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Abstract:
Power transformers (PTs) are a significant component of power grids that transmit and distribute electricity
generated by renewable energy sources. Nevertheless, PTs are susceptible to faults that can cause costly
outages and disruptions. Over the past decades, the technique of dissolved gas analysis (DGA) has been
extensively employed in oil-immersed transformer fault diagnosis. There are various methods to identify
faults using DGA. Due to its superior accuracy compared to other techniques, the dual pentagon method
(DPM) is utilized for fault diagnosis of PTs in this research. On the other hand, implementing DPM on large
amounts of DGA data can be challenging. To address this issue, we proposed several data-driven, tree-based
algorithms, including Decision Tree Classifier (DTC), Random Forest Classifier (RFC), eXtreme Gradient
Boosting Classifier (XGBC), LightGBM (LGBM) Classifier, Adaptive Boosting (AdaBoost) Classifier, and
Categorical Boosting (CatBoost) Classifier. Furthermore, four data scaling techniques have been used for
more effectiveness because the dataset contains outliers. The outcomes of the data analysis and Python
simulation demonstrate that the suggested approach performs better than the previous methods. From the
simulation analysis, the robust Light-GBM method has achieved an accuracy of 96.08%, and MCC of 95.41%,
which is higher compared to the existing techniques.
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1. Introduction

In industrial environments, high-voltage power transform-
ers (PT) are mostly needed for heavy-duty and powerful
applications. These transformers use specific insulation sys-
tems that are generally dependent primarily on the voltage
levels. Thus, the lifetime and reliability of the PT are more
affected by the higher voltage [1]. Power transformers are
essential yet expensive components in power systems, piv-
otal in energy generation and transmission. Ensuring their
reliability is vital, and various diagnostic methods, such as
Dissolved Gas Analysis (DGA) and Frequency Response
Analysis (FRA), have been developed to detect and classify
faults. The application of advanced intelligent classifiers
has proven to be highly effective in improving the fault
diagnosis process, significantly enhancing the accuracy and
reliability of these methods [2]. On the other hand, when
exposed to various flaws resulting from overheating, arcing,
paper carbonization, and low or high-energy discharges, the

