Document Type : Review Article

Authors

1 LPHE-MS, Faculty of Sciences, University Mohammed V, Rabat, Morocco.

2 ECE Department, Lyallpur Khalsa College Technical Campus, Jalandhar, Punjab, India.

3 Department of Physics, Faculty of Sciences El Jadida, University Chouaib Doukkali (CDU), El Jadida, Morocco.

10.57647/j.mjee.2025.1902.42

Abstract

The Present CubeSat project success rate may deter nonprofit organizations from beginning new projects, especially for first-time creators. However, since the electronic components of a CubeSat are intended to be very power-efficient and tightly placed, its size and electrical characteristics provide a more difficult limitation. The CubeSat antennas are key parts that will need to be carefully designed since they need to be tiny, light, and deployable for bigger antennas. This study provides an extensive overview of the key characteristics of metasurface-based antennas with an emphasis on their effectiveness in CubeSat communication systems. This research work initially introduces metasurface antennas and examines how well-suited they are geometrically for various frequency bands for CubeSat spacecraft. Furthermore, a detailed analysis of these metasurface antennas’ radiating capabilities is conducted in accordance with the CubeSat configuration, links, and orbits. Additionally, over thirty X-band metasurface-based antennas are fully evaluated in terms of their suitability for CubeSats. The use of specifically designed metasurfaces has resulted in a notable increase
in CubeSat antenna performance. This paper offers an emerging approach for researchers to advance the usage of metasurface-based antennas in CubeSat missions such as UM5-Ribat and UM5-EOSAT CubeSats of University Mohammed V in Rabat. 

Keywords

  1. El Bakkali, “Planar Antennas with Parasitic Elements and Metasurface Superstrate Structure for 3U CubeSats,” PhD. Thesis dissertation, Depr. Elect. Eng., Sidi Mohamed Ben Abdellah University (USMBA), Fez, Morocco, Jul. 2020.
  2. Falduto, and W. Peeters, Trade-Off Approach for Launching Smallsats,New Space, 11(2), pp.71-81, 2023. DOI: https://doi.org/10.1089/space.2022.0003
  3. Chin, R. Coelho, J. Foley, A. Johnstone, R. Nugent, D. Pignatelli, S. Pignatelli, N. Powell, J. Puig-Suari, J. Crusan, C. Galica, W. Horne, C. Norton, A. Robinson, CubeSat 101: Basic Concepts and Processes for First-Time CubeSat Developers,NASA CubeSat Launch Initiative Resources. 1st ed., M. Aldred, A. Cooke, T. Hla, M. Ostovar, J. Way, U.S. Launch Vehicles Used for CubeSat Launch, 08, 2017.
  4. Popescu, “Power Budgets for CubeSat Radios to Support Ground Communications and Inter-Satellite Links,”IEEE ACCESS, 5(X), 12618-12625, Jun. 2017. DOI: https://doi.org/10.1109/ACCESS.2017.2721948
  5. Puig-Suari, C. Turner, and W. Ahlgren, “Development of the standard CubeSat deployer and a CubeSat class picosatellite,”2001 IEEE Aerospace Conf. Proceedings, Bi Sky, MT, USA, 1347–1353, Mar. 2001. DOI: https://doi.org/10.1109/AERO.2001.931726
  6. SHERPA Rideshare Mission (2025, February 1), Earth Observation Portal company [online]. Available: https://directory.eoportal.org/web/eoportal/satellite-missions/s/sherpa.
  7. Nanoacks Deployer (2025, February 1), NASA [online]. Available: https://www.nasa.gov/content/cubesat-deployment.
  8. Falcon 9 launch vehicle (2025, February 1), SpaceX Society [online]. Available: https://www.spacex.com/falcon9.
  9. ISIS (2025, February 1), CubeSat and Microsatellite Deployers [online]. Available: https://www.isispace.nl/products/cubesat-microsatellite-deployers/.
