Document Type : Reseach Article

Authors

1 Department of Electrical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran.

2 Faculty of Engineering, Shahrekord University, Shahrekord, Iran.

3 Department of Physics Education, Farhangian University, Tehran, Iran.

10.57647/j.mjee.2025.1902.35

Abstract

This article introduces the development and enhancement of a side-coupled chalcogenide-based 2D PhC nanobeam cavity in the mid-IR spectral range. The structure configuration consists of 2D PhC nanobeam and side-coupled bending bus waveguide for efficient light coupling. Through numerical simulation and optimization, we optimized three key parameters: the number of mirror holes, the radius of the central hole of the nanobeam cavity, and the optimized coupling gap size, improving the quality factor of the primary mode of the cavity. The cavities exhibit high Q factors and low modal volumes, making them attractive for various applications, including laser, sensing, nonlinear optics, optical trapping, and quantum technologies. Regarding applications, this allows us to compare optical devices with each other.

Keywords

  1. [1] J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, Nature 1997, 390, 143. DOI: 10.1038/36514

    [2] Y. Akahane, T. Asano, B. S. Song, S. Noda, Nature 2003, 425, 944.DOI: 10.1038/nature02063

     [3] E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, T. Watan abe, Appl. Phys. Lett. 2006, 88, 041112. DOI: 10.1063/1.2167801

    [4] P. Lalanne, C. Sauvan, J. P. Hugonin, Laser Photonics Rev. 2008, 2, 514. DOI: 10.1002/lpor.200810018

    [5] M.Notomi,E.Kuramochi,H.Taniyama, Opt. Express 2008,16,11095 DOI: 10.1364/OE.16.011095

    [6] P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, M. Loncar, Appl. Phys. Lett. 2009, 94, 121106.

    DOI: 10.1063/1.3107263

    [7] E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, M. Notomi, Opt. Express 2010, 18, 15859. Laser Photonics DOI:.org/10.1364/OE.18.015859

    [8] T. Asano, Y. Ochi, Y. Takahashi, K. Kishimoto, S. Noda, Opt. Express 2017, 25, 1769

    .DOI: 10.1364/OE.25.001769

    [9] Tomljenovic-Hanic, S., et al. "Design, Fabrication and Characterisation of Chalcogenide-Based Photonic Crystal Slabs." 2006 International Conference on Transparent Optical Networks. Vol. 2. IEEE, 2006 DOI :10.1109/ICTON.2006.248350

    [10] Suthar, B., and A. Bhargava. "Chalcogenide photonic crystal filters for optical communication." AIP Conference Proceedings. Vol. 1393. No. 1. American Institute of Physics, 2011 DOI :10.1063/1.3653715

    [11] Du, Yuzhou, Shufeng Li, and Cuicui Liang. "Design of a Chalcogenide Waveguide Amplifier Based on a Photonic Crystal with Compound Lattice." Asia Communications and Photonics Conference. Optica Publishing Group, 2013DOI:.org/10.1364/ACPC.2013.AW4B.2

    [12] Tripathi, Devdutt, et al. "Recent developments in chalcogenide phase change material-based nanophotonics." Nanotechnology 34.50 (2023): 502001DOI:10.1088/1361-6528/acf1a7

    [13] Yaman, Mecit, H. Esat Kondakci, and Mehmet Bayindir. "Large and dynamical tuning of a chalcogenide Fabry-Perot cavity mode by temperature modulation." Optics express 18.3 (2010): 3168-3173 DOI.org/10.1364/OE.18.003168

    [14] Saber, Ivens, et al. "Photonic crystal nanobeam cavities with optical resonances around 800 nm." JOSA B 36.7 (2019): 1823-1828 DOI.org/10.1364/JOSAB.36.001823

    [15] Abbaslou, S., Gatdula, R., Lu, M., Stein, A., Soref, R.A., Jiang, W.: High-spectral-contrast symmetric modes in photonic crystal dual nanobeam resonators. IEEE Photonics Technol. Lett. 28, 2137–2140 (2016)

    DOI: 10.1109/LPT.2016.2582641

    [16] B. Ellis, M. A. Mayer, G. Shambat,T. Sarmiento,

    1. Harris, E. E. Haller, J. Vuckovic, Nat. Photonics 2011, 5, 297. DOI: 10.1038/nphoton.2011.51

    [17] Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, S. Noda, Nature 2013, 498, 470.