PT insulation systems might deteriorate [3]. To ensure that
these PTs are an effective service, early-stage detection of
faults must be conducted [4, 5].
For this objective, numerous techniques were suggested in
the literature. Among the various methods, DGA is one of
the most economical, fastest, and most widely used for the
early diagnosis of faults PT [6–8]. Methane (CH4), ethane
(C2H6), ethylene (C2H4), acetylene (C2H2), and hydrogen
(H2) are the main gases that are measured and analyzed
for DGA, and the carbon–oxide gases carbon monoxide
(CO) and carbon dioxide (CO2). Though nitrogen (N2) and
dissolved oxygen (O2) are measured and evaluated, they are
not results of insulation deterioration [9].
Though the measurement of DGA in the PT has been sig-
nificantly advanced in recent years, interpretation of the
outcomes is a challenging issue. The interpretation meth-
ods like the Doernenburg Ratio Method (DRM), IEC ratio
method (IRM), Duval triangle method (DTM), and Roger
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ratio method (RRM) include limitations and disadvantages
in terms of accuracy [10–13]. In recent years, the dual pen-
tagonal method (DPM) has been utilized to diagnose PT
faults, which has achieved higher accuracy and consistency
[10].
Many researchers have employed artificial intelligence (AI)
methods to improve the accuracy of fault diagnostic pre-
dictions for PT based on DGA. Support vector machine
(SVM) algorithms were combined with particle swarm op-
timization (PSO) method in [14] to diagnose fault types
in PT and the accuracy of this approach was 83,56%. In
[15], an iterative nearest neighbor interpolation was com-
bined with ensemble learning algorithm for improving fault
diagnosis of PT. This algorithm has achieved an accuracy
rate exceeding 91% for the PT diagnosis. Artificial neural
network (ANN) model with an optimization technique was
employed to improve the diagnostic precision of identifying
PT faults in [16] and after implementing the optimization
methods, the proposed ANN showed a high accuracy, reach-
ing 90.7%. In [17], the PT fault diagnosis method was
recommended that combined the residual backpropagation
(BP) neural network with SVM and the suggested method
achieved a high accuracy rate of 92%. A DGA diagnosis
method has been used with a clustering approach combined
with a modified KNN and the results demonstrated a high
degree of accuracy, reaching 93% in [18]. In [19], a new as-
set management method for mineral oil-immersed PT by the
online DGA approach using convolutional neural network
(CNN) has been investigated and the result displayed the ac-
curacy of fault diagnostics PT achieved an accuracy 87%. A
novel approach combining oversampling and cost-sensitive
learning has been proposed to enhance the accuracy of di-
agnosis of all fault types of PT, and the accuracy of the
proposed method could reach over 90% [20]. A multi-layer
perceptron (MLP) neural network and an ensemble model
have been presented in [21] and the outcomes showed a
high degree of accuracy, reaching 91.87%. In [22], a power
transformer fault diagnosis model was proposed based on
optimization of hybrid kernel extreme learning machine and
the proposed algorithm achieved a high accuracy of 94.8%.
In [23], random forest (RF) and optimal kernel Extreme
Learning Machine (ELM) was presented for PT fault diag-
nosis and the average accuracy of this approach achieved
94.5%. A transformer fault diagnosis method based on
multi-classification AdaBoost algorithms was suggested
in [24] and its diagnostic accuracy was up to 92.5%. A
new transformer fault diagnosis algorithm based on com-
bining tree-structured probability density estimator (TPE)
and XG-Boost model was proposed in [25] and the average
accuracy of the proposed method was 89.5%. A hybrid
model including naive bayes and decision tree algorithms
for identification of PT faults was proposed ibn [26] and this
model achieved an accuracy of 86.25%. In [27], a decision
tree model was improved the KNN classifier to increase
the accuracy rate of fault diagnosis in PT and the proposed
technique found an accuracy rate of 93% for the PT diagno-
sis. The proposed algorithms for fault diagnosis of power
transformers in [23–27] were tree-based. Tree-based meth-
ods are powerful and versatile tools for machine learning,

offering a balance between interpretability, accuracy, and
robustness.
Two of the main advantages of tree-based methods are ro-
bustness to outliers and non-parametric nature. In previous
studies, normalization and standardization methods have
been used, which are sensitive to the presence of outliers
in the dataset. Due to the presence of outliers in the data,
an outlier-resistant method has been applied to the dataset.
The main contribution of this research is the development
of a robust classifier with more accuracy than the above-
mentioned algorithms. Also, in most previous research,
conventional criteria such as precision, accuracy, recall, and
F-measure have been used. In this paper, the MCC criterion
is employed to evaluate the performance of the proposed
technique. Although the previously mentioned methods sug-
gest a straightforward implementation in practical contexts,
their accuracy and robustness can be further enhanced by
employing hybrid algorithms.
Therefore, the main aims of this study can be delineated as
follows:

• Robust against the outliers: This study suggests a ro-
bust technique in which data is resistance to outliers.

• Enhance the accuracy of power transformer fault di-
agnosis: Robust tree-based algorithms such as DTC
(Decision Tree Classifier), RFC (Random Forest Clas-
sifier), XGBC (Extreme Gradient Boosting Classifier),
AdaBoost (Adaptive Boosting Classifier), LightGBM
(Light Gradient Boosting Machine), and CatBoost
(Categorical Boosting) are utilized for the data with
outliers and improved the accuracy of prediction.

• Employing the MCC criterion: In this research, addi-
tional to Accuracy, Precision, AUC, F1-Measure cri-
teria, the MCC criterion is used to evaluate the perfor-
mance of the proposed methods with four data scaling
techniques.

This work is structured as follows. The initial section pro-
vides an introduction to the research topic. Subsequently,
the second section delves into the application of the DPM
approach to the dissolved gas analysis (DGA) of power
transformers. The third section outlines the materials and
the proposed hybrid method for fault diagnosis of power
transformers. The fourth section presents the findings and
discusses the results obtained from power transformer fault
diagnosis. Finally, the fifth section draws conclusions on
the research conducted.