  10. Chahat, E. Decrossas, D. Gonzalez-Ovejero, O. Yurduseven, M. Radway, R. Hodges, P. Estabrook, J. Baker, D. Bell, T. Cwik, G. Chattopadhyay, “Advanced CubeSat Antennas for Deep Space and Earth Science Missions: A Review,”IEEE Ant. & Prop. Magazine, 61(5), 37-46, Oct. 2019. DOI: https://doi.org/10.1109/MAP.2019.2932608
  11. El Bakkali, M. E. Bekkali, G. S. Gaba, J. M. Guerrero, L. Kansal, M. Masud, “Fully Integrated High Gain S-Band Triangular Slot Antenna for CubeSat Communications,”Electronics, 10(2), 156, 2021. DOI: https://doi.org/10.3390/electronics10020156
  12. D. Chaudhari, P. Chand, R. Keley, and K.P. Ray, “Design and Development of Printed Antennas for Satellite-Based AIS Applications,”2019 TEQIP III Sponsored Intern. Conf. on Microwave Integrated Circuits, Photonics & Wireless Networks (IMICPW), Tiruchirappalli, India, 341-344, 2019. DOI: https://doi.org/10.1109/IMICPW.2019.8933263
  13. ZACube2 CubeSat (2024, September 2), eoPortal [online]. Available: https://www.eoportal.org/satellite-missions/zacube-2#development-status.
  14. ESTCube CubeSat (2024, September 2), ESTCUBE [online]. Available: https://www.estcube.eu/projekt/ESTCube-2.
  15. G-Space1 CubeSat (2024, September 2), Gunter’s Pace Page [online]. Available: https://space.skyrocket.de/doc_sdat/g-space-1.htm.
  16. Fang, F. Wang, X. Yu, B. Wang, J. Wang, Y. He, M. Han, D. Wang, J. Huang, “Orbit Determination of China’s Space Station Using Real ISL Measurements of the Tianzhou-6 Spacecraft,” International Journal of Aerospace Engineering, 2024(1),4541472, Aug. 2024. DOI: https://doi.org/10.1155/2024/4541472
  17. Tretyakov, A. Urbas, N. Zheludev, “Special issue on the history of metamaterials,”J. Opt., 19, 080404, Jul. 2017.
  18. Ji, J. Chang, H. X. Xu, J. R. Gao, S., Gröblacher, H. P. Urbach, and A. J. Adam, “Recent advances in metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and topology optimization methods,”Light: Science & Applications, 12(1), 169, Jul. 2023. DOI: https://doi.org/10.1038/s41377-023-01218-y
  19. T., Chen, A. J., Taylor, and N., Yu, “A review of metasurfaces: physics and applications,”Reports on progress in physics, 79(7), 076401, Jun. 2016. DOI: 10.1088/0034-4885/79/7/076401
  20. S. Bukhari, J. Vardaxoglou, and W. Whittow, “A metasurfaces review: Definitions and applications,”Applied Sciences, 9(13), 2727, Jun. 2019. DOI: https://doi.org/10.3390/app9132727
  21. Hu, S. Bandyopadhyay, Y. H. Liu, and L. Y. Shao, “A review on metasurface: from principle to smart metadevices,” Frontiers in Physics, 8, 586087, Jan. 2021. DOI: https://doi.org/10.3389/fphy.2020.586087
  22. Zhao, Z. Sun, L. Zhang, Z. Wang, R. Xie, J. Zhao, R. You, and Z. You, “Review on metasurfaces: an alternative approach to advanced devices and instruments,”Advanced Devices & Instrumentation, 2022, 1-19, Sept. 2022. DOI: https://doi.org/10.34133/2022/9765089
