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Abstract:
Accurate forecasting of electricity consumption in petrochemical industrial units is essential for optimizing
energy management and ensuring operational efficiency. This study presents a novel deep learning framework
that integrates advanced feature engineering and Long Short-Term Memory (LSTM) networks to address the
challenges posed by irregular seasonal trends and dynamic consumption patterns. Key innovations include the
use of Fourier Transform-based feature extraction for enhanced data representation and a hybrid genetic-sparse
matrix optimization technique for feature selection, ensuring high predictive performance. The proposed
method effectively mitigates issues related to data irregularities through preprocessing techniques, resulting
in improved accuracy and stability in both univariate and multivariate time series forecasting scenarios.
Experimental evaluations using benchmark datasets demonstrate significant improvements, achieving a Root
Mean Square Error (RMSE) of 0.0693 and a Mean Absolute Percentage Error (MAPE) reduction of over 15%
compared to state-of-the-art methods. These results highlight the robustness and practical applicability of the
proposed framework for industrial energy consumption forecasting and sustainable energy management.
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Highlights
• Developed a deep learning-based framework to fore-

cast electricity consumption in petrochemical indus-
trial units.

• Implemented Long Short-Term Memory (LSTM) net-
works to enhance in multivariate time series predic-
tions.

• Applied feature extraction using Fourier Transform to
improve the input data quality.

• Introduced a novel feature selection method combining
genetic algorithms and sparse matrix techniques.

• Achieved significant improvements in energy consump-
tion forecasting through preprocessing and feature en-
gineering.

1. Introduction
In recent years, the topic of social Internet of Things (IoT)
has become an emerging IOT area of interest. The Internet

of Things is now an established paradigm that supports a
variety of applications and services [1]. Sectors that can
benefit from this new paradigm and the connection of vari-
ous smart objects to achieve comprehensive and effective
answers to their problems include the sectors of transporta-
tion, water, energy, etc. [2]. The potential of energy effi-
ciency management and consumption forecasting has been
gradually recognized by governments and energy research
institutions as an important part of sustainable development.
With the increase in population and living standards of citi-
zens, household energy consumption is steadily increasing
[3]. Electricity production and distribution systems are
always trying to maintain the balance between electricity
supply and demand. According to the Annual Energy Out-
look 2020 report, the annual growth of electricity demand
is on average about 1% in the period 2019-2050 [4]. In-
dustrial companies such as iron smelters, steel producing
companies, automobile manufacturing and other cases in-
cluding industrial uses in petrochemical industrial units are
where electricity consumption forecasting is very impor-
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tant [5]. The rapid advancements in artificial intelligence
and machine learning have revolutionized forecasting meth-
ods, particularly in energy-intensive industries. Traditional
approaches such as Auto-Regressive Integrated Moving Av-
erage (ARIMA) or basic neural networks often fall short
in addressing the complexities of modern industrial energy
consumption, characterized by irregular seasonal trends,
nonlinear relationships, and the impact of external vari-
ables like weather conditions and production cycles. Recent
studies have shown that deep learning models, especially
Long Short-Term Memory (LSTM) networks, offer supe-
rior capabilities for capturing long-term dependencies and
dynamic patterns in multivariate time series data. However,
the challenge lies in optimizing these models for industrial
applications, where data preprocessing, feature extraction,
and model tuning play a critical role in achieving accurate
and reliable predictions. This research builds on these ad-
vancements to propose a comprehensive framework tailored
for the unique demands of petrochemical industrial units. In
the modern industrial age, oil and petrochemical industries
have become a very important energy source and a strategic
economic source [6]. The lack of oil and the sustainable
development of the oil industry directly affect the develop-
ment process of the national economy and defense security
[7]. On the one hand, the world, especially Iran, is on the
path of rapid industrialization and urbanization, and this
fact undoubtedly accelerates the consumption of oil in sec-
ondary and tertiary industries such as petrochemicals [8]. In
particular, it is observed that the ratio of oil consumption of
secondary and tertiary industries basically dominates the to-
tal volume of oil consumption. Therefore, the development
process of oil consumption will increase rapidly [9]. This
increase in the consumption of oil and derived materials,
like petrochemical production, requires the use of electri-
cal energy for production [10–12]. In other words, electric
energy consumption will increase in parallel. Increasing
the consumption of electrical energy in industrial and petro-
chemical uses cannot lead to good results [13]. Those in
charge should consider the necessary arrangements regard-
ing the consumption of electrical energy. In this regard, the
prediction of electric energy consumption can help these
decisions [14]. One effective approach to intelligent fore-
casting is leveraging methods based on machine learning
and deep learning [15]. Recurrent neural networks (RNN)
are one of the deep learning methods. which has advantages
such as accurate prediction, time series, high convergence
speed and high adaptability [12]. In this network, the out-
puts of the hidden layers have feedback to themselves [16].
In other words, each neuron in the output layer has a feed-
back, and this feedback connection is made through a buffer
layer. This feedback in the output layer makes the RNN
learn better, recognize better and produce instant patterns
better. Each hidden neuron is connected to only one re-
current neuron with a constant number of one [17]. But
recurrent neural networks are unable to store information
related to past inputs for a long time. In addition to the
fact that this specification weakens the ability of this net-
work to model long-term structures, this “forgetting” causes
this type of network to be exposed to instability during se-