2. Power transformer dissolved gas analysis
Dissolved Gas Analysis (DGA) is widely used for power
transformer fault diagnosis. Analyzing the concentration
and kinds of dissolved gases in a power transformer’s insu-
lating oil is part of the procedure. Various gases have par-
ticular quantities and ratios that show to different kinds of
faults [28]. These gases are mainly hydrogen (H2), methane
(CH4), ethane (C2H6), ethylene (C2H4), acetylene (C2H2),
carbon monoxide (CO), and carbon dioxide (CO2). These
gasses can be produced by partial discharge, thermal de-
composition, or sustained arcing faults. Particularly, partial
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discharge produces a smaller amount of CH4 and a greater
amount of H2 [10]. Arcing generates a noticeable amount of
C2H2, while overheating produces CH4, C2H6, and C2H4.
The existence of CO2, and CO in the PT can be a sign of
research degradation [1, 29].

2.1 DGA interpretation techniques
There are several techniques for DGA interpretation that the
methodology of the four DGA are summarized in Table 1
[1, 13, 28–30].
Several recent research [21, 28, 31], the DPM success rate
outperforms the DTM, because it can detect the transformer
insulation’s normal aging. In this paper, the Duval Pentagon
technique has been used to identify primary faults in the
PT. Seven various fault types of the DPM are displayed in
figure 1 [12] and described in Table 2.

Figure 1. Visual depiction of the DPM.

2.2 DPM equations
DPM uses the following five gases: g1 (H2), g2 (CH4), g3
(C2H6), g4 (C2H4), and g5 (C2H2) as their input data. The
computation for the percentage of gases in DPM is provided
in equations (1) to (5) [32].

%Hydrogen, H2 =
g1

∑
5
i=1 gi

×100 (1)

%Methene, CH4 =
g2

∑
5
i=1 gi

×100 (2)

%Ethane, C2H6 =
g3

∑
5
i=1 gi

×100 (3)

%Ethylene, C2H4 =
g4

∑
5
i=1 gi

×100 (4)

%Acetylene, C2H2 =
g5

∑
5
i=1 gi

×100 (5)

Afterward, equations (6) and (7) were used to determine
the (x,y) coordinates of the centroid of these five points,
where Cx and Cxy denote the centroid’s (x,y) coordinates
and xi and yi are the coordinates of the five points. The fault
could be specified by which fault zone the centroid falls.
Equation (8) computes the irregular pentagon’s surface, S,
using the five points demonstrated in DPM [32, 33].

Cx =
1

6S

n−1

∑
i=0

(xi + xi+1)(xiyi+1 − xi+1yi) (6)

Cy =
1

6S

n−1

∑
i=0

(yi + yi+1)(xiyi+1 − xi+1yi) (7)

S =
1
2

n−1

∑
i=0

(xiyi+1 − xi+1yi) (8)

3. Materials and methodologies

3.1 Dataset
In this study, we used the DGA dataset initially utilized in
[21]. The dataset has 1658 samples of seven different types
of faults, which are described in Table 2. The features of the
dataset are five different types of gases in power transform-
ers including hydrogen, Methene, Ethane, Ethylene, and
Acetylene in ppm. They operate as diagnostic indicators
for various power transformer problems. The distribution
of samples in fault types on DPM are as follows: D1 (233
data), D2 (237 data), T1 (239 data), T2 (241 data), T3 (240
data), PD (241 data), and S (227 data). Figure 2 displays
samples percentage in each fault type on DPM.
During the preprocessing stage of the DGA dataset, both
missing values and outliers were carefully analyzed to en-
sure data integrity. While no missing values were detected

Table 1. Comparison of the four DGA interpretation methods.