  23. Jeong H. Kim S. Lee, “Review of Metasurfaces with Extraordinary Flat Optic Functionalities,”Curr. Opt. Photon, 8(1), 16-29, Feb. 2024. DOI: http://dx.doi.org/10.3807/COPP.2024.8.1.16
  24. L. Hsu, Y. C. Chen, S. P. Yeh, Q. C. Zeng, Y. W. Huang, and C. M. Wang, “Review of metasurfaces and metadevices: advantages of different materials and fabrications,”Nanomaterials, 12(12), 1973, Jun. 2022. DOI: https://doi.org/10.3390/nano12121973
  25. Xue, Q. Lou, and Z. N. Chen, “Broadband double-layered Huygens’ metasurface lens antenna for 5G millimeter-wave systems,”IEEE Transactions on Antennas and Propagation, 68(3), 1468-1476, Mar. 2020. DOI: https://doi.org/10.1109/TAP.2019.2943440
  26. X. Ta, and I. Park, “Metasurface-based circularly polarized patch array antenna using sequential phase feed,” 2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT), IEEE, Athens, Greece, pp. 24-25, Mar. 2017. DOI: https://doi.org/10.1109/IWAT.2017.7915287
  27. Qing, and Z. N. Chen, “Broadband circularly polarized antenna using metasurface,”in 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL), IEEE, Singapore, 2940-2944, Nov. 2017. DOI: https://doi.org/10.1109/PIERS-FALL.2017.8293636
  28. Zhu, W. S. W. Cheung, and T. I. Yuk, “Antenna reconfiguration using metasurfaces,”2014 Progress in Electromagnetics Research Symposium (PIERS 2014), Guangzhou, China, 2400-2404, Aug. 2014. http://hdl.handle.net/10722/204116
  29. L. Zhu, X. H. Liu, S. W. Cheung, and T. I. Yuk, “Frequency-reconfigurable antenna using metasurface,”IEEE Transactions on Antennas and Propagation, 62(1), 80-85, Jan. 2014. DOI: https://doi.org/10.1109/TAP.2013.2288112
  30. Hussain, and I. Park, “High gain metasurface antenna with multiple feeding structure,”11th International Cong. on Engineered Materials Platforms for Novel Wave Phenomena (Metamaterials), IEEE, Marseille, France, 253-255, Sept. 2017. DOI: https://doi.org/10.1109/MetaMaterials.2017.8107909
  31. Huang, J. Li, and G. Wen, “Wideband low-profile circular polarization slot antenna based on metasurface,” 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, IEEE, CA, USA, 471-472, Jul. 2017. DOI: https://doi.org/10.1109/APUSNCURSINRSM.2017.8072278
  32. Jia, Y. Liu, S. Gong, W. Zhang, and G. Liao, “A low-RCS and high-gain circularly polarized antenna with a low profile,” IEEE Antennas and Wireless Propagation Letters, 16, 2477-2480, Jul. 2017. DOI: https://doi.org/10.1109/LAWP.2017.2725380
  33. Li, and Z. N. Chen, “Design of dual-band metasurface antenna,”2018 International Workshop on Antenna Technology (iWAT), IEEE, 1-3, Mar. 2018. DOI: https://doi.org/10.1109/IWAT.2018.8379213
  34. C. Liu, and T. Y. Tang, “High‐gain patch antenna for CubeSat‐based automatic dependent surveillance‐broadcast application,”Microwave and optical technology letters, 61(1), 187-190, 2019. DOI: https://doi.org/10.1002/mop.31518
  35. H. Naqvi, and S. Lim, “Microfluidically polarization-switchable metasurfaced antenna,” IEEE Antennas and Wireless Propagation Letters, 17(12), 2255-2259, Dec. 2018. DOI: https://doi.org/10.1109/LAWP.2018.2872108