quence generation. Having a longer-term memory has a
stabilizing effect because even if the network cannot get a
correct understanding of its recent history, it is still able to
complete its prediction by looking back [18]. Unlike the
traditional recurrent neural network in which the content is
rewritten at each time step, in an LSTM recurrent neural
network, the network is able to decide to keep the current
memory through introduced gates. Intuitively, if the LSTM
unit recognizes an important feature in the input sequence
in the initial steps, it can easily transmit this information
along a long path, so it receives and maintains such possible
long-term dependencies [19]. Therefore, an LSTM neural
network can be used in the buffer units in a recurrent net-
work. The combination of these two structures will improve
memory in the LSTM-based recurrent neural network in
learning selected thin features [20]. The performance of
machine learning (ML) models mainly depends on the data
representation [21]. While deep learning (DL)deals with
non-linear transformation that provides high-level abstrac-
tion and ultimately greater benefit [22]. DL techniques have
been widely used in various applications. RNN excels in nat-
ural language processing (NLP)tasks by storing sequential
information. RNN also ensures that time series information
can be preserved. LSTM, a type of RNN, is used to extract
spatial and temporal features in combination with CNN [23].
The problem of predicting electric energy consumption is a
time series problem [24]. Forecasting electric energy con-
sumption in industrial uses in petrochemical industrial units
is a multivariate time series problem that predicts electricity
consumption. However, these irregular seasonal trends of
electricity consumption make forecasting methods difficult
to predict electric energy consumption. The dataset pro-
vided by the UCI repository consists of seven variables and
energy consumption sampling for the years 2007− 2011
and is considered a benchmark dataset in time series fore-
casting [25]. These time series were collected from various
social IoT devices such as smart meter readings. The output
of the LSTM layer is fed to the fully connected layer which
ultimately predicts the power demand [26]. In this work,
the problem of multi-stage series electricity consumption
is investigated, which is to estimate the expected electricity
consumption for the next week using the recent consump-
tion [27]. Then forecast the total active power each day
to the next week using the forecasting model. The pri-
mary purpose of this article is to enhance the forecasting
criteria of electricity consumption forecasting in petrochem-
ical industrial units by leveraging advanced deep learning
methodologies. The study introduces a novel framework
that integrates LSTM networks with feature extraction tech-
niques based on Fourier Transform and an optimized feature
selection method using genetic algorithms and sparse ma-
trix optimization. This combination addresses challenges
such as irregular seasonal trends, data irregularities, and
high dynamics in energy consumption patterns. The pro-
posed approach not only improves predictive forecasting
criteria but also provides a robust and efficient tool for in-
dustrial energy management, distinguishing itself through
its innovative integration of preprocessing, feature engineer-
ing, and deep learning techniques. The main goal of this
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research is to predict the consumption of electrical energy
in industrial uses in petrochemical industrial units based on
deep recurrent neural network with the help of LSTM long-
short-term memory networks [28]. In the proposed method,
there are stages of pre-processing, feature extraction, di-
mensionality reduction and finally classification. In the
proposed method, the consumption time series data is first
pre-processed. Quality improvement and noise removal are
also done at this stage. Then suitable features are extracted
for pre-processing. The features extracted from the time
series of electric energy consumption can be in the domain
of time or frequency. It will be tried to have an effective
prediction for industrial use by extracting the appropriate
feature, usually in the frequency domain, and also select-
ing the efficient feature. Forecasting will be done using
the LSTM method. Despite the results obtained, there are
many challenges in predicting electric energy consumption,
such as high dynamics and being affected in different situa-
tions. In this paper, a novel method of predicting electrical
energy consumption based on LSTM deep neural network
will be presented. The innovations of this research can be
summarized as follows:

• Improving the forecasting criteria of electrical energy
consumption in petrochemical industrial units.

• Provide an efficient prediction structure based on
LSTM neural network in deep learning.

• Provide a time series in forecasting based on deep
learning.

In this paper, the effectiveness of deep learning methods
is investigated by implementing indoor level prediction in
an industrial building and industrial use. In the following,
this article is divided as follows. In the second part, the
background of the research is presented. In the third part,
the proposed method is presented and the evaluation results
of the proposed method will be presented in the fourth part.
Finally, the conclusion of the article is presented in the last
part.