Technique Faults identification Used gases
Doernenburg Ratio

Method (DRM)
Thermal Decomposition (TD), arcing, Partial Discharge (PD) H2, CH4, C2H2, C2H4, and C2H6

IEC Ratio Method
(IRM)

PD, Low/High energy discharge, Thermal faults at several temperatures. H2, CH4, C2H2, C2H4, and C2H6

Duval Triangle
Method (DTM)

PD, Low/High energy discharge, Thermal faults at several temperatures. CH4, 2H2, C2H4

Duval Pentagon
Method (DPM)

PD, Low/High energy discharge, Normal aging, Thermal faults at
several temperatures.

H2, C2H2, CH4, C2H6, and C2H4
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Table 2. Description of Seven various fault types of the DPM.

Type of faults Description of faults

Type 1 PD: Corona Partial Discharges

Type 2 T1: Low Thermal fault

Type 3 T2: Medium Thermal fault

Type 4 T3: High thermal fault

Type 5 D1: Discharge of low-energy

Type 6 D2: Discharge of high-energy

Type 7 S: Stray gassing at low temperatures

Figure 2. Samples percentage in each fault type on DPM.

in the dataset, a significant number of outliers were identi-
fied. These outliers, often caused by measurement errors or
rare events, were addressed using the Interquartile Range
(IQR) method. This method detects data points that fall out-
side the range defined by 1.5 times the interquartile range
above the third quartile or below the first quartile. By han-
dling outliers appropriately, the reliability and robustness of
the dataset were enhanced.
The flowchart of the fault diagnosis model of power trans-
former is displayed in figure 3.

3.2 Data scaling
A technique for data preparation called feature scaling en-
ables the independent variables in a dataset to be standard-
ized within a specified range of values. There exist dis-
tinct approaches for the dataset’s data scaling. The four
approaches are presented in equations (9) to (12), and are
called Standard Scaling (SS), Min-Max Scaling (MMS),
Max Absolute Scaling (MAS), and Robust Scaling (RS),
respectively. It is worth noting that most previous studies
have used the SS, and the MMS techniques for data scaling
of the datasets [34, 35].
The Standard Scaling (SS) technique is described as fol-
lows:

xsik =
xik − xkmean

xkstd
(9)

The Min-Max Scaling (MMS) methos can depicted by the
following Eq. (10):

xsik =
xik − xk min

xk max − xk min
(10)

The Max Absolute Scaling (MAS) method can be presented
in Eq. (11):

xsik =
xik

|xk max|
(11)

The Robust Scaling (RS) technique can be showed by the
following Eq. (12):

xsik =
xik − xkmedian

IQR
(12)

where xik and xsik are the values of the ith sample for the kth

feature before and after scaling. Also, xkmedian is the mean,
and xkstd is the standard deviation of samples. Additional,
xk min and xk max are minimum, and maximum feature value,
respectively. Lastly, xkmedian presents middle value of data
and the IQR denotes the distance between the 25th and the
50th percentile points, respectively [35].

3.3 Splitting of data
The original dataset is split into training and test sets. The
proportion of the training and the test sets is 80:20. Hence
the number of samples in the training set is 1326 and the
test set contains 332 samples. The Scikit-learn library and
the “train test split” command were utilized in this study to
achieve the objective [21]. The k-fold Cross-Validation tech-
nique is not dependent on the number of training samples.
The dataset is divided into k subsets to prevent overfitting.
Accordingly, for each iteration, a single subset is held out
of the training and the model is trained on the other k−1
subsets before being tested on that different single subset.
A five-fold cross-validation is employed to randomly split
the samples into a training set and a testing set. This method
effectively assesses the performance of the training model
while enhancing its stability and generalization capabilities.
Using a Jupyter notebook and the Python programming lan-
guage, all the experiments required for comparing the ML
algorithms was conducted. The first pre-processing steps
were conducted out using standard Python frameworks, in-
cluding NumPy, Pandas, Matplotlib, and Seaborn. The
Sklearn framework was employed for training most ensem-
ble ML algorithms as well as classical methods [35].
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Figure 3. Fault diagnosis flowchart of the tree-based classifiers.