  36. Nasimuddin, Z. N. Chen, and X. Qing, “Bandwidth enhancement of a single-feed circularly polarized antenna using a metasurface: Metamaterial-based wideband CP rectangular microstrip antenna,”IEEE Antennas and Propagation Magazine, 58(2), 39-46, Apr. 2016.‏ DOI: https://doi.org/10.1109/MAP.2016.2520257
  37. Rajkumar, and K. Usha Kiran, “Gain enhancement of compact multiband antenna with metamaterial superstrate,” Gnanagurunathan, G., Sangeetha, R., Kiran, K. (eds) Optical And Microwave Technologies. Lecture Notes in Electrical Engineering, vol 468. Springer, Singapore, 91-98, 2018.‏ DOI: https://doi.org/10.1007/978-981-10-7293-2_10
  38. X. Ta, and I. Park, “Compact wideband circularly polarized patch antenna array using metasurface,” IEEE Antennas and Wireless Propagation Letters, 16, 1932-1936, Mar. 2017. DOI: https://doi.org/10.1109/LAWP.2017.2689161
  39. L. Zhu, S. W. Cheung, and T. I. Yuk, “Miniaturization of patch antenna using metasurface,”Microwave and optical technology letters, 57(9), 2050-2056, Jun. 2015. DOI: https://doi.org/10.1002/mop.29275
  40. Xi, L. Li, T. Zhang, and P. Wang, “Dissimilar metasurface superstrate high directivity antenna,”2017 6th Asia-Pacific Conference on Antennas and Propagation (APCAP), EEE, Xi'an, China, 1-3, Oct. 2017.‏ DOI: https://doi.org/10.1109/APCAP.2017.8420455
  41. Wu, L. Li, Y. Li, and X. Chen, “Metasurface superstrate antenna with wideband circular polarization for satellite communication application,”IEEE antennas and wireless propagation letters, 15, 374-377, Jun. 2016.‏ DOI: https://doi.org/10.1109/LAWP.2015.2446505
  42. Wu, H. Liu, and L. Li, “Polarization reconfigurable metasurface superstrate antenna with low profile,”2016 10th European Conference on Antennas and Propagation (EuCAP), IEEE, Davos, Switzerland, 1-2, Apr. 2016.‏ DOI: https://doi.org/10.1109/EuCAP.2016.7481413
  43. Khan, D. A. Sehrai, and S. Ahmad, “Design and performance comparison of metamaterial based antenna for 4G/5G mobile devices,”International Journal of Electronics and Communication Engineering, 12(6), 382-387, 2018.
  44. Huang, W. Lin, and Y. J. Guo, “A ultra-light high gain circularly-polarized antenna array for mobile satellite terminals,”2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, IEEE, Boston, MA, USA, 1233-1234, Jul. 2018. DOI: https://doi.org/10.1109/APUSNCURSINRSM.2018.8609369
  45. Hussain, U. Azimov, J. W. Park, S. Y. Rhee, and N. Kim, “A microstrip patch antenna sandwiched between a ground plane and a metasurface for WiMAX applications,”2018 Asia-Pacific Microwave Conference (APMC), IEEE, Kyoto, Japan, 1016-1018, Nov. 2018. DOI: https://doi.org/10.23919/APMC.2018.8617342
  46. Hussain, and I. Park, “Performance of multiple-feed metasurface antennas with different numbers of patch cells and different substrate thicknesses,”Appl. Computational Electromagnetics Society Journal, 33(03), 298–304, Jul. 2021.
