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Abstract:
Constant false alarm rate (CFAR) processors are critical for radar reliable target detection in radar systems.
Traditional CFAR designs often assume Gaussian clutter, which may not reflect real-world conditions. Lévy
distributions, with heavy tails and a location parameter (δ ), provide a more accurate model for non-Gaussian
and non-centered clutter in complex environments. This paper presents a comprehensive performance
analysis of three widely used CFAR processors-cell-averaging (CA), greatest-of (GO), and smallest-of (SO)
in homogeneous Lévy-distributed clutter with an arbitrary δ . We derive integral-form expressions for the
probability of false alarm (PFA) for each processor, explicitly incorporating δ . Furthermore, we provide
analytical formulations for the probability density function (PDF) of key statistics involving Lévy random
variables, such as sums, minima, and maxima. Monte Carlo simulations validate the theoretical results,
showing that the PFA performance improves with increasing δ , highlighting the critical impact of clutter
location on CFAR detector performance. These findings offer valuable insights for designing robust CFAR
detectors in non-Gaussian, non-centered clutter environments.

Keywords: Cell-averaging constant false alarm rate; Constant false alarm rate processors; Greatest-of constant false alarm rate;
Lévy-distributed clutter; Probability of false alarm; Smallest-of constant false alarm rate

1. Introduction

In radar target detection, clutter refers to unwanted reflec-
tions from objects that can interfere with the detection of
real targets. Under these conditions, Constant False Alarm
Rate (CFAR) techniques are applied to maintain a fixed false
alarm rate in homogeneous clutter environments. CFAR
processors adaptively set detection thresholds by estimat-
ing the clutter level from reference cells surrounding the
cell under investigation (CUI). Several CFAR variants have
been developed to address different clutter scenarios [1–4].
Traditional Cell-Averaging CFAR (CA-CFAR) detectors
estimate clutter level using the mean of surrounding cells
[5], but their performance degrades in non-homogeneous
clutter. To address these limitations, the Greatest Of CFAR
(GO-CFAR), initially proposed by Hansen and Sawyers [6],
employs the maximum of the sums from the leading and
lagging reference windows for clutter level estimation, im-
proving robustness in clutter transition regions. Weiss in [7]
further analyzed GO-CFAR’s performance in multi-target
scenarios. In parallel, the SO-CFAR (Smallest Of CFAR)