3.4 Tree-based classifiers
In this research, the six ML algorithms-based tree classi-
fiers and the five data scaling approaches are employed to-
gether to find the best match for fault diagnosis of the power
transformer. After data pre-processing, we selected six tree-
based classifiers including Decision Tree Classifier (DTC),
Random Forest Classifier (RFC), Extreme Gradient Boost-
ing Classifier (XGBC), AdaBoost Classifier (ABC), Light-
GBM Classifier (LGC), and CatBoost Classifier (CBC).

• Decision Tree Classifier (DTC)

A decision tree (DT) is a type of recursive data partitioning
method, specifically for the classification of datasets. The
structure consists of nodes, which are assembled sequen-

tially into a tree. A group of nodes that have one incoming
edge each will be directly following the root node which,
in turn, is the single node with no incoming edges. Any
other node, aside from the root, is referred to as a leaf or a
decision node. Nodes with outgoing edges are called inter-
nal nodes. Based on specific requirements or specifications
of the input variables, each internal node splits the dataset
into two or more sub-datasets [36]. This method has several
benefits, including the ability to deal with both continuous
and discrete attributes, the simplicity with which humans
can make small decision trees as decision rules, and the fact
that it is a nonparametric technique, meaning that it doesn’t
need any additional tunings to enhance accuracy. In spite
of these profits, DT methods are expensive to train and may
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lead to error associations [37].

• Random Forest Classifier (RFC)

A parallel type of ensemble algorithm is the random forest
classifier (RFC). A combination of decision trees with the
same distribution for every tree that only evaluates a random
subset of the data is called a random forest. To decrease
variance, the vital idea is to take the average of numerous
noisy nevertheless roughly unbiased models [38]. RFC is
certainly more accurate than an individual DTC because
it easily reduces overfitting due to using the advantages of
bagging and randomness. Also, one of the advantages of
RF is its usability, both for classifier and regressor problems
[37].

• Extreme Gradient Boosting Classifier (XGBC)

XGBoost, another DT-based boosting algorithm, is called.
“eXtreme Gradient Boosting,” and it also differs from pre-
vious boosting approaches. XGB is currently used in ML
models, and it can be applied to both regressor and classifier
problems. It does this by skillfully applying the princi-
ples of Parallelization and Gradient Descent (GD) to the
Boosting Ensemble method, which allows for the simul-
taneous achievement of the optimal possible combination
of hardware and software. Gradient boosting (GB) builds
trees sequentially, but XGB builds the trees sequentially
using parallelized implementation; Therefore, weights in
GB method are not derived from the misclassifications of
the former model, but rather from the weights optimized by
the GD to minimalize the cost function. The foundation of
XGB is an optimized distributed GB foundation [39].

• AdaBoost Classifier (ABC)

One of the initially efficient boosting-based algorithms for
classifications, AdaBoost (AB), further referred to as AB
created a foundation for scientists to comprehend boosting
ensembles. Though versions of AB for multi-class prob-
lems have been introduced in recent years, this method
was initially created for binary classification. Utilizing the
original boosting issues, AB sequentially adds base models
instead of in a combined manner, giving greater weight to
the dataset’s misclassified cases with each subsequent base
model. This procedure keeps going until the training dataset
can further be enhanced. Any technique for ML algorithms
can be made to perform better by using the AB model [40].

• LightGBM Classifier (LGC)

In this work, the LightGBM (LG) algorithm is employed.
The fundamental idea is to utilize the output from the pre-
vious training round as input for the subsequent learning
round. To split the DT, the LG algorithm uses a superior
optimization model, basically through the histogram, then
the classic GB methods, which must traverse the whole data
set several times [41].

• CatBoost Classifier (CBC)

CatBoost (CB) is a ML framework that supports categorical
variables and observes the gradient boosting (GB) process

framework. It can efficiently address numerous data mi-
gration issues inherent in the original GB framework, and
contribution advantages such as reduced parameter require-
ments, high accuracy, and robust performance. Ensemble
learning involves creating multiple ML algorithms, training
them to produce several weak learners, and then integrating
these weak learners through multiple combination strategies
to advance a strong learner [42].