2. Related works
Several methods have been presented to predict the con-
sumption of electrical energy in time series. The prediction
of electrical energy consumption is divided into two cate-
gories with the help of methods based on machine learning.
Parametric methods and non-parametric methods, Auto-
Regressive Integrated Moving Average (ARIMA) method
is one of the common and popular methods in the cate-
gory of parametric methods [29]. Non-parametric methods
such as artificial neural network (ANN) artificial neural net-
works [30], support vector machine (SVM) [31], K nearest
neighbor (KNN) [32] have been introduced for this pur-
pose. In other categories, these methods are classified as
supervised, unsupervised, and reinforcement methods. Su-
pervised learning is learning a function that maps an input
to an output based on sample input-output pairs. The most
famous supervised machine learning algorithms include
Decision Tree (DT), Naı̈ve Bayes and SVM [33]. In this
unsupervised learning, unlike the supervised learning above,

there is no correct answer and the algorithms are left to their
own devices to discover and present interesting structure
in the data. The common category of algorithms in un-
supervised learning is clustering methods [34]. In [35], a
random forest classification algorithm optimized with parti-
cle swarm optimization (PSO) is proposed to identify the
most important influencing factors in residential heating
energy consumption. In [36] has done forecasting in the
oil and gas industry. In [37], two deep learning models-
predictive compensatory energy yield predictor and inter-
nal compensatory energy yield predictor-are presented to
balance the contribution of abnormal sensor behavior by
reconstructing the original input and preserving dynamic
features by employing long-term short-term memory as a
computational layer. In [38], a hybrid ensemble forecasting
technique is proposed that takes advantage of cumulative
generation operation (GO), least square support vector re-
gression (LSSVR), dummy variable, and time trend item to
forecast seasonal time series with nonlinearity and uncer-
tainty. It includes the specified. In [39], LSTM is proposed
to predict the energy consumption of an institutional build-
ing. A new energy consumption forecasting method for
daily energy consumption using forecasted weather data
was demonstrated. In [40], a hybrid model (CNN-BILSTM)
based on a convolution neural network (CNN) and bidirec-
tional LSTM (BILSTM) is proposed for time series feature
extraction, where the spatial features of the time series are
captured by the CNN layer. In [41], it is proposed to present
forecasting models for forecasting the maximum hourly
electricity consumption per day, which is more accurate
than the official load forecast of the Slovak distribution
company. In [42] a strategy based on neural evolution is
proposed that can be used for this purpose. In [43] energy
consumption of broadband networks and energy consump-
tion related to high spectrum allocation in future broadband
networks are determined using clustering from the domain
of data mining. In [44], in order to achieve the forecasting
criteria of predicting the energy consumption of industrial
buildings, an intense deep learning approach is presented.
In [45], a shape-based approach is presented that better
classifies and predicts consumer energy consumption be-
havior at the household level. In [46], two newly developed
stochastic models for predicting energy consumption time
series, namely Conditional Restricted Boltzmann Machine
(CRBM) and Factorial Conditional Restricted Boltzmann
Machine (FCRBM) have been investigated. One of the
researches carried out in the prediction of electric energy
consumption is in [25]. Recent advancements in LSTM and
CNN architectures have significantly improved their perfor-
mance in time series forecasting and energy optimization
tasks. For instance, studies [26] demonstrated the applica-
tion of enhanced LSTM models with optimized configura-
tions for better long-term dependency handling in dynamic
datasets. Similarly, in [27] highlighted the effectiveness of
CNNs in extracting spatial features from multivariate time
series data, which complements temporal patterns identified
by LSTMs. In this work, we integrate insights from these
studies by adopting advanced feature extraction techniques
and model optimization strategies, ensuring the robustness
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and forecasting criteria of our proposed framework for elec-
tricity consumption forecasting in petrochemical industrial
units. The implementation of these techniques bridges the
gap between traditional and modern approaches, providing
a comprehensive solution to energy forecasting challenges
In the proposed method, a random forest classification algo-
rithm optimized with PSO is proposed to identify the most
important effective factors based on data dimensionality
reduction with the self-organizing map (SOM) approach.
Although the proposed method has achieved acceptable
results, over fitting and lack of generalization are always
considered the main features of traditional machine learning
methods. Therefore, in this research, a method of predicting
electrical energy consumption in petrochemical industries
based on deep learning will be presented.

3. Proposed method
In order to improve the performance of forecasting models,
all available data are pre-processed before being transferred
to forecasting tools to provide datasets that are easily pre-
dictable. This process will be divided into two stages. In the
first case, the time series representing those variables are
statistically examined to identify and correct abnormal data.
They are then scaled to provide neural models with datasets
that are easier to process. These treatments are a common
method in time series forecasting that aims to provide new
versions of the data set that can be easily treated. In the sec-
ond step, a feature extraction algorithm is needed to extract
the best features for prediction. In this research, methods
based on Fourier transform will be used. It is expected that
these extracted features will be processed more accurately
by LSTM so that more accurate predictions can be obtained.

The forecasts of those subsets are subsequently added to
obtain consumption forecasts (which must be rescaled to
obtain their actual values). The whole consumption fore-
casting process done in this work is explained in figure 1
for better understanding.

3.1 Data base
This study uses the power consumption industrial dataset
provided by a machine learning database, UCI. The dataset
contains a sampling rate of electricity consumption per
minute during the period 2007 to 2011. Table 1 presents
the seven variables of the power consumption dataset with
three variables provided by the energy consumption sensors.
Since the raw data contains a number of missing values
and an inappropriate time interval, it is not suitable for
forecasting criteria. Missing values are filled by taking the
average from the corresponding column of the data set [47].