method, developed by Trunk [8] in the context of target
resolution, mitigated the effects of target masking. Rickard
and Dillard in [9] provided an early, comprehensive analy-
sis of adaptive detectors, including SO-CFAR, laying the
theoretical and practical foundations for their use in diverse
environments. These foundational works paved the way
for advanced applications of GO-CFAR and SO-CFAR in
modern radar systems [10–14].
Modern high-resolution radars face challenges in statistical
clutter modeling due to increased complexity. The radar’s re-
search community has proposed various non-Gaussian mod-
els to better represent high-resolution radar clutter, includ-
ing Positive Alpha-Stable, Weibull, Log-Normal, Pareto,
and K-distributions [15–19]. However, adopting these non-
Gaussian models in CFAR schemes can make deriving
closed-form expressions for key performance metrics, such
as probability of detection and false alarm rate, challenging
or even impossible. This complicates the evaluation and
optimization of CFAR detectors in complex clutter environ-
ments.
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To address these challenges, advanced techniques are ac-
tively developed. These include adaptive clutter model-
ing methods, which dynamically select the most appropri-
ate clutter distribution based on observed data, and robust
CFAR algorithms designed to maintain detection perfor-
mance across a wide range of clutter distributions [20]. Fur-
ther studies have explored CFAR performance in various
clutter distributions. Tsakalides et al. [21] evaluated CFAR
processors in Pearson-distributed clutter, while Meziani and
Soltani [22] analyzed CFAR detectors in both homogeneous
and non-homogeneous Pearson-distributed environments.
These works highlight the importance of understanding
CFAR behavior across different non-Gaussian clutter mod-
els. Given the specific challenges posed by sea clutter,
significant research has focused on target detection in such
environments. Specifically, recent work has explored per-
symmetric adaptive target detection with dual-polarization
in compound Gaussian sea clutter with inverse Gamma tex-
ture [23], and adaptive persymmetric subspace detection in
non-Gaussian sea clutter with structured interference [24].
More recently, developments in this field have included
machine learning (ML)-based approaches, benefiting from
neural networks (NN) as well as other artificial intelligence
(AI) techniques, with the aim of improving target detection
in non-Gaussian and heterogeneous clutter environments
[25].
In addition, numerical approximation methods have been
developed to estimate some performance parameters when
analytical solutions are not readily available or are difficult
to predict. These methods have been deployed with the aim
of optimizing radar detection performance in increasingly
complex and diverse interference environments, which are
characteristic of modern radar systems [26]. Indeed, the
integration of theoretical insights with practical applications
has led to significant progress in improving the reliability
and efficiency of radar systems in challenging real-world
scenarios. In particular, considerable progress has been
made in the analysis of CFAR processors operating in vari-
ous clutter environments. Within Weibull-distributed clutter
environments, the performance of SO-CA CFAR detectors
has been investigated for their ability to maintain a stable
false alarm probability (PFA). In this regard, the authors
in [27] evaluated these detectors by deriving analytical ex-
pressions for PFA in homogeneous and non-homogeneous
conditions. Their results showed that SOCA-CFAR detec-
tors provide enhanced robustness in severe clutter environ-
ments while maintaining a low PFA. Moreover, the authors
of [28] have proposed a theoretical framework for the eval-
uation of CFAR detectors under realistic conditions, based
on generalized expressions for the PFA of CFAR detectors
in heterogeneous environments. These expressions take
into account complex clutter distributions, such as Gamma
and Weibull, and enable a comparative analysis of the per-
formance of CA-, GO- and OS-CFAR detectors. In turn,
Garvanov [29] investigated the probability characteristics of
CFAR processors in the presence of randomly arriving im-
pulse interference. The author modeled this interference as
binomial pulse sequences and derived analytical expressions
for the PFA of CA-CFAR and binary integration detectors

(BI-CFAR). The results demonstrated the adaptability of
these detectors for efficient operation in noisy environments,
while maintaining a stable PFA.
In the context of specific radar architectures, the authors
of [30] analyzed the performance of CFAR detectors in
multiple-input multiple-output (MIMO) radars operating
in distributed gamma clutter. Specifically, they derived
closed-form PFA expressions for CA-, GO- and SO-CFAR
detectors and validated these expressions using Monte Carlo
simulations. The results revealed that CA-CFAR detectors
perform best for a small number of nodes, while GO- and
SO-CFAR detectors are more efficient as the number of
nodes increases. To address nonhomogeneous clutter chal-
lenges, Zhou et al. [31] proposed a robust CFAR detector
using weighted amplitude iteration for more accurate detec-
tion threshold estimation, demonstrating improved perfor-
mance in complex maritime environments. Subsequently,
the same authors [32] developed a maximum likelihood
detector for Gamma-distributed sea clutter, leveraging the
statistical properties of the distribution to achieve optimized
detection performance with high detection probabilities and
a low false alarm rate. These findings emphasize the im-
portance of tailoring CFAR techniques to specific clutter
distributions. Finally, Sahed et al. in [33] recently derived
exact analytical PFA expressions for CA- and GO-CFAR
detectors in Gamma-distributed clutter, which exhibit excel-
lent agreement with Monte Carlo results.
Building upon previous findings, this paper investigates
the largely unexplored performance of CFAR processors in
non-centered Lévy-distributed clutter. The motivation stems
from two critical observations: (i) heavy-tailed distributions
like the Lévy distribution have demonstrated superior ac-
curacy in modeling modern radar clutter phenomena, es-
pecially in high-resolution maritime environments; and (ii)
conventional Gaussian-based models essentially fall short
of capturing the asymmetric and impulsive nature of these
situations. To bridge this gap, we derive closed-form expres-
sions for the PFA of CA-, GO-, and SO-CFAR processors
operating in homogeneous non-centered Lévy-distributed
clutter.
The main contributions of this paper are summarized as
follows:

• We have derived accurate formulations for the PDF
of the sum, the minimum of two sums, and the maxi-
mum of two sums of independent and identically dis-
tributed (i.i.d) non-centered Lévy random variables
(RVs). These formulations provide a solid mathemati-
cal foundation for analyzing CFAR processors in non-
Gaussian clutter environments.

