Document Type : Reseach Article

Authors

1 School of Electrical & Electronic Engineering, University Sains Malaysia, Nibong Tebal, Malaysia.

2 Electrical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia.

10.57647/j.mjee.2025.1902.38

Abstract

Multilevel inverters (MLI) play a pivotal role in diverse applications, notably solar power generation, owing to their capacity for generating high-quality, multiple-level output voltages with reduced total harmonic distortions (THD) in comparison to traditional inverters. Nevertheless, as MLI levels increase, challenges arise, impacting implementation feasibility due to heightened computational demands for pulse width modulation (PWM) generation. Researchers have inclined towards low-frequency, pre-calculated switching signal methods, although these tend to induce higher output harmonics, particularly at lower levels. This study focuses on studying the significance of employing the particle swarm optimization (PSO) technique to solve selective harmonic elimination (SHE) equations (SHE-PSO) in MLI applications, evaluating its impact on THD at various output levels (3L, 5L, and 7L) within a cascaded H-bridge MLI. Results are compared with simpler methods, namely sine-based calculation (SBC) and Newton Raphson-based SHE (SHE-NR). The
findings illustrate that SHE-PSO effectively minimizes lower-order harmonics to as low as 0%, outperforming SBC and NR. However, in terms of THD, SHE-PSO proves advantageous only at 5L, with SHE-NR exhibiting superior performance at other levels. This study concludes that the reduction of lower-order harmonics in MLI does not necessarily translate to an overall improvement in THD, particularly at higher levels. 

