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Abstract:
Image fusion is particularly crucial for diagnostic imaging in medical applications such as radiation therapy
and image-guided surgeries. Medical image fusion seeks to improve diagnostic accuracy by preserving
important characteristics and features from the individual pictures in the combined image. This study
introduces a novel fusion methodology for MRI and CT medical imaging by decomposing the source images
as base and detail layers using a novel three-scale decomposition strategy that employs Gaussian and Guided
filters. Gaussian curvature directs the guided filtering procedure for each source image. The base layers are
fused using the Proposed Grey Wolf Optimization algorithm (PGWO), which contains an objective function
designed to maximize entropy, edge strength, and standard deviation. In order to integrate the detail layers,
the activity level information is simultaneously determined using the Enhanced Dual Channel PCNN. To
evaluate the effectiveness of the proposed method, thirty slices of seven different types of medical images
from various sources were analyzed and compared both visually and statistically with existing approaches.
According to experimental data, the suggested approach performs better than traditional approaches in terms
of both objective metrics and qualitative image quality. Quantitative findings show notable advancements
over current techniques: Standard deviation rises from 15.5 to 32.7%, spatial frequency from 38.2 to 70.5%,
mutual information from 42.8 to 62.9%, edge strength from 37.4 to 61.9%, structural similarity index from
37.8 to 43.8%, and image entropy from 12 to 18%.

Keywords: Image fusion; Gaussian; Guided filter; Grey wolf optimization; Enhanced dual channel pulse coupled neural networks;
Entropy; Edge strength and pixel intensity

1. Introduction

The rapid development of sensor technology has made it
possible for many sensors to collect a wide variety of im-
ages. Multimodal biomedical imaging frequently uses tech-
niques like Phase Contrast (PC) imaging, Magnetic Res-
onance Imaging (MRI), Positron Emission Tomography
(PET), Single Photon Emission Computed Tomography
(SPECT), Green Fluorescent Protein (GFP), and Computed
Tomography (CT). Because MRI provides detailed cross-
sectional, sagittal, coronal, and inclined-plane views of the
human body, it can accurately localize lesions and provide
a 3D representation of them. CT scans, which illustrate the
way various organs and tissues absorb X-rays, show brighter
areas for higher-density tissues, including bone. Thus, CT
scans can be used to locate the dense tissues in the body.
Radiation-based imaging methods such as PET and SPECT