• We have derived novel integral-form expressions for
the PFA CA-, GO-, and SO-CFAR processors, assum-
ing an arbitrary location parameter δ . These expres-
sions generalize existing CFAR analyses, which often
rely on simplified clutter models (e.g., Gaussian or
centered distributions), providing a more realistic and
adaptable framework.

• We have rigorously validated the theoretical results
through both numerical evaluations of the analytical ex-
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pressions and extensive Monte Carlo simulations. The
consistency between these independent approaches
confirms the accuracy and reliability of the derived
formulations.

• This work provides a detailed performance evaluation
of CA-, GO-, and SO-CFAR processors in homoge-
neous non-centered Lévy-distributed clutter environ-
ments. By analyzing how the location parameter in-
fluences the PFA, we offer valuable insights into the
behavior of these processors in complex radar sce-
narios. The results highlight the sensitivity of CFAR
performance to clutter characteristics, emphasizing the
need for robust detection strategies in non-Gaussian
environments.

The Remainder of this paper is organized as follows: Sec-
tion 2 describes the three CFAR processors considered in
this work and states the associated assumptions. Section 3
introduces novel and important statistical findings related
to the clutter’s mean level. These findings are utilized in
section 4, which provides an analytical evaluation of the
processors’ PFAs. Section 5 presents extensive numeri-
cal results, including simulations and comparative analy-
ses, to validate the theoretical findings and demonstrate the
practical implications of the proposed approaches. Finally,
section 6 summarizes the key contributions of the work,
discusses potential limitations, and outlines directions for
future research.
This paper employs the following standard notations fX (x),
FX (x), and E[X ] or µX denote, respectively, the probability
density function (PDF), the cumulative distribution func-
tion (CDF), and the expectation of the random variable
(RV)X . “erf” (·) is the error function (also called the Gauss
error function) [34, equation (8.250.1)], and “erfc” (·) is the
complementary error function [34, equation (8.250.4)].

2. CFAR processors’ description and related
assumptions

All In CFAR processors, the output statistic Z, which es-
timates the clutter level, is computed by processing the
contents of 2N reference cells surrounding the cell under
test (CIT), denoted as X0. For the three CFAR processors
considered in this work the statistic Z is defined as follows:

Z =


1

2N (Z1 +Z2), if CA-CFAR,
1
N max(Z1 +Z2), if GO-CFAR,
1
N min(Z1 +Z2), if SO-CFAR,

(1)

where Z1 = ∑
N
i=1 Xi and Z2 = ∑

2N
i=N+1 Xi denote the sums

of the leading and lagging reference windows, respectively.
Xi, i ∈ {1,2, . . . ,2N} denote the contents of the reference
cells surrounding the cell under investigation (CUI) whose
content is X0. N denotes the size of the reference window.
To determine whether a target is present (hypothesis H1) or
absent hypothesis H2 in the CUI, a binary hypothesis test is
performed as follows:

X0 ≷H1

H0
T Z (2)

where T in (2) is the scaling factor used to achieve the de-
sired PFA for a given window of size 2N when the total
clutter is homogeneous. The scaling factor ensures that the
detection threshold adapts to the clutter level estimated from
the reference cells.
To analyze the PFA of different considered CFAR proces-
sors in the presence of a homogeneous clutter, we make
the following assumptions. First, the square-law detected
outputs Xi is a Lévy RV whose PDF and CDF are given
in Definition 1 in section 3. Second, statistical indepen-
dence is assumed among all observations within the 2N +1
cells, which include the CUI, exhibit statistical indepen-
dence. These assumptions provide the basis for deriving
analytical expressions for PFA and conducting a rigorous
mathematical analysis of CFAR performance in the pres-
ence of non-centered Lévy clutter, offering insights into
realistic non-Gaussian environments.