Keywords

[1]           O. Ellabban and H. Abu-Rub, “Z-Source Inverter: Topology Improvements Review,” IEEE Industrial Electronics Magazine, vol. 10, no. 1, pp. 6–24, Mar. 2016, doi: 10.1109/MIE.2015.2475475.
[2]           M. Trabelsi, H. Vahedi, and H. Abu-Rub, “Review on Single-DC-Source Multilevel Inverters: Topologies, Challenges, Industrial Applications, and Recommendations,” IEEE Open Journal of the Industrial Electronics Society, vol. 2, pp. 112–127, 2021, doi: 10.1109/OJIES.2021.3054666.
[3]           R. A. Rana, S. A. Patel, A. Muthusamy, C. woo Lee, and H.-J. Kim, “Review of Multilevel Voltage Source Inverter Topologies and Analysis of Harmonics Distortions in FC-MLI,” Electronics, vol. 8, no. 11, Art. no. 11, Nov. 2019, doi: 10.3390/electronics8111329.
[4]           F. K. Mohideen, N. A. M. Kajaan, Z. M. Isa, N. M. Nayan, M. H. Arshad, and S. S. Saad, “THD analysis for symmetrical five level and seven level cascaded multilevel inverter,” J. Phys.: Conf. Ser., vol. 1432, no. 1, p. 012020, Jan. 2020, doi: 10.1088/1742-6596/1432/1/012020.
[5]           S. Shuvo, E. Hossain, T. Islam, A. Akib, S. Padmanaban, and Md. Z. R. Khan, “Design and Hardware Implementation Considerations of Modified Multilevel Cascaded H-Bridge Inverter for Photovoltaic System,” IEEE Access, vol. 7, pp. 16504–16524, 2019, doi: 10.1109/ACCESS.2019.2894757.
[6]           M. A. Hosseinzadeh, M. Sarebanzadeh, E. Babaei, M. Rivera, and P. Wheeler, “A Switched-DC Source Sub-Module Multilevel Inverter Topology for Renewable Energy Source Applications,” IEEE Access, vol. 9, pp. 135964–135982, 2021, doi: 10.1109/ACCESS.2021.3115660.
[7]           Y. Wang, J. Ye, R. Ku, Y. Shen, G. Li, and J. Liang, “A modular switched-capacitor multilevel inverter featuring voltage gain ability,” J. Power Electron., vol. 23, no. 1, pp. 11–22, Jan. 2023, doi: 10.1007/s43236-022-00508-9.
[8]           A. Vijayakumar, A. A. Stonier, G. Peter, A. K. Loganathan, and V. Ganji, “Power quality enhancement in asymmetrical cascaded multilevel inverter using modified carrier level shifted pulse width modulation approach,” IET Power Electronics, vol. n/a, no. n/a, doi: 10.1049/pel2.12429.
[9]           V. Kubendran, Y. Mohamed Shuaib, S. Vidyasagar, V. Kalyanasundaram, and K. Saravanan, “The development of a generalized multilevel inverter for symmetrical and asymmetrical dc sources with a minimized ON state switch,” Ain Shams Engineering Journal, vol. 15, no. 2, p. 102358, Feb. 2024, doi: 10.1016/j.asej.2023.102358.
[10]         F. L. Luo, “Investigation on best switching angles to obtain lowest THD for multilevel DC/AC inverters,” in 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), Jun. 2013, pp. 1814–1818. doi: 10.1109/ICIEA.2013.6566663.
[11]         S. T. Meraj, N. Z. Yahaya, K. Hasan, and A. Masaoud, “A hybrid T-type (HT-type) multilevel inverter with reduced components,” Ain Shams Engineering Journal, vol. 12, no. 2, pp. 1959–1971, Jun. 2021, doi: 10.1016/j.asej.2020.12.010.
[12]         M. N. Hamidi, D. Ishak, M. A. A. M. Zainuri, and C. A. Ooi, “Multilevel inverter with improved basic unit structure for symmetric and asymmetric source configuration,” IET Power Electronics, vol. 13, no. 7, pp. 1445–1455, May 2020, doi: 10.1049/iet-pel.2019.0916.
[13]         A. Srivastava, A. Chauhan, and A. Tripathi, “Design and performance evaluation of a novel modular asymmetrical multilevel inverter with minimal switches,” e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 9, p. 100733, Sep. 2024, doi: 10.1016/j.prime.2024.100733.
[14]         P. L. Kamani and M. A. Mulla, “Middle-Level SHE Pulse-Amplitude Modulation for Cascaded Multilevel Inverters,” IEEE Transactions on Industrial Electronics, vol. 65, no. 3, pp. 2828–2833, Mar. 2018, doi: 10.1109/TIE.2017.2742990.
[15]         D. Gireesh Kumar et al., “Design of an Optimized Asymmetric Multilevel Inverter with Reduced Components Using Newton-Raphson Method and Particle Swarm Optimization,” Mathematical Problems in Engineering, vol. 2023, p. e9966708, Apr. 2023, doi: 10.1155/2023/9966708.
[16]         M. Khizer, S. Liaquat, M. F. Zia, S. Kanukollu, A. Al-Durra, and S. M. Muyeen, “Selective Harmonic Elimination in a Multilevel Inverter Using Multi-Criteria Search Enhanced Firefly Algorithm,” IEEE Access, vol. 11, pp. 3706–3716, 2023, doi: 10.1109/ACCESS.2023.3234918.
[17]         M. Ali, F. S. Al-Ismail, M. M. Gulzar, and M. Khalid, “A review on harmonic elimination and mitigation techniques in power converter based systems,” Electric Power Systems Research, vol. 234, p. 110573, Sep. 2024, doi: 10.1016/j.epsr.2024.110573.
[18]         P. R. Bana, K. P. Panda, R. T. Naayagi, P. Siano, and G. Panda, “Recently Developed Reduced Switch Multilevel Inverter for Renewable Energy Integration and Drives Application: Topologies, Comprehensive Analysis and Comparative Evaluation,” IEEE Access, vol. 7, pp. 54888–54909, 2019, doi: 10.1109/ACCESS.2019.2913447.
[19]         D. Prasad, C. Dhanamjayulu, S. Padmanaban, J. B. Holm-Nielsen, F. Blaabjerg, and S. R. Khasim, “Design and Implementation of 31-Level Asymmetrical Inverter With Reduced Components,” IEEE Access, vol. 9, pp. 22788–22803, 2021, doi: 10.1109/ACCESS.2021.3055368.
[20]         M. He, M. Liu, R. Wang, X. Jiang, B. Liu, and H. Zhou, “Particle swarm optimization with damping factor and cooperative mechanism,” Applied Soft Computing, vol. 76, pp. 45–52, Mar. 2019, doi: 10.1016/j.asoc.2018.11.050.
[21]         C. Y. H’ng, B. Ismail, M. Isa, and M. N. K. H. Rohani, “Selective Harmonic Elimination Pulse Width Modulation for Five-Level Cascaded Inverter,” Journal of Telecommunication, Electronic and Computer Engineering (JTEC), vol. 10, no. 1–14, pp. 67–71, May 2018.
[22]         V. Padmathilagam and Natarajan s, p, “Solutions to the harmonic elimination problem in a seven level inverter,” International Journal of Power Electronics, vol. 1, Jan. 2009, doi: 10.1504/IJPELEC.2009.023623.
[23]         W. A. Halim, T. N. A. T. Azam, K. Applasamy, and A. Jidin, “Selective Harmonic Elimination Based on Newton-raphson Method for Cascaded H-bridge Multilevel Inverter,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 8, no. 3, Art. no. 3, Sep. 2017, doi: 10.11591/ijpeds.v8.i3.pp1193-1202.