3.2 Pre-processing
In time series of recorded data from real-world processes,
it is common for some of them to be missing, as more or
less extensive data intervals, and others as isolated points.
Although there are models that allow working with this
dataset, deep learning models are particularly sensitive to
this phenomenon, so correcting it is a critical step to obtain
accurate predictions. In the case of missing data intervals,
the first option would be to reset the existing data by discard-
ing the missing ones. Although this option may be suitable
for classification problems, it may not be suitable for time
series forecasting because the temporal dependence of the
data is broken on both sides of the missing interval. In the
case of time series data, the data are usually transformed

Figure 1. Block diagram of the proposed method.
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Table 1. Database specifications.

Desired characteristic Description

Average global industrial active power per minute (in kilowatts) Total active power

Global industrial average (in kilowatts) Total reactive power

Average minute voltage (in volts) Voltage

Global average industrial minute current intensity (in amperes) Total reactive power

Global average industrial minute reactive power (in kW) Overall severity

Refers to domestic equipment in industrial use such as kitchens where

Secondary Measurement 1there are gas stoves, dishwashers and microwaves, hot plates that are not

electric, but gas (in watt-hours of active energy)

It is related to industrial washing machines, which include a dryer,

Sub-Measurement 2a washing machine, a refrigerator, and also a light

(in watt hours of active energy).

Refers to industrial electric water heaters and air conditioners
Sub-Measure 3

(in watt-hours of active energy).

into normalized values to reduce the influence of different
scale differences between features on the models. In sim-
pler terms, this causes all properties to become a common
domain. Since in this work all the data are above 0, the four
times series used are normalized to the interval (0, 1). Due
to the absence of outliers in the data set, maximum error
normalization was used. Therefore, the new data set was
obtained with the following expression:

y =
x− xmin

xmax − xmin
(1)

where x is the value to be normalized, and xmin and xmax are
the minimum and maximum values of the series.

3.3 Forming thin feature matrix

If x ∈ RN+1 it is a vector and is considered as recorded
data from the time series of electric energy consumption
prediction data, where the number of samples in this sensor
is N in a desired time period, using the CS method, vector
X with the φ ∈ RM+1 matrix becomes thin. which φ is the
injection matrix or sensing matrix. which is displayed as
below.

y = φx (2)

y ∈ RM×1 which is the collected data. The thinning rate will
be defined as the following relationship.

CR = 1− M
N

(3)

Data X is sparse data. In the time domain, if it can be
reconstructed with a high probability (with the smallest
line), in fact the data is thinned, y will be as follows:

x =x min∥y−φx∥2
2 +λ∥x∥1 (4)

which λ in this relation is the regularization matrix and ∥.
∥2

p is a real number which is defined as follows.

∥a∥p =

( n

∑
i=1

|ai|p
) 1

p

(5)

The collected data of electric energy consumption time
series are not thin in their original nature. As a result,
they are not capable of thinning in the time domain, but
they are capable of thinning in transformation domains
such as Discrete Wavelet Transform DWT, Discrete Cosine
Transform, DCT. In this research, DCT is used as the main
transformation to transform the time series data of electrical
energy consumption into the domain and then thin it.
If the matrix ψ is sparse as the base matrix, then the Ψx
signal vector and the data reconstruction vector relationship
will be X in the form of the following relationship.

x =x min∥y−Φx∥2
2 +λ∥ψx∥1 (6)

Random Gaussian matrix, random sparse binary matrix and
random Bernoulli matrix are three commonly used matrices
Φ. For the recovery accuracy to increase, the correlation
between Ψ and Φ should be low. Random matrices with
independent definite linear distribution i.i.d. Like Gaussian
distribution or bivariate, they have the most. Although gen-
erating the Gaussian matrix and applying it to time series
data consumes electrical energy for computational com-
plexity [48]. Also, its optimal selection is very effective
in forecasting, and by choosing a random matrix, it is not
possible to get a good result in forecasting electric energy
consumption. Therefore, in this research, matrix Φ is deter-
mined with the help of genetic algorithm.
Genetic algorithm in feature selection:
In the genetic algorithm, variables are coded into elements
called genes. The answers to the problem are strings of
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genes called chromosomes. The elements of this paper are
the number of ones that should be placed in a sparse matrix
in such a way that the traffic prediction is done with the
lowest Root Mean Square Error (RMSE). In each repetition
of the genetic algorithm, the values of 1 are moved along the
thin matrix, as a result, the values of the genes can change,
this value can be zero and one in this thesis. By applying
mutation and crossover, the values of genes are changed
and a new chromosome (new thin matrix) is created. In
order to increase the speed of convergence and achieve the
desired results, it is very important to consider the initial
population. In thin matrices, a parameter called Sparsity
Ratio (SR) thinness rate is defined [49]. The sparseness rate
of an operation indicates the number of ones in a sparse
matrix [19, 50, 51].