3. Statistical preliminaries and key results

In this section, we review key statistical preliminaries from
the theory of RVs, focusing on properties relevant to CFAR
processor analysis. These preliminaries form the basis for
modeling clutter using non-centered Lévy-distributed RVs.
We then present significant findings on the statistical be-
havior of sums, minimums, and maximums of i.i.d. Lévy
RVs. These results are crucial for characterizing clutter
level estimates and will be applied in section 4 to evaluate
the PFA for the CA-, GO-, and SO-CFAR processors.

3.1 Statistical preliminaries
Definition 1. A RV X following a non-centered Lévy dis-
tribution with location parameter δ and a scale parameter
γ is denoted by Lévy (δ ,γ). Its PDF and CDF using the
location-scale parametrization are given, respectively, by

fX (x) =
√

γ

2π

e−
γ

2(x−δ )

(x−δ )
3
2

for x ≥ δ ,γ > 0 (3)

FX (x) = erfc
(√

γ

2(x−δ )

)
for x ≥ δ ,γ > 0 (4)

Remark 1: Setting the location parameter δ = 0 yields a
centered Lévy distribution, which corresponds to a heavy-
tailed Pearson distribution. This model has been shown to
be effective for modeling data such as impulsive signals,
active sonar returns, and marine clutter. Its ability to capture
impulsive behavior makes it particularly suitable for these
applications [2, 5, 14, 27].
Remark 2 In various contexts, such as signal processing
or finance, clutter or data often exhibit extreme values or
outliers that are better captured by heavy-tailed distributions.
As a special case of the inverse Gamma distribution, the
Lévy distribution is particularly suitable for modeling radar
clutter due to its heavy-tailed nature. Unlike Gaussian-like
distributions, it allows for the occurrence of extremely large
values with higher probability, making it an ideal choice for
scenarios involving impulsive or complex clutter behavior
[34].
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3.2 Key results
Lemma 1 Let {Xi}2N

i=1 be a sequence of i.i.d. RVs, where
Xi ∼ Lévy(δ ,γ). The PDF and CDF of RV Z = ∑

2N
i=1 Xi are

given, respectively, as follows:

fz(z) =

√
2N2γ

π

e−
2N2γ

z−2Nδ

(z−2Nδ )
3
2

z ≥ 2Nδ ,γ > 0 (5)

Fz(z) = erfc
(√

2N2γ

z−2Nδ

)
z ≥ 2Nδ ,γ > 0 (6)

Proof: The characteristic function ϕZ(w) of Z is defined as:

ϕZ(w) = E[e jwZ ] = E[e jw∑
2N
i=1 Xi ] = (E[e jwX1 ])2N (7)

ϕZ(w) =(E[e jwX1 ])2N =

(∫ +∞

0
e jwX1 fX1(x1)dx1

)2N

=

(√
γ

2π

∫ +∞

0

e jwx − γ

2(x−δ )

(x−δ )
3
2︸ ︷︷ ︸

=I

)2N (8)

After evaluating the integral I, equation (8) can be inverted
using the Fourier transform to yield the result in (5). The
CDF in (6) can be easily derived by integrating the PDF
obtained in (5). This completes the proof.
Lemma 2 Let {Xi}2N

i=1 be a sequence of i.i.d. RVs, where
Xi ∼ Lévy(δ ,γ). Define Z1 = ∑

N
i=1 Xi and Z2 = ∑

2N
i=N+1 Xi.