  47. L. D. S. Paiva, J. P. da Silva, A. L. P. D. S. Campos, and H. Dionísio de Andrade, “Using metasurface structures as signal polarisers in microstrip antennas,” IET microwaves, antennas & propagation, 13(1), 23-27, Nov. 2018. DOI: https://doi.org/10.1049/iet-map.2018.5112
  48. Yurduseven, C. Lee, N. Chahat, D. Gonzalez-Ovejero, M. Ettorre, R. Sauleau, and G. Chattopadhyay, “Design of a quasi-optical Si/GaAs W-band beam-forming metasurface antenna,”2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, IEEE, Atlanta, GA, USA, 1713-1714, Jul. 2019. DOI: https://doi.org/10.1109/APUSNCURSINRSM.2019.8888637
  49. E. Kedze, H. Wang, S. X. Ta, and I. Park, “Wideband low-profile printed dipole antenna incorporated with folded strips and corner-cut parasitic patches above the ground plane,” IEEE Access, 7, 15537-15546, Jan. 2019.‏ DOI: https://doi.org/10.1109/ACCESS.2019.2894812
  50. K. Prajapati, and S. S. Lodhi, “Improvement in Parameters of Patch Antenna by Using “Spiral Shapes” Metamaterial Structure,”Int. J. Adv. Innovations, Thoughts Ideas, 2(2), 1-5, 2013.‏
  51. Wang, H. Wong, Z. Ji, and Y. Wu, “Broadband CPW-fed aperture coupled metasurface antenna,” IEEE Antennas and Wireless Propagation Letters, 18(3), 517-520, Mar. 2019. DOI: https://doi.org/10.1109/LAWP.2019.2895618
  52. Malekpoor, “Broadband printed tapered slot antenna fed by CPW fulfilled with planar artificial magnetic conductor for X-band operation,”Advanced Electromagnetics, 12(1), 1-10, Jan. 2023. DOI: https://doi.org/10.7716/aem.v12i1.2087
  53. Malekpoor, and M. Hamidkhani, “Analysis of High Gain Wideband 2× 2 Printed Slot Array With AMC Surface by Presenting Equivalent Transmission Line Model for C and X-Band Applications,”IEEE Access, 11, 59164-59173, Jun. 2023.‏ DOI: https://doi.org/10.1109/ACCESS.2023.3285774
  54. Bandyopadhyay, S. Bhattacharya, R. K. Jaiswal, M. Saikia, and K. V. Srivastava, “Wideband RCS reduction of a linear patch antenna array using AMC metasurface for stealth applications,”IEEE Access, 11, 127458-127467, Nov. 2023.‏ DOI: https://doi.org/10.1109/ACCESS.2023.3332120
  55. T. P. Madhav, J. Vani, R. R. Priyanka, B. P. Nadh, and M. C. Rao, “Concentric ring loaded monopole antenna with AMC backed for Wearable applications,”Journal of Physics: Conference Series, IOP Publishing, 1804(1), 012191, Feb. 2021. DOI: 10.1088/1742-6596/1804/1/012191
  56. K. Patel, C. D. Bui, T. K. Nguyen, J. Parmar, and Q. M. Ngo, “Numerical investigation of frequency reconfigurable antenna with liquid metamaterials for X-band,” Journal of Advanced Engineering and Computation, 6(1), 60-72, Mar. 2022. DOI: http://dx.doi.org/10.55579/jaec.202261.362
  57. Undrakonda, and R. K. Upadhyayula, “Isolation analysis of miniaturized metamaterial-based MIMO antenna for X-band radar applications using machine learning model,”Prog. Electromagn. Res. C, 124, 135–153, 2022. DOI: http://dx.doi.org/10.2528/PIERC22080203
  58. Borazjani, M. Naser-Moghadasi, J. Rashed-Mohassel, and R. A. Sadeghzadeh, “Bandwidth improvement of planar antennas using a single-layer metamaterial substrate for X-band application,”International Journal of Microwave and Wireless Technologies, 12(9), 906-914, Nov. 2020. DOI: https://doi.org/10.1017/S1759078720000264