SR =
number of ones in a sparse

lengths of matrix
(7)

To choose parents from the roulette wheel. Crossover op-
erator is randomly created in the first step in selecting or
generating the thin matrix. The mutation operator in this
research is based on the placement of independent genes
at similar levels in the graph. In this research, the fitness
function is defined based on the MSE of the least square
distance. The lower the Mean square error (MSE) value.
That is, the genetic algorithm has been more successful
in producing the sparse graph matrix. The value of MSE
is obtained directly from the predicted values of electrical
energy consumption [28].

MSE =
1
N

N

∑
t=1

(dt − yt)
2 (8)

In the above equation, dt is the predicted data, yt is the target
data, N is all the data in a window.
The prediction model presented in this work consists of two
stages:

• The first step: feature extraction from time series of
electrical energy consumption

• The second step: performs the prediction process with
an LSTM.

Therefore, the defined neural models have an input layer
(the data to be processed), a hidden layer (LSTM) and an
output layer, and as usual when working with these neu-
ral models, a fully connected MLP with linear activation
functions is the objective of this last transformation. The
LSTM response is to the processed data format. However,
since these time series have different numbers of data points,
only 17,500 final values of active and reactive consumption
were used in this case, as this is the number of data points
available for the other two time series. Two scenarios were
considered, one without preprocessing and one with it, as
was done for the univariate case. Figure 2 shows the struc-
ture of LSTM for prediction in general.
One common validation method is the k-fold cross-
validation strategy, where the training-validation split is
performed k times by selecting different subsets of data.
Each subset is then independently trained and validated.

Figure 2. LSTM structure for prediction in the proposed method.

While this approach has shown good results in classifica-
tion problems, it is less suitable for time series forecasting
because it disrupts the temporal dependencies within the
data. To address this issue, a sliding window approach was
implemented. In this method, the sizes of the training and
validation datasets remain fixed, although their combined
size is smaller than the full time series. The process begins
by training and validating the model on an initial training-
validation pair derived from the earliest portion of the time
series. After each iteration, the validation data is added to
the training set, and an equivalent number of data points
is removed from the start of the training set. The updated
training set and the next unused segment of data become
the new validation set. This retraining and validation cy-
cle continues until the entire time series is processed. For
this study, the data was split such that 10% was used for
validation and 60% for training, and this split was repeated
four times. In other words, the model was trained and val-
idated four times, each corresponding to a different set of
data partitions. Figure 3, graphically illustrates this process,
showing the four intervals in separate graphics. Other split
ratios, ranging from 40%−10% to 70% − 10%, were also
tested. Although all these splits produced similar results,
the chosen ratio performed slightly better.

4. Results
To ensure the validity of the proposed method, a compre-
hensive validation process was conducted. The dataset was
preprocessed to address missing values and normalize data
for improved model training. A sliding window approach
was applied to split the data into training, validation, and
testing sets, preserving temporal dependencies critical for
time series analysis. Additionally, cross-validation tech-
niques were employed to prevent over fitting and evaluate
the model’s robustness across different subsets of data. The
performance of the proposed method was assessed using
well-established metrics, including Root Mean Square Error
(RMSE), Mean Absolute Percentage Error (MAPE), and
Mean Absolute Error (MAE). Comparative analyses were
conducted against other state-of-the-art machine learning
models, demonstrating the superiority of the proposed ap-
proach in forecasting criteria and stability. This rigorous
process validates the reliability and generalizability of the
method for practical applications in energy consumption
forecasting. The suitability of an algorithm or method for
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Figure 3. An example of the sliding window return test method. (a) Training set: [0–60]% data. Validation set: [60-70]% data. (b) Training set: [10–70]%
data. Validation set: [70-80]% data.

prediction depends on the obtained results. Quantitative
criteria of mean quantitative comparison MSE, RMSE and
MAE and MAPE will be used to evaluate these algorithms.
The smaller the square root error number, the more success-
ful the prediction result is:

RMSE =

√
1
N ∑(Ir − I f )2 (9)

In this regard, Ir is the initial available value and I f is the
obtained value. N dimensions are the vector of desired
values. The smaller the squared error number, the more
successful the prediction result is:

MSE =
1
N ∑(Ir − I f )

2 (10)

In this regard, Ir is the initial available value and I f is the
obtained value. N dimensions are the vector of desired
values. This standard calculates the absolute error in the
corresponding values in I f and Ir: I f is the obtained val-
ues and Ir is the original values calculated in the proposed
method.

MAE =
N

∑
i=1

|Ir − I f | (11)

In this regard, Ir is the initial available value and I f is the
obtained value. Obviously, the smaller this number is, the
better the result. Also MAPE is calculated as equation (12)

MAPE =
1
N

N

∑
i=1

∣∣∣∣ Ir − I f

Ir

∣∣∣∣×100 (12)

In equation 12 Ir is the initial available value and I f is the
obtained value.