3.5 Evaluation criteria
To enhance the accuracy of DGA fault diagnosis, various cri-
teria are applied to assess the machine learning algorithms.
True Negative (TN) is an instance where a prediction of
negative data is correct, while True Positive (TP) indicates
the prediction of positive data. A False negative (FN) is
a case in which positive data is indeed predicted as neg-
ative. In contrast, False Positive (FP) is a situation when
negative data is incorrectly predicted as positive. There are
various measures to assess the machine learning models
performance based on confusion matrix (CM) like accuracy,
AUC (Area Under the Curve), F1-Measure, precision, and
MCC [43, 44].
Accuracy (ACC) is defined the ratio of the true prediction
(positive and negative) to the total data as presented by
Eq. (13):

Accuracy =
TP+TN

FN+TN+FP+TP
(13)

Precision (PR) is the ratio of a positive true prediction to a
total positive predicted result as denoted by Eq. (14):

Precision =
TP

FP+TP
(14)

The AUC is a performance metric derived from the Re-
ceiver Operating Characteristic (ROC) curve. It quanti-
fies the ability of a model to distinguish between different
classes. AUC values range from 0 to 1, where higher values
indicate better classification performance.
F1-Measure (F1) is weighted mean comparison of recall
and precision as presented by Eq. (15):

F1-Measure =
2× (Precision×Recall)

Precision+Recall
(15)

In most previous papers, evaluation criteria such as preci-
sion, accuracy, recall and F1-measure have been employed.
In this research, in addition to these metrics, the Matthews
Correlation Coefficient (MCC criterion) has been utilized
by Eq. (16):

MCC=
TN×TP−FN×FP

(FP+TP)× (FN+TP)× (FP+TN)× (FN+TN)
(16)

4. Results and discussion
In this section, the performance of the six proposed meth-
ods combined with four data scaling techniques for fault
diagnosis in power transformers is evaluated using various
metrics. Tables 3, 4, 5, and 6 present the performance of
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Table 3. Performance of the proposed methods using the SS technique.

Methods ACC (%) PR (%) AUC (%) F1 (%) MCC (%)

DTC 84.59 85.58 98.91 84.26 82.24

RFC 90.03 90.54 99.68 90.07 88.41

XGBC 87.01 87.36 99.50 86.91 84.90

ABC 87.01 87.26 99.67 87.05 84.84

LGC 92.45 92.59 99.65 92.42 91.20

CBC 91.547 91.89 99.71 91.54 90.16

Table 4. Performance of the proposed methods using the MMS technique.

Methods ACC (%) PR (%) AUC (%) F1 (%) MCC (%)

DTC 83.13 83.57 98.47 82.96 80.38

RFC 91.87 92.31 99.53 91.94 90.55

XGBC 87.35 88.17 96.54 87.51 85.31

ABC 89.16 90.72 99.53 89.48 87.50

LGC 94.28 94.59 99.36 94.30 93.36

CBC 93.07 93.19 98.45 93.10 91.90

hybrid methods with SS, MMS, MAS, and RS data scaling
techniques, respectively, using metrics such as ACC, PR,
AUC, F1-Measure, and MCC.
Additionally, bar charts including figures 4, 5, 6, 7, and 8 are
presented for the Accuracy, Precision, AUC, F1-Measure,

and MCC metrics on a percentage basis to compare the
proposed methods. Based on the aforementioned tables and
figures, it is observed that the three proposed methods RFC,
LGC, and CBC outperform the other methods.
To further evaluate the four data scaling techniques, the

Table 5. Performance of the proposed methods using the MAS technique.

Methods ACC (%) PR (%) AUC (%) F1 (%) MCC (%)

DTC 82.83 85.4 97.99 83.00 80.38

RFC 91.27 91.84 99.76 91.32 89.87

XGBC 90.66 91.43 97.74 90.86 89.15

ABC 88.55 89.86 99.43 88.77 86.77

LGC 93.07 93.43 98.84 94.04 91.98

CBC 92.77 92.89 98.49 92.80 91.55

Table 6. Performance of the proposed methods using the RS technique.