  59. X. Bai, Y. J. Cheng, Y. R. Ding, and J. F. Zhang, “A Metamaterial-Based S/X-Band Shared-Aperture Phased-Array Antenna With Wide Beam Scanning Coverage,” IEEE Transactions on Antennas and Propagation, 68(6), 4283-4292, Jun. 2020. DOI: https://doi.org/10.1109/TAP.2020.2970096
  60. Elhabchi, M. N. Srifi, and R. Touahni, “A fractal metamaterial antenna for bluetooth, WLAN, WiMAX and X-band Applications,”2020 International Conf. on Intelligent Syst. and Comp. Vision (ISCV), IEEE, Fez, Morocco, 1-5, Jun. 2020. DOI: https://doi.org/10.1109/ISCV49265.2020.9204208
  61. Borazjani, M. Naser‐Moghadasi, J. Rashed‐Mohassel, and R. Sadeghzadeh, “Design and fabrication of a new high gain multilayer negative refractive index metamaterial antenna for X‐band applications,”International Journal of RF and Microwave Computer‐Aided Engineering, 30(9), e22284, May 2020. DOI: https://doi.org/10.1002/mmce.22284
  62. Gaharwar, and D. C. Dhubkarya, “X-band multilayer stacked microstrip antenna using novel electromagnetic band-gap structures,”IETE Journal of Research, 69(4), 2015-2024, 2021. DOI: https://doi.org/10.1080/03772063.2021.1883484
  63. Jiang, Y. Li, L. Zhao, and X. Liu, “Wideband MIMO directional antenna array with a simple meta-material decoupling structure for X-band applications,”Applied Computational Electromagnetics Society Journal (ACES), 35(5), 556–566, May 2020.
  64. Majeed, J. Zhang, and H. A. Khan, “Metasurface-Based Circularly Polarized Slot Antenna for X-band Applications,”Research Square, PREPRINT (version 1), Apr. 2024. DOI: https://doi.org/10.21203/rs.3.rs-4208189/v1
  65. Charola, S. K. Patel, J. Parmar, and R. Jadeja, “Multiband Jerusalem cross-shaped angle insensitive metasurface absorber for X-band application,” Journal of Electromagnetic Waves and Applications, 36(2), 180-192, Aug. 2021. DOI: https://doi.org/10.1080/09205071.2021.1960643
  66. Samantaray, and S. Bhattacharyya, “A gain-enhanced slotted patch antenna using metasurface as superstrate configuration,”IEEE Transactions on Antennas and Propagation, 68(9), 6548-6556, Sept. 2020.‏ DOI: https://doi.org/10.1109/TAP.2020.2990280
  67. Swain, D. K. Naik, and A. K. Panda, “Low‐loss ultra‐wideband beam switching metasurface antenna in X‐band,” IET Microwaves, Antennas & Propagation, 14(11), 1216-1221, Jun. 2020. DOI: https://doi.org/10.1049/iet-map.2019.0994
  68. Guo, W. Wang, and P. Huang, “Double‐layer metasurface‐based low profile broadband X‐band microstrip antenna,”IET Microwaves, Antennas & Propagation, 14(9), 919-927, May 2020. DOI: https://doi.org/10.1049/iet-map.2019.1098
  69. Genovesi, F. A. Dicandia, “Characteristic modes analysis of a near-field polarization-conversion metasurface for the design of a wideband circularly polarized X-band antenna,”IEEE Access, 10, 88932-88940, Aug. 2022. DOI: https://doi.org/10.1109/ACCESS.2022.3200303
  70. Teodorani, F. Vernì, G. Giordanengo, R. Gaffoglio, and G. Vecchi, “Experimental Demonstration of Beam Scanning of Dual-Metasurface Antenna,”Electronics, 12(8), 1833, Apr. 2023. DOI: https://doi.org/10.3390/electronics12081833