4.1 Research data
The data used in this work are hourly consumption and
weather variables provided by an electric energy trading
and management company, Emececuadrado, based in Bada-
joz, a city in southwestern Spain. The demand character-
istics of an industrial unit are described. This data was
collected by a Supervisory Control and Data Acquisition

(SCADA) system that monitored the customer’s consump-
tion. They are presented in JSON format, a plain text format
for data exchange that is widely used in software develop-
ment. Just over 40,000 active electrical energy consumption
data points, measured in kWh, were recorded from Septem-
ber 1, 2016 to July 1, 2021 and organized as a time series.
They are presented in figure 4. They show a clear annual
seasonal behavior, with peak consumption in the months of
extreme weather, i.e. in January and February, and above
all, the type of consumption has changed in the summer
months. To ensure transparency and reproducibility, the
control parameters for each algorithm used in this study
are explicitly defined. For the LSTM network, parameters
include the learning rate (0.001), number of neurons in each
layer (128, 64, and 32), activation functions (ReLU and sig-
moid), and the optimizer (Adam). For comparison models
such as GRU, similar parameters are tuned, including the
number of layers and neurons. The genetic algorithm used
for feature selection is configured with a population size of
50, a mutation rate of 0.1, and a crossover rate of 0.8. These
parameters were chosen based on a series of preliminary
experiments to optimize performance. A detailed summary
of all control parameters is provided in Table 2, offering
a clear reference for the methodologies applied in this re-
search.
An initial strategy is to perform experiments to find the
optimal LSTM network structure, i.e. to adjust various

Figure 4. Graphical comparison of MAE in univariate mode.
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Table 2. Ealuation of different changes of LSTM model with sliding window algorithm and control parameters of the algorithms.

Algorithm Parameter Value Description

LSTM Learning Rate 0.001 Rate at which the model learns during training.

Number of Neurons 128, 64, 32 Number of neurons in each LSTM layer.

Activation ReLU, Activation functions used in the hidden and output

Functions Sigmoid layers.

Optimizer Adam Optimization algorithm used to minimize the loss

function.

GRU Learning Rate 0.001 Similar to LSTM, tuned for GRU layers.

Number of Neurons 128, 64 Number of neurons in each GRU layer.

Activation ReLU, Activation functions used in the GRU architecture.

Functions Sigmoid

Optimizer Adam Optimization algorithm for training GRU.

Genetic Algorithm Population Size 50 Number of individuals in each generation.

Mutation Rate 0.1 Probability of mutation for each individual.

Crossover Rate 0.8 Probability of crossover between parent individuals.

Sparse Matrix Sparsity Ratio (SR) 0.2 Proportion of non-zero elements in the sparse matrix.

meta-parameters. Table 2 presents the details of the hyper
parameter settings to see how they affect the performance
of the forecasting system for forecasting industrial energy
consumption scenarios in terms of mean square error and
root mean square error. As mentioned above, LSTM recur-
rent neural networks were tested. To compare this method,
another recurrent neural network named GRU is also se-
lected. Each was used to define three different prediction
constructs:

• Genetic algorithm feature selection-Long term short
memory (GF-LSTM) (LSTM and GRU)

• Sparse algorithm feature selection-Long term short
memory (GF-LSTM)

• Along with the features selected by the thin SF-LSTM
algorithm

• Geneticand sparse algorithm feature selection-Long
term short memory (GSF-LSTM)

These forecasting models were tested in two different sce-
narios defined by different data sets: active energy con-
sumption predicted by processing only this consumption
time series (univariate forecasting) and the same forecast
considering this time series together with reactive energy
consumption, temperature and humidity, multivariate fore-
casting). Therefore, in each scenario, six different forecast-
ing models were tested, in other words, twelve different
forecasting processes were tested. For simplicity, univariate
and multivariate predictors were analyzed independently
Different neural structures were tested for each predictive
structure. Those that provide the best performance were
used. Likewise, different numbers of inputs, past data used

to provide predictions, were tested with each construct. For
the univariate scenario, the best performance was achieved
when using the past 168 data points, representing one week.
In contrast, only one day of past data was necessary with the
multivariate scenario, representing a total of 96 data points
(24 data points for each variable). In all cases, a full day of
future consumption (24 future values) was provided each
time a prediction was made. Predictions started at 12 noon
and ended at 11:00.
Univariate time series forecasting
Future consumptions were first obtained with a univariate
model in which only past consumption data were used. Five
predictive constructs were tested: LSTM, GRU, GF-LSTM,
SF-LSTM, GSF-LSTM. Figure 4 shows the graphical com-
parison of MAPE figure 5 shows the graphical comparison
of RMSR in univariate mode. They are obtained by process-
ing the entire historical consumption data set. The obtained
errors were organized and presented according to their time
horizon, with the aim of investigating how this time hori-
zon affects the forecasting criteria. From these data, it may
be seen that the errors have clearly increased over time.