The PDF of RV Z = max(Z1,Z2) is given by:

fz(z)= 2

√
N2γ

π

e−
N2γ

z−Nδ

(z−Nδ )
3
2

erfc
(√

N2γ

(z−Nδ )

)
,z≥Nδ ,γ > 0

(9)
Proof: The PDF of Z = max(Z1,Z2) can be expressed as:

fz(z) = 2 fZi(z)FZi(z), i ∈ {1,2} (10)

From Lemma 1, the PDF and CDF of Zi (for i ∈ {1,2}) are
given, respectively, as follows:

fZi(z) =

√
N2γ

π

e−
N2γ

z−Nδ

(z−Nδ )
3
2
,z ≥ Nδ ,γ > 0 (11)

FZi(z) = erfc
(√

N2γ

z−Nδ

)
,z ≥ Nδ ,γ > 0 (12)

Substituting (11) and (12) into (14) yields the result in (9).
Lemma 3 Let {Xi}2N

i=1 be a sequence of i.i.d. RVs, where
Xi ∼ Lévy(δ ,γ). Define Z1 = ∑

N
i=1 Xi and Z2 = ∑

2N
i=N+1 Xi.

The PDF of RV Z = min(Z1,Z2) is given by:

fz(z)= 2

√
N2γ

π

e−
N2γ

z−Nδ

(z−Nδ )
3
2

erfc
(√

N2γ

z−Nδ

)
,z≥Nδ ,γ > 0.

(13)
Proof: The PDF of Z = min(Z1,Z2) can be expressed as:

fz(z) = 2 fZi(z)(1−FZi(z)), i ∈ {1,2} (14)

Substituting (11) and (12) into (??) yields the result in (13).

4. Application to the PFA’s evaluation of
CFAR processors

Given the decision rule in (2) and the clutter level estimates
defined in (1), the PFA can be expressed as:

PFA(T ) = EZ [Pr(X0 > T Z | H0)] (15)

Since X0 ∼ Lévy(δ ,γ), Pr(X0 > T Z | H0) can be written as:

Pr(X0 > T Z | H0) = 1−FX0(T Z) = erf
(√

γ

2(T Z −δ )

)
.

(16)
Substituting (15) into (16) gives:

PFA(T ) =
∫ +∞

−∞

erf
(√

γ

2(T Z −δ )

)
fz(z)dz. (17)

Now, substituting (5), (9), and (13) into (17) yields the PFA
expressions for the CA, GO, and SO-CFAR processors,
given in (18), (19), and (20), respectively. Here, TCA =
T/2N, and TGO = TSO = T/N. The PFA for the CA-CFAR
processor is:

PFA,CA(TCA) =

√
2N2γ

π

∫ +∞

2Nδ

erf
(√

γ

2(TCAz−δ )

)
e−

2N2γ

z−2Nδ

(z−2Nδ )
3
2

dz.

(18)

PFA,GO(TGO) = 2

√
N2γ

π

∫ +∞

Nδ

erf
(√

γ

2(TGOz−δ )

)

erfc
(√

N2γ

z−Nδ

)
e−

N2γ

z−Nδ

(z−Nδ )
3
2

dz.

(19)

PFA,SO(TSO) = 2

√
N2γ

π

∫ +∞

Nδ

erf
(√

γ

2(TSOz−δ )

)

erf
(√

N2γ

z−Nδ

)
e−

N2γ

z−Nδ

(z−Nδ )
3
2

dz.

(20)

Remark 3 Although the integrals presented in (18), (19),
(20), defy straightforward analytical evaluation since they
cannot be expressed in a simple closed form, they are ready
to be evaluated numerically. Thereby, we can unravel the
underlying mathematical intricacies and extract meaningful
results.