    DOI: 10.1038/nature12237

    [18]. K. J. Vahala, "Optical microcavities," Nature 424(6950), 839–846 (2003).

    DOI: 10.1038/nature01939

    [19] V. M. N. Passaro, B. Troia, M. La Notte, and F. De Leonardis, "Photonic resonant DOI: 10.1039/C2RA21984K

     [20] microcavities for chemical and biochemical sensing," RSC Adv 3(1), 25–44 (2013( DOI: 10.1039/256843

    [21]. R. V. Nair and R. Vijaya, "Photonic crystal sensors: An overview," Prog Quantum Electron 34(3), 89–134 (2010)

    .DOI: 10.1016/j.pquantelec.2010.01.001

    [22] M. Hosseinzadeh Sani, H. Saghaei, M. A. Mehranpour, and A. Asgariyan Tabrizi, "A novel all-optical sensor design based on a tunable resonant nanocavity in photonic crystal microstructure applicable in MEMS accelerometers," Photonic Sensors 11(4), 457–471 (2021).DOI: 10.1007/s13320-020-0607-0

    [23]. F. Parandin, F. Heidari, Z. Rahimi, and S. Olyaee, "Two-Dimensional photonic crystal Biosensors: A review," Opt Laser Technol 144, 107397 (2021).DOI: 10.1016/j.optlastec.2021.107397

    [24]Y. Ueda, T. Fujisawa, S. Kanazawa, W. Kobayashi, K. Takahata, and H. Ishii, "Very-low-voltage operation of Mach-Zehnder interferometer-type electroabsorption modulator using asymmetric couplers," Opt Express 22(12), 14610 (2014). DOI: 10.1364/OE.22.014610

    [25] J.L. O’brien, A. Furusawa, J. Vučković, Photonic quantum technologies, Nat Photonics. 3 (2009) 687–695.DOI: 10.1038/nphoton.2009.229

    [26]F.O. Afzal, S.I. Halimi, S.M. Weiss, Efficient side-coupling to photonic crystal nanobeam cavities via state-space overlap, JOSA B. 36 (2019) 585–595.DOI: 10.1364/JOSAB.36.000585

    [27] S.I. Halimi, S. Hu, F.O. Afzal, S.M. Weiss, Realizing high transmission intensity in photonic crystal nanobeams using a side-coupling waveguide, Opt Lett. 43 (2018) 4260–4263.DOI: 10.1364/OL.43.004260

    [28] Y. Xu, Y. Li, R.K. Lee, A. Yariv, Scattering-theory analysis of waveguide-resonator coupling, Phys Rev E. 62 (2000) 7389.

    DOI: 10.1103/PhysRevE.62.7389

    [29]W. Xie, P. Verheyen, M. Pantouvaki, J. Van Campenhout, D. Van Thourhout, Efficient resonance management in ultrahigh‐Q 1D photonic crystal nanocavities fabricated on 300 mm SOI CMOS platform, Laser Photon Rev. 15 (2021) 2000317

    DOI: 10.1002/lpor.202000317

    [30] Hosseinzadeh Sani, M., Saghaei, H., Mehranpour, M.A., Asgariyan Tabrizi, A.: A novel all-optical sensor

    design based on a tunable resonant nanocavity in photonic crystal microstructure applicable in MEMS

    accelerometers. Photonic Sens. 11, 457–471 (2021). DOI:10.1007/s13320-020-0607-0

    [31] Kassa-Baghdouche, L.: Optical properties of a point-defect nanocavity-based elliptical-hole photonic crystal for mid-infrared liquid sensing. Phys. Scr. 95, 015502 (2019)DOI: 10.1088/1402-4896/ab474a

    [32] Zare, Seyed Mohammad, et al. "Efficient side-coupling configuration for photonic crystal nanobeam cavities with micro-ring resonators." Optical and Quantum Electronics 56.4 (2024): 692.‏ DOI: 10.1007/s11082-024-06478-5