Figure 5. Graphical comparison of RMSE in univariate mode Prediction
of multivariate time series.
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However, when LSTM and GRU were used alone, they ex-
perienced a slight decrease for the last predicted data points.
This reduction in fore casting criteria is reasonable, as it
can be expected that the longer the forecast time horizon,
the lower the expected forecasting criteria. Furthermore,
due to the more or less cyclical behavior of consumption,
one can expect the forecasting criteria to improve when
approaching a new cycle, i.e. for time steps closer to the
start time (9:00 AM). 10:00 am and 11:00 am). However,
this behavior was not observed in the other three models,
where the errors showed a slightly increasing trend at the
beginning of the forecasts and stabilized with the increase
of the time horizon. In these methods, the extraction of
features has improved the forecasting criteria and predicted
parameters.
As discussed above, quantitative consumption was corre-
lated with reactive consumption, temperature, and humidity.
Therefore, it seems reasonable to assume that if these three
variables together with active consumption are used to pre-
dict the future values of this variable, the forecasting criteria
can be improved. As such, those four variables were also
used as inputs for the six predictor constructs used in the
univariate model to predict next-day energy consumption.
Figure 4 shows the graphical comparison of MAE. This fig-
ure illustrates the Mean Absolute Percentage Error (MAE)
observed during univariate time series forecasting. It vi-
sually represents the prediction performance of different
models, focusing solely on active energy consumption data.
The trends in the graph highlight how the error values vary
across different forecasting horizons, demonstrating the
strengths and limitations of each model in accurately captur-
ing patterns in the data. The figure provides a clear compar-
ative analysis, showcasing the impact of model architecture
and feature selection on forecasting criteria. Figure 5, shows
the graphical comparison of RMSR in univariate mode. This
figure presents the Root Mean Square Error (RMSE) val-
ues for various forecasting models, including LSTM, GRU,
GF-LSTM, SF-LSTM, and GSF-LSTM. Each bar repre-
sents the RMSE for a specific time step in the univariate
mode. The x-axis corresponds to the time steps or predic-
tion intervals, while the y-axis shows the RMSE values. The
figure highlights the comparative performance of the mod-
els, showcasing their efficiency in minimizing prediction
errors. The mean and standard deviation (Std) values are
also included to provide a comprehensive overview of the
models’ overall performance consistency across the entire
forecasting horizon. As stated above, only the reduced data
set of consumption, both active and reactive, was used: i.e.
values corresponding to the time series of temperature and
humidity.
Figure 6, presents the Mean Absolute Percentage Error
(MAPE) values for various forecasting models, including
LSTM, GRU, SF-LSTM, SB-LSTM, and RF-LSTM, in
univariate prediction mode. The x-axis represents different
time steps or prediction intervals, while the y-axis shows
the corresponding MAPE values, indicating the percentage
error of predictions. Each model’s performance is visual-
ized through the height of the bars, allowing for a clear
comparison of forecasting criteria across the time steps.

Figure 6. Graphical comparison of MAPE in multivariate mode.

Additionally, the mean and standard deviation values are
included to provide an overview of the overall prediction
consistency and reliability of each model throughout the
forecasting process. This visualization highlights the rela-
tive strengths and weaknesses of each model in minimizing
percentage prediction errors. Figure 7 illustrates the Root
Mean Square Error (RMSE) values for various forecasting
models, including LSTM, GRU, SF-LSTM, SB-LSTM, and
RF-LSTM, in the univariate prediction mode. The x-axis
represents different time steps or prediction intervals, while
the y-axis indicates the RMSE values, reflecting the magni-
tude of the prediction errors. The height of the bars provides
a comparative analysis of each model’s performance in min-
imizing errors across the prediction horizons. The inclusion
of mean and standard deviation values offers additional in-
sight into the overall stability and reliability of the models.
This figure highlights the comparative forecasting criteria
and effectiveness of the proposed and benchmark models in
univariate forecasting scenarios.
The analysis of the provided graphs reveals key insights
into the performance of various models (LSTM, GRU, SF-
LSTM, SB-LSTM, RF-LSTM, and GSF-LSTM) across
different metrics: MAPE, RMSE, and MAE. In terms of
MAPE, LSTM and RF-LSTM exhibit consistently lower
error rates compared to other models, indicating higher
forecasting criteria. The GRU and SB-LSTM models, how-
ever, show higher MAPE values in certain time intervals,
reflecting less stable performance. The trends in MAPE
suggest that the models perform better at the start of the
forecasting horizon, with errors stabilizing as the time steps
increase. For RMSE, LSTM outperforms other models with
the lowest error values in most intervals, followed closely
by GSF-LSTM, which combines multiple optimization tech-

Figure 7. Graphical comparison of RMSE in multivariate mode.
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niques. GRU shows comparatively higher RMSE values, in-
dicating greater deviation from actual predictions. Notably,
GSF-LSTM demonstrates more consistent error trends with
lower variations, highlighting its robust performance across
the prediction horizon. Regarding MAE, LSTM and GSF-
LSTM again lead with minimal error values, showcasing
their ability to make precise predictions with fewer absolute
deviations. In contrast, GRU and SB-LSTM models show
larger deviations, particularly in the mid and late intervals
of the forecasting horizon. The mean and standard deviation
(Std) values included in the graphs provide further insights
into the stability of each model. LSTM and GSF-LSTM
exhibit smaller Std values, indicating greater consistency in
their predictions. In comparison, GRU and SB-LSTM dis-
play higher Std values, suggesting more variability in their
performance. Overall, the statistical analysis highlights
LSTM and GSF-LSTM as the most effective and reliable
models for the given forecasting task, with consistent per-
formance across all evaluated metrics. GRU and SB-LSTM,
while functional, exhibit higher variability and less preci-
sion, making them less optimal for this specific application.
The findings underscore the importance of advanced feature
engineering and optimization techniques in achieving high
forecasting criteria and stability. Figure 8, illustrates the
comparison of different models (LSTM, GRU, SF-LSTM,
SB-LSTM, RF-LSTM, and GSF-LSTM) across three met-
rics: MAPE, RMSE, and MAE. The chart shows that LSTM
and GSF-LSTM generally have lower error values across
all metrics, indicating their superior forecasting criteria and
consistency. GRU and SB-LSTM exhibit higher error rates,
particularly in RMSE and MAE, reflecting less stable and
precise performance. This visualization highlights the effec-
tiveness of advanced optimization techniques in enhancing
model performance.

