The simulation results of master-follower hybrid
control strategy for multiple distributed production units
in a microgrid are shown in Fig. 16, 17 and 18. As can
be seen, the duration of the simulation is 4 seconds. The
common load of 4 kW and 4 kW is initially supplied by
three distributed generation sources, and the DG follows the
traditional PQ control. At the moment of 0.5 seconds, the
shared load suddenly increases to 6 kW and 5 kW. At the
moment of 1 second, the load changes again to 8 kW and
6 kW. At the 1.5 second moment, the DG adopts improved
droop control. At the moment of 1/2 second, common load
of 2 kW and 1 kW is entered. At the instant of 3 seconds,
DG3 is switched off, and the other two sources supply the
common load. When the traditional PQ control is adopted,
the system frequency and voltage droop is high, and its en-
ergy quality is poor. However, DG slave can participate in
system load power regulation at the same time and reduce
voltage and frequency droop.

A coordinated adaptive droop control method to optimize
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Figure 15. Control signal for constant power loads.

power distribution in a dc microgrid is presented in [244],
in which to solve the problem of economic distribution of
the microgrid using a hierarchical controller, an optimal
solution of an economic regulator based on consensus is
suggested. In this method, the droop regulation reference is
determined through the economic regulator, and by main-
taining the balance of the power system, the convergence
of the output energy to the reference is guaranteed. The
numerical outcomes indicate that the use of this regulation
scheme has reduced the cost of the infrastructure along with
increasing the reliability and increasing the convergence
speed of the algorithm.

A large difference in the line resistance reduces the accu-
racy of current sharing of the system, which can be used
to increase the loss factor to enhance the accuracy of cur-
rent distribution, but it involves a droop in bus voltage. To

Active power (KW)

Figure 16. Active output power of distributed generation sources.
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solve the problems between load current distribution and
voltage regulation in conventional droop regulation, a hi-
erarchical regulation algorithm based on droop regulation
improvement with a fuzzy logic controller to improve the
droop curve is presented in [245]. The fuzzy logic controller
changes the resistance droop. The droop factor regulator
and the current regulator both compensate for the slope of
the droop curve and the voltage regulator compensates for
the longitudinal gap of the droop curve.

A regulation method for power fluctuation damping in a
multi-source dc microgrid is presented in [246]. The hy-
brid power conversion system controller for power man-
agement consists of a multi-loop voltage regulator and a
virtual impedance single-loop regulator. A dynamic droop
coefficient is used in power sharing control to neutralize
low frequency oscillations.

The virtual impedance adjustment method based on suc-
cessive approximation to accurately compensate for the
mismatch between line impedances is presented in [247].
The adaptive virtual impedance adjustment funded on the
error between the real output reactive energy and its refer-
ence is combined with the Q-V droop control, and then in
each cycle, the virtual impedance adjustment reactive power
reference is adjusted with the last estimate of the Q-V droop
control.

Virtual negative resistance counteracts the line resistance
against the isolation power. Conventional droop control is
impractical for low-voltage microgrids, especially when the
line impedance among distributed production parts is resis-

Shahgholian et al.

tive to match the reactive and active power of distributed
production. An improved droop control based on virtual
power source and composite virtual impedance, composed
of a negative resistance and a negative inductance, is pro-
posed for low voltage microgrid in [248].

The imbalance of stored energy causes challenges in mi-
crogrid control due to the addition of distributed energy
storage units. A decentralized strategy based on fuzzy logic
is presented in [249] to balance the stored energy with dis-
tributed battery power storage systems in a dc microgrid,
where the virtual resistances of droop regulators are modi-
fied according to the state of charge of each power storage
unit, they become also, the virtual resistance is set to reduce
the voltage deviation in the common dc bus, and the units
are controlled using local variables only.

To solve the problems of the limitations of the traditional
droop regulation scheme, in [250] an improved droop reg-
ulation scheme funded on low-bandwidth communication
is presented to recover the dc bus voltage and increase the
accuracy of current distribution, which is an approximate
configuration. It is shown in Fig. 19, where u represents the
dc voltage and I represents the dc current. As can be seen,
low-bandwidth communication has been used to transmit
the output voltage and current of the converters. Also, to
achieve proportional load current distribution, the traditional
droop regulation approach has been used. By choosing the
load resistance of 200 ohms, the simulation results of volt-
age recovery and current distribution accuracy are shown in
Figs. 20 and 21. As can be seen, the dc voltage of the two
converters has been recovered after applying the proposed
control method, and the accuracy of current sharing has also
increased.

An improved droop control strategy for dc microgrids is pre-
sented in [251] in order to create appropriate load flow and
power sharing in parallel distributed energy sources. The
simulation results show the application of the droop strategy
in different rated powers and impedance of the connection
cable.

In heavy load conditions, with the increase in the output
current of scattered units, the need for accurate sharing of
the load current increases. An adaptive control method for
dc microgrid applications is presented in [252], consider-
ing both current sharing parameters and acceptable voltage
regulation based on load conditions. In this method, by
increasing the load level and accurate sharing of the cur-
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Figure 19. Approximate configuration of control system based on broad-
band communication.
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Figure 21. Flow sharing accuracy after applying the control method.

rent, the benefits of the equivalent droop increase. The
performance and stability have been evaluated in a linear
model and the laboratory results together with the simula-
tion results in the time domain evaluate the correctness of
the method.

In dc microgrid, a distributed local control scheme with
base droop control is presented in [253], where microgrid
stability with two sources for proper load sharing and volt-
age improvement capability considering line resistance has
been checked. In this method, the centralized controller is
used in order to zero the electric current of the connecting
line for constant conditions in each area. The performance
of the control scheme is shown with the simulation results
compared to the normal droop control and hierarchical sec-
ondary control.

6. Conclusion

In this study, the application of droop control in direct
current microgrids was investigated. The classification of
microgrids was explained based on the type of control and
distribution system. Two control objectives of accurate load
power sharing and bus voltage regulation are important and
vital to ensure power quality and reliable operation of dc
microgrids. DC bus voltage adjustment is done by adopting
an external secondary control loop, but the lack of proper
power/load current sharing between the converters due to
the incorrect matching of the feeder resistors should be
considered. Due to the existence of different distances and
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the complexity of microgrids, the impedance of the lines
between the feeders of scattered productions and loads is
different. Droop control is a programming method for the
output impedance in the microgrid without the need for a
communication line, in which the output voltage decreases
linearly with the output current or power. Droop control
method is a popular and well-known technique for sharing
load power, which is widely used in DC microgrids. In this
control strategy, the reference voltage of each source is
determined based on the nominal output voltage, output
current and loss factor, where the power sharing rate is
determined by increasing the loss. The common method
of droop control is achieved by linearly decreasing the dc
output voltage with an increase in the output current, which
has two limitations: a- reducing the accuracy of sharing the
output current due to the inaccuracy of the output voltage
of each converter and b- increasing the deviation of the dc
bus voltage due to the droop action, which are solved by
using current sharing loops and secondary control loop,
respectively.
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