detect varying amounts of tracer molecules that are injected
into the bloodstream and correspond to varying levels of
tissue activity. As a result, abnormal metabolic activity in
tissues can be found and detected using PET and SPECT,
which aids in the diagnosis of disorders. Two frequently
used imaging methods in molecular biology are GFP and PC.
Because PC imaging sheds light on the structural properties
of cells, it can be used to detect subtle changes in cellular
components such the mitochondria, cytoplasm, or nucleus.
GFP imaging, on the other hand, shows the distribution of
proteins. While PC images offer better grayscale spatial res-
olution, GFP images highlight the protein dispersion. The
objective of PC-GFP image fusion is to combine these ad-
vantages by preserving the phase contrast image’s structural
features and making it possible to identify regions with high
protein activity. This fusion enhances biomedical analysis
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by providing detailed information and more accurate protein
localization. However, a single sensor can only record one
type of image. Image fusion produces a composite image
with higher visual quality and more detailed information
by combining images from various modalities. Therefore,
image fusion is a very useful technique in many fields, in-
cluding image retrieval and classification, computer-aided
diagnostics, and object identification.
Despite the wide variety of fusion methodologies, most of
them employ multiscale and multi-resolution transforma-
tion (MST-MRT) techniques. By applying different fusion
rules to different layers, the fusion results can be improved,
and MST-MRT-based algorithms can capture multiscale
properties at different resolutions. Some of the MST-based
techniques that have been introduced are Non-Subsampled
Shearlet Transform (NSST) [1, 2], Non-Subsampled Con-
tourlet Transform (NSCT) [3, 4], wavelet-based methods
[5, 6], and pyramid-based approaches [7, 8]. Wavelet-based
fusion methods extract multi-scale information using the
wavelet transform, with adjustable fusion algorithms for
wavelet coefficients. Following that, the inverse wavelet
transform is applied to produce the fused image. Wavelet-
based fusion approaches frequently produce fuzzy fused
images because of the significant amount of detail lost
during the process, even if they offer flexible decompo-
sition utilizing various wavelet basis functions. Detail is
also lost during the decomposition and fusing phases of
pyramid-based fusion techniques. NSST and NSCT, which
offer multi-scale and multi-directional transformations, are
a more recent and rapid class of transformations. These
methods allow fused images maintain their edges and de-
tails to some extent, even though high-frequency coefficient
loss during the fusion process can still result in fuzzy edges
and blurred features.
Another prominent fusion method is sparse representation
(SR) [9], which consists of two main components: Dic-
tionary learning and coefficient optimization. SR is quite
versatile and can be applied to image denoising, information
fusion, and restoration. However, there are several draw-
backs to SR-based fusion methods. For example, selecting
the appropriate dictionary size can be challenging; a vocabu-
lary that is too large slows down the fusion process, while a
dictionary that is too small produces incomplete information
and less-than-ideal fusion results. Furthermore, because dif-
ferent methods produce varying fusion results, choosing the
ideal optimization methodology might be difficult. Filter-
based algorithms have gained popularity in imaging due
to their efficiency and speed. The development of guided
image filters in 2013 was a major advancement [10]. How-
ever, its ability to preserve edges and reduce noise is limited
because it only considers spatial weights. The rolling guid-
ance filter [11], which contains multiple guidance processes
and considers both range and spatial weights, was proposed
in 2014 in order to overcome these limitations. As a result,
the rolling guidance filter can preserve large-scale archi-
tecture while eliminating minute details. In recent years,
deep convolutional neural networks (CNNs) [12, 13] have
gained popularity in applications linked to imaging. CNNs
are composed of three main layers: convolution, pooling,

and activation. Once trained, CNNs can fit a large variety
of data. They may be applied to a wide range of difficult
tasks, including image fusion, classification, segmentation,
and super-resolution, because to their versatility. Due to
their self-attention mechanism, transformer-based models
have quadratic complexity with regard to image size [14],
which results in significant computational overhead even if
they perform exceptionally well at global modeling. Addi-
tionally, when compared to CNNs, Transformers show less
accuracy in capturing local features. Though some fusion
models use a hybrid strategy that combines Transformer
and convolutional layers to capitalize on their individual
advantages and minimize their disadvantages, but computa-
tional expense is still a major concern [15, 16].
Recent years have seen the development of numerous meta-
heuristic optimization strategies that have been effectively
used to medical image fusion. Some significant examples
include Quantum-behaved Particle Swarm Optimization
[17], Modified Central Force Optimization [18], Gray Wolf
Optimization [19], Chaotic Grey Wolf Optimization [20],
Hybrid Genetic and Grey Wolf Optimization [21], Particle
Swarm Optimization with Non-Subsampled Shearlet Trans-
form [22], Binary Crow Search Optimization [23], Mod-
ified Shark Smell Optimization [24], and Particle Swarm
Optimization-based cartoon-texture decomposition based
on total variation [25]. There are some shortcomings with
the current image fusion techniques. The first constraint is
the low-frequency component fusion strategy, which uses
a weighted average rule. The problem still exists in some
contemporary techniques, including Two-Scale Structure
Tensor Image Decomposition [26], Convolutional Sparse
Representation [27], Morphological Component Analysis in
Convolutional Sparsity [28], Sparse Representation in Two-
Scale Image Decomposition [29], and Two-Scale Image
Decomposition Using Sparse Representation and Guided
Filtering [30]. This restriction results in a decrease in the
intensity of composite image. The inadequate fusing of
high-frequency coefficients is the second issue. Certain in-
formation is difficult to maintain using current approaches
due to their low preservation indices. Local Variance [31],
Max Selection [32], and Parameter-Adaptive Pulse Coupled
Neural Network [33] are a few often utilized fusion rules.
This could lead to the loss of important information in the
fused image.
In this paper, we propose a novel approach that employs two
algorithms to address these limitations. The key advantages
of the recommended approach are outlined below:

1. The first method determines the optimal fused base
layer settings using the Grey Wolf Optimization ap-
proach (GWO) to ensure that the fused image has im-
proved contrast.