  71. Ren, Y. Bao, Z. Wu, Q. W. Lin, and H. Wong, “A low-profile wideband metasurface antenna with fan-beam radiation,”IEEE Open Journal of Antennas and Propagation, 3, 745-751, Jun. 2022. DOI: https://doi.org/10.1109/OJAP.2022.3187378
  72. Wang, W. Wang, A. Liu, M. Guo, and Z. Wei, “Miniaturized dual-polarized metasurface antenna with high isolation,”IEEE Antennas and Wireless Propagation Letters, 20(3), 337-341, March 2021.‏ DOI: https://doi.org/10.1109/LAWP.2021.3049856
  73. Wu, J. L. Li, S. Zhang, and J. Chen, “Design of broadband circularly polarized metasurface antenna array with gain enhancement,”International Journal of RF and Microwave Computer‐Aided Engineering, 30(12), e22446, Sept. 2020. DOI: https://doi.org/10.1002/mmce.22446
  74. Leszkowska, M. Rzymowski, K. Nyka, and L. Kulas, “High-gain compact circularly polarized X-band superstrate antenna for CubeSat applications,”IEEE Antennas and Wireless Propagation Letters, 20, 11, 2090-2094, Nov. 2021.‏ DOI: https://doi.org/10.1109/LAWP.2021.3076673
  75. Wang, X. F. Dong, J. Shen, S. L. Zhou, H. F. Wang, and Z. B. Wang, “Fan‐beam antenna design based on metasurface lenses,”International Journal of RF and Microwave Computer‐Aided Engineering, 31(4), e22582, Feb. 2021. DOI: https://doi.org/10.1002/mmce.22582
  76. Dey, and Su. Dey, “Ultrathin Single Layer Transmissive Dual-Band Linear to Circular Converter for Non-Adjacent Dual Orthogonal Circularly Polarized Antenna,”IEEE Access, 12, 65981-65996, May 2024.‏ DOI: https://doi.org/10.1109/ACCESS.2024.3398144
  77. Huang, C. F. Zhou, J. X. Sun, S. S. Yuan, H. Li, X. M. Ding,... and X. B. Tang, “A Wideband L-Probe Fed Conformal Antenna Array Using Metasurface,”IEEE Open Journal of Antennas and Propagation,  2, 1175-1183, Nov. 2021.‏ DOI: https://doi.org/10.1109/OJAP.2021.3131242
  78. Yang, T. Wu, S. Zhang, Z. Liu, D. Yang, and W. Cao, “A broad-band wide-angle linear-to-circular polarization converter based on stripline metasurface,”IEEE Access, 9, 163204-163213, Dec. 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3134064
  79. Feng, J. Lai, Q. Zeng, and K. L. Chung, “A dual-wideband and high gain magneto-electric dipole antenna and its 3D MIMO system with metasurface for 5G/WiMAX/WLAN/X-band applications,”IEEE Access, 6, 33387-33398, Jun. 2018.‏ DOI: https://doi.org/10.1109/ACCESS.2018.2848476
  80. Li, X. Liu, H. Shi, C. Yang, Q. Chen, and A. Zhang, “Planar phase gradient metasurface antenna with low RCS,”IEEE Access, 6, 78839-78845, Dec. 2018.‏ DOI: https://doi.org/10.1109/ACCESS.2018.2885356
  81. Chen, and H. Zhang, “High-gain circularly polarized Fabry–Pérot patch array antenna with wideband low-radar-cross-section property,”IEEE Access, 7, 8885-8889, Jan. 2019.‏ DOI: https://doi.org/10.1109/ACCESS.2018.2890691
  82. Zhang, L. Li, X. Zhang, H. Liu, and Y. Shi, “Design, measurement and analysis of near-field focusing reflective metasurface for dual-polarization and multi-focus wireless power transfer,”IEEE access, 7, 110387-110399, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2934135
  83. Fan, J. Wang, Y. Li, J. Zhang, Y. Han, and S. Qu, “Low-RCS and high-gain circularly polarized metasurface antenna,”IEEE Transactions on Antennas and Propagation, 67(12), 7197-7203, Dec. 2019.‏ DOI: https://doi.org/10.1109/TAP.2019.2920355