5. Numerical results
This section presents the numerical evaluation of the CA-,
GO-, and SO-CFAR processors’ performance under ho-
mogeneous non-centered Lévy-distributed clutter. Unless
otherwise specified, for all simulations, we set γ = 1/

√
2,

and the size of the reference window is fixed at N = 8.
The results are derived using the analytical expressions in
equations (18), (19), and (20) and validated through Monte
Carlo simulations.
Figs. 1 (a), 1 (b), and 1 (c) illustrate the PFA performance
as a function of the scaling factor T for the CA-, GO-,
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Figure 1. Probability of false alarm versus scaling factor of: (a) CA-CFAR, (b) GO-CFAR, (c) SO-CFAR, and (d) Comparison.

and SO-CFAR processors, respectively, across different val-
ues of the location parameter δ . The results indicate that
PFA declines decreases as T increases for all processors.
Additionally, larger values of δ result in lower PFA, demon-
strating the influence of the clutter’s location parameter on
false alarm performance. For instance, in Fig. 1 (a), the
CA-CFAR processor exhibits a steady decline in PFA as T
increases, with this trend becoming more pronounced for
higher values of δ . Similar behavior is observed for GO-
and SO-CFAR processors in Figs. 1 (b) and 1 (c), respec-
tively.
Fig. 1 (d) compares the performance of all three processors
for δ = 102. The GO-CFAR processor demonstrates su-
perior performance by maintaining consistently lower PFA
compared to CA-CFAR. However, the SO-CFAR proces-
sor shows significantly higher PFA across all values of T ,
indicating its limited robustness in such scenarios. These
results suggest that GO-CFAR is better suited for scenarios
requiring stricter false alarm control, while SO-CFAR may
not be ideal due to its elevated false alarm rates.
Figs. 2 (a), 2 (b), and 2 (c) depict how PFA varies with
δ for each processor at different values of T . Across all
processors, increasing δ leads to a consistent reduction in
PFA, reflecting their adaptability to clutter environments
with higher location parameters. For example, in Fig. 2 (a),
the CA-CFAR processor exhibits a sharp decrease in PFA

as δ increases, particularly at lower values of T . Similar
behavior is observed for GO- and SO-CFAR processors in
Figs. 2 (b) and 2 (c), with differences in their sensitivity to
changes in δ .
Fig. 2 (d) compares the three processors’ performance as a
function of δ for a fixed scaling factor (T = 4). The GO-
CFAR processor again outperforms CA-CFAR by achieving
lower false alarm probabilities across all values of δ . In
contrast, SO-CFAR’s performance remains suboptimal due
to its excessive reliance on smaller reference window sizes
(N). For instance, when N = 2, SO-CFAR suffers from a
significant performance degradation compared to CA- and
GO-CFAR processors. This highlights its limited applica-
bility in scenarios with small reference windows.
From these observations, we conclude that increasing ei-
ther the scaling factor (T ) or the location parameter (δ )
reduces false alarm probabilities across all processors. The
GO-CFAR processor consistently outperforms CA-CFAR in
terms of PFA, making it more suitable for stringent detection
requirements. However, the SO-CFAR processor exhibits
poor performance under small reference window sizes (N),
limiting its applicability in certain scenarios. These findings
provide valuable insights into how key parameters influ-
ence CFAR processor performance and guide their selection
based on operational requirements and clutter characteris-
tics.
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Figure 2. Probability of false alarm versus location parameter of : (a) CA-CFAR, (b) GO-CFAR, (c) SO-CFAR, and (d) Comparison.

6. Conclusion

In this work, we have carried out a performance analysis
of CA-, GO-, and SO-CFAR processors in the case of a
homogeneous non-centered Lévy-distributed clutter. To this
end, we have derived the key statistical properties for the
clutter’s mean level in a form of the sum, maximum sum,
and minimum sum of i.i.d non-centered Lévy RV’ PDFs.
On this basis, we have derived integral-form expressions for
the aforementioned processors’ PFAs. These expressions
provide a practical framework for the analysis and design
of CFAR processors. Furthermore, we have examined
various parameters and their impact on the performance of
the studied processors. The numerical findings indicate that
increasing the clutter’s location parameter δ improves the
processors’ performances. Future research will focus on
heterogeneous environments, adaptive CFAR techniques,
and ML-based approaches for threshold optimization
to provide a complete evaluation of CFAR detectors
in non-Gaussian clutter. Furthermore, with a view to
empirical validation, one of the main future efforts will be
to incorporate real data in order to adapt the non-centered
Lévy distribution to actual clutter returns.
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