2. The second method efficiently preserves the detailed
information of the input images in the fused image
by using Enhanced Dual Channel PCNN to offer an
effective fusion rule of the detail layers.
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2. Background

2.1 Tri-scale image decomposition
There are numerous methods for splitting an image into two
scales. These techniques have been applied to a number
of medical image fusion approaches. A tri-scale image
decomposition technique is presented in this paper. The
suggested image decomposition technique is illustrated in
figure 1. Here, a Gaussian filter is used to the input image to
form the base layer, which consists of homogeneous areas of
the image. An image is then passed through a guided filter,
which employs the guidance image as Gaussian curvature
of the source image, in order to extract the detail layers.
The detail layer with significant variations is obtained by
subtracting the Gaussian filter’s output from the guided
filter’s output, and the detail layer with minute scale changes
is obtained by subtracting the guided filter’s output from the
original image.

2.1.1 Algorithm of proposed tri-scale decomposition
Step 1: Let the input image to be decomposed is I1.

Step 2: Base layer of I1 is obtained is filtering it using
Gaussian lowpass filter with σ = 3.

IB = Gaussian(I1,3) (1)

Where Gaussian function of 2D is defined as
I1(x,y,σ) = 1

2πσ2 exp(− x2+y2

2σ2 ), with (x,y) represent-
ing the spatial co-ordinates of an image.

Step 3: Obtain the Gaussian curvature of input image
as follows:

(a) Obtain the smoothed image of I1 using equa-
tion (2)

Is = Gaussian(I1,3) (2)

(b) Compute the first order partial derivatives of Is
along x and y directions using equation (3) to get
gradient.

Ix =
∂ Is

∂x
and Iy =

∂ Is

∂y
(3)

(c) Compute the second order partial derivatives of
Is along x and y directions using equation (4)

Ixx =
∂ 2Is

∂x2 and Iyy =
∂ 2Is

∂y2 and Ixy =
∂ 2Is

∂x∂y
(4)

(d) Compute Gaussian curvature (K) of an image
using equation (5)

K =
IxxIyy − I2

xy

(1+ I2
x + I2

y )
2 (5)

The denominator (1+ I2
x + I2

y )
2 ensures that the

curvature is scaled appropriately based on the
gradients of the image.

Step 4: Obtain the Guided filtered image (IG) of input
image by taking Gaussian curvature (K) as guidance
image.

IG = guided filter (I1,K,r,ε) (6)

where r,ε are the size of neighborhood and regulariza-
tion parameters of guided filter which are taken as 15
and 0.01.

Step 5: Compute the detail layer with small scale vari-
ations (IDS) by subtracting the guided filtered image
from original image.

IDS = I1 − IG (7)

Figure 1. Proposed Tri-scale image decomposition model.

2345-3796[https://doi.org/10.57647/j.mjee.2025.17379]

https://doi.org/10.57647/j.mjee.2025.17379


4/16 MJEE19 (2025) -192545 Jogi & Macigi

Step 6: Compute the detail layer with large scale vari-
ations (IDL) by subtracting the Gaussian filtered image
from guided filtered image.

IDL = IG − IB (8)

The results of proposed novel tri-scale image decomposition
technique are illustrated in figure 2.

2.2 Grey wolf optimization (GWO)
Gray wolf groups provide models for GWO through their
social structure and foraging practices. A computer program
simulates grey wolf tracking, surrounding, hunting, and
attacking activities in order to maximize the population of
gray wolves. Gray wolves forage in three stages: social
hierarchy classification, encircling the prey, and attacking
the prey [34].

2.2.1 Social hierarchy categorization:
Gray wolves are sociable canids with a rigid hierarchy of
social dominance. The best solution (α) is highlighted,
followed by the second-best (β ) and third-best (δ ). Other
solutions are designated as ω as shown in figure 1.