  84. Benhmimou, N. Hussain, N. Gupta, R. A. Laamara, S. K. Arora, J. M. Guerrero, and M. El Bakkali, “Sandwiched Metasurface Antenna for Small Spacecrafts in IoT Infrastructure,”R. Sharma, G. Jeon, Y. Zhang, (eds) Data Analytics for Internet of Things Infrastructure. Internet of Things. Springer, Cham, 117-127, 2023. DOI: https://doi.org/10.1007/978-3-031-33808-3_7
  85. Benhmimou, F. Omari, N. Gupta, K. El Khadiri, R. Ahl Laamara, & M. El Bakkali, “Air-Gap Reduction and Antenna Positioning of an X-Band Bow Tie Slot Antenna on 2U CubeSats.” Journal of Applied Engineering and Technological Science (JAETS), 6(1), 86–102, Dec. 2024. DOI: https://doi.org/10.37385/jaets.v6i1.6158
  86. Dotto, A. Zinzi, “Impact observations of asteroid Dimorphos via Light Italian CubeSat for imaging of asteroids (LICIACube),”Nat Commun., 14 (3055), May 2023. DOI: https://doi.org/10.1038/s41467-023-38705-0
  87. L. Shkolnik, “On the verge of an astronomy CubeSat revolution,”Nat. Astron., 2, 374–378, May 2018. DOI: https://doi.org/10.1038/s41550-018-0438-8
  88. D. Liddle, A.P. Holt, S.J. Jason, K. A. Donnell, and E. J. Stevens, “Space science with CubeSats and nanosatellites,”Nat Astron., 4, 1026–1030, Nov. 2020. DOI: https://doi.org/10.1038/s41550-020-01247-2
  89. Gibney, “CubeSats set for deep space: if they can hitch a ride,”Nature, 535, 19–20, Jul. 2016. DOI: https://doi.org/10.1038/535019a
  90. Kajimura, N. Hirota, K. Nakata, Y. Oshio, I. Funaki, “Development and Operation Demonstration of Pulsed Plasma Thruster for 2U-CubeSat,”Journal of Evolving Space Activities, 2(143), 2024. DOI: https://doi.org/10.57350/jesa.143
  91. Taguchi, K. Tanimoto, T. Omoto, T. Watanabe, K. Kuwata, K. Nagamine, Y. Sato, H. Seki, T. Suzuki, “Development of CubeSat “WE WISH” Deployed from ISS,”Intern. Journal of Microgravity Science and Application, 30(3), 143, Jul. 2013. DOI: https://doi.org/10.15011/jasma.30.3.143
  92. Nakaya, H. Tsuchiya, T. Sakamoto, T. Kato, Y. Kajimura, K. Kitamura, S. Ueta, T. Takada, “Development and Application of a 2U CubeSat Ground Model for Space Technology Education,”Journal of JSEE, 68(2), 2_60 - 2_65, Mar. 2020. DOI: https://doi.org/10.4307/jsee.68.2_60
  93. Uezono, Y. Sasaoka, J. Nakaya, H. Tsuchiya, Y. Kajimura, K. Kitamura, S. Ueta, T. Takada, “Development and Application of a CubeSat Ground Model for Space Technology Education,”Journal of JSEE, 67(2), 2_95 - 2_100, Mar. 2019. DOI: http://dx.doi.org/10.4307/jsee.67.2_95
  94. UM5-Ribat and UM5-EOSat CubeSats (2025, February 1), Website of Space Watch Africa [online]. Available: https://spacewatchafrica.com/mohammed-v-university-and-spacex-launch-two-nanosatellites/.
  95. NASA’s Parker Solar Probe Makes History with Closest Pass to Sun (2025, February 1), NASA’ Website [online]. Available: https://science.nasa.gov/science-research/heliophysics/nasas-parker-solar-probe-makes-history-with-closest-pass-to-sun/.
  96. Parker Solar Probe (2025, February 1), Website of Johns Hopkins Applied Physics Laboratory [online]. Available: https://www.jhuapl.edu/destinations/missions/parker-solar-probe.