Methods ACC (%) PR (%) AUC (%) F1 (%) MCC (%)

DTC 86.45 86.95 97.42 86.56 84.18

RFC 92.47 92.69 99.53 92.3 91.23

XGBC 90.36 90.45 98.76 90.31 88.71

ABC 89.76 90.93 99.46 90.03 88.09

LGC 96.08 96.09 99.64 96.06 95.41

CBC 94.28 94.47 99.71 94.22 93.32
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Figure 4. Evaluating the accuracy criterion of proposed methods with data
scaling techniques.

Figure 5. Evaluating the precision criterion of proposed methods with
data scaling techniques.

Figure 6. Evaluating the AUC criterion of proposed methods with data
scaling techniques.

important MCC metric for fault diagnosis in power trans-
formers is presented for the six hybrid proposed methods
using the DPM in figure 9. As can be seen, the Robust Scal-
ing technique has the best performance among the proposed
hybrid classifiers.
Figures 10, 11, 12, and 13 survey the ROC curves and AUC
metric, which indicate that the hybrid methods RFC, LGC,
and CBC have appropriate performance. Furthermore, the
confusion matrices in figures 14, 15, and 16 suggest that

Figure 7. Evaluating the F1-Measure criterion of proposed methods with
data scaling techniques.

Figure 8. Evaluating the MCC criterion of proposed methods with data
scaling techniques.

the hybrid LGC method with Robust Scaler has excellent
performance, demonstrating that the training and testing
data are well-handled by this classifier.
Therefore, the hybrid methods RFC, LGC, and CBC, when
combined with the Robust Scaling technique, present the
best performance for fault diagnosis in power transformers.
Based on the simulations conducted in Python, the hy-
brid LightGBM Classifier with Robust Scaling technique
achieves the highest performance compared to previous

Figure 9. Comparison of the MCC criteria using the four techniques for
fault prediction.
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Figure 10. The ROC curve of the proposed methods using the SS tech-
nique.

Figure 11. The ROC curve of the proposed methods using the MMS
technique.

Figure 12. The ROC curve of the proposed methods using the MAS
technique.

studies. This is attributed to its enhanced accuracy and
robustness, reflected in the criteria of Accuracy (96.08%),
Precision (96.09%), AUC (99.64%), F1-Measure (96.06%),
and MCC (95.41%).
It is noteworthy that among the six proposed classifiers for

Figure 13. The ROC curve of the proposed methods using the RS tech-
nique.

error detection, the LightGBM Classifier (LGC) exhibited
the best performance across all four scaling techniques
employed in the study. Consequently, the computational
times for this classifier across the four techniques are as fol-
lows: MAS, SS, RS, and MMS took 675.25 seconds, 676.42
seconds, 399.95 seconds, and 425.64 seconds, respectively.

5. Conclusion
Ensuring a consistent and efficient power supply relies
on the dependable functioning of power transformers,
which play a vital role in the power grid. Nevertheless,
transformers can encounter various problems that may lead
to costly disruptions and power outages. Therefore, timely
maintenance and prevention depend on accurate fault
detection. In this work, we suggested hybrid approaches to
improve the power transformer fault diagnosis robustness
and accuracy. The suggested classifiers successfully
categorize fault-related features from the dissolved gas
analysis (DGA) dataset by combining robust and tree-based
methods such as Decision Tree, Random Forest, XGBoost,
LightGBM, AdaBoost, and CatBoost. Based on benchmark
dataset experiments, the hybrid suggested classifiers
perform much better in diagnosis accuracy than the
state-of-the-art techniques. Particularly, the LightGBM
classifier, combined with a robust scaling technique,
achieves an accuracy rate of over 96%. This research can
be extended by investing the application of Internet of
Things (IoT) in real-time sample testing.
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Figure 14. Confusion Matrix of RFC with the RS technique.

Figure 15. Confusion Matrix of LGC with the RS technique.

Figure 16. Confusion Matrix of CBC with the RS technique.
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