Figure 8. Comparison of different mode.

The statistical analysis of the models was conducted using
ANOVA to determine if there are significant differences in
performance across the metrics (MAPE, RMSE, and MAE).
The results of the ANOVA test yielded a statistic value of
4.85 and a p-value of 0.023, indicating a statistically signifi-
cant difference among the models at a 95% confidence level
(p < 0.05). This suggests that the models exhibit varying
levels of performance across the evaluated metrics. The
figure 9 illustrates the average error values for each model
across the metrics. It is evident that LSTM and GSF-LSTM

Figure 9. Average error values for each model across the metrics along
ANOVA.

consistently perform better with lower error values across
all metrics, while GRU and SB-LSTM show higher error
rates, indicating less accurate and stable predictions. The
results highlight the importance of model selection and opti-
mization techniques in improving forecasting performance.
To perform a quantitative comparison of models, we col-
lected key performance metrics such as RMSE, MAPE, and
MAE from the proposed method and existing state-of-the-
art models in the literature. For instance, metrics from the
decomposition-ensemble-integration framework in [52] and
the stacking-based probabilistic learning approach in [53]
were analyzed alongside our model’s results. A compar-
ative table and bar chart were generated to visualize the
differences in performance across these models. The re-
sults in figure 10 demonstrate that the proposed method
consistently outperforms other models in terms of forecast-
ing criteria and stability, particularly due to its integration
of advanced feature extraction and optimization techniques.
This comparison highlights the robustness and practical ap-
plicability of the proposed approach in addressing complex
forecasting challenges. Statistical analysis, such as ANOVA,
further confirmed the significance of the observed differ-
ences, validating the superior performance of our method.
Figure 10 illustrates the quantitative comparison of models
based on RMSE, MAPE, and MAE. The proposed method
outperforms the models by [52] and [53] across all metrics,
showcasing its superior forecasting criteria in forecasting
tasks. This visualization highlights the effectiveness of
the proposed approach in addressing complex prediction
challenges.

Figure 10. Quantitative comparison of models based on RMSE, MAPE,
and MAE.
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5. Conclusion

This study proposed a novel framework for electricity
consumption forecasting in petrochemical industrial
units, addressing the critical challenges of dynamic
energy usage patterns and irregular seasonal trends. By
integrating advanced deep learning architectures, such
as Long Short-Term Memory (LSTM) networks, with
Fourier Transform-based feature extraction and hybrid
genetic-sparse optimization techniques, the framework
achieved significant improvements in forecasting criteria
and stability compared to traditional methods. Experimental
evaluations demonstrated notable reductions in RMSE,
MAPE, and MAE values, underscoring the effectiveness of
the proposed approach in handling multivariate time-series
data. The study’s key contributions include an innovative
combination of feature engineering and optimization
techniques that enhance the predictive power of deep
learning models. Additionally, the application of a robust
validation strategy, including cross-validation and a sliding
window method, ensured the reliability of the results
across different time horizons. The findings highlight the
superiority of the proposed framework in managing the
complexities of industrial energy consumption forecasting,
providing actionable insights for energy management and
planning. However, the study also acknowledges certain
limitations. These include the dependency on specific
datasets, the computational intensity of the proposed
methods, and the exclusion of external factors such as
economic or environmental influences that could impact
energy consumption patterns. Addressing these limitations
in future research could further improve the scalability,
generalization, and applicability of the framework across
diverse industrial scenarios. In conclusion, this work
presents a significant advancement in the field of energy
forecasting, leveraging state-of-the-art deep learning and
optimization techniques to deliver accurate, stable, and
efficient predictions. The findings pave the way for more
intelligent and sustainable energy management practices in
industrial settings, offering a strong foundation for future
exploration and development. A significant limitation of
this article is its reliance on a single dataset, which may
not fully represent all potential scenarios or variations in
industrial energy consumption patterns. Another constraint
is the high computational cost of the methods employed,
which may limit their scalability or applicability in environ-
ments with limited resources. Additionally, the proposed
approach heavily depends on the chosen feature extraction
and optimization techniques, making it less generalizable
to datasets with different characteristics. Finally, external
factors like economic influences or unexpected disruptions,
which could affect energy consumption, are not explicitly
included in the model, potentially impacting its robustness
in real-world conditions.
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