2.2.2 Encircling the prey:
When hunting, gray wolves encircle their prey, which can
be mathematically modeled using equations (9) to (12)

X(t +1) = Xp(t)−A×D (9)

D = |C×Xp(t)−X(t)| (10)

A = 2a× r1 −a (11)

C = 2× r2 (12)

When t reflects the current iteration, X denotes the location
vector associated with the gray wolf, and Xp represents the
position vectors of the prey. A and C are coefficient vectors,
r1 and r2 are random vectors in [0,1], a is the distance
controlling parameter, and its value falls linearly from 2 to
0.

2.2.3 Attacking the prey:
The search is primarily conducted under the direction of
gray wolves, but they are also capable of identifying the
location of possible prey. The top three wolves (α , β , δ ) of
the current population are retained in each iteration and the
positions of the other search agents are then updated based
on their position data. The mathematical modeling of this
mechanism is described using equations (13) to (16).

X1(t) = Xα(t)−A1 ×D1 (13)

X2(t) = Xβ (t)−A2 ×D2 (14)

X3(t) = Xδ (t)−A3 ×D3 (15)

where
D1 = |(C1)Xα(t)−X(t)|

D2 = |(C2)Xβ (t)−X(t)|

D3 = |(C3)Xδ (t)−X(t)|

X(t +1) =
X1(t)+X2(t)+X3(t)

3
(16)

In the above relations, Xα , Xβ , Xδ signifies the location
vectors of α , β and δ wolves respectively. The computa-
tions of A1, A2, and A3 like those of A, and the numerical
calculations of C1, C2, and C3 resemble those of C.
Instead of averaging X1(t), X2(t), and X3(t) to get updated

Figure 2. An example of proposed tri-scale image decomposition.
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solution, the modified solution in Proposed Grey wolf op-
timization (PGWO) has two possible choices with each
having equal probability to take place as illustrated in equa-
tion (17) and could provide better diversity of population.

X(t +1) =


(X1(t)+X2(t)

2 if p < 0.5

X1(t)+X2(t)+X3(t)
3 if p ≥ 0.5

(17)

where p is an uniform random number in the interval [0,1]
generated new for each search agent.

3. Proposed fusion approach
In this section, we suggest two novel algorithms. The first
one is suggested to combine detail layers based on proposed
Enhanced Dual Channel Pulse Coupled Neural Network
(EDPCNN) model. The second algorithm uses the tri-scale
image decomposition method and the proposed Grey Wolf
Optimization Algorithm to combine medical images.

3.1 Enhanced Dual Channel Pulse Coupled Neural Net-
work (EDPCNN) model

Since the pixels with the highest activity are chosen for
the fused output, it is essential to precisely determine the
activity level of the related pixels in the original images
while performing image fusion. An Enhanced Dual Channel
Pulse Coupled Neural Network (EDPCNN) model is used
in this study to assess the activity levels of detail layers. The
firing module, data fusion block, and receptive field are the
three main parts of the EDPCNN architecture, as seen in
figure 3. Through their respective feeding inputs, F I and FJ ,
the receptive field collects external stimuli for the two input
images, I and J. Additionally, it gets a linking input L, from
neighboring neurons. This is illustrated mathematically by
using equation (18).

Ln(p,q) =
1

∑
i=−1

1

∑
j=−1

Ws(i+2, j+2)Yn−1(p+ i,q+ j) (18)

Here, the external inputs that correspond to images I and
J are denoted by F I and FJ , respectively. These inputs are
continuously sent into the network for every iteration.
Spatial location of a neuron is indicated by (p,q), and the
variable n denotes the number of iterations; each neuron
corresponds to a pixel in the input images. The values of
the surrounding pixels affect a pixel’s significance in image
processing. As a result, each neuron’s linking input is deter-
mined by adding the weighted binary outputs of its nearby
neurons from the previous iteration. The weight matrix Ws
is a 3×3 matrix that allocates weights to nearby neurons
according to their separation from the center neuron, while
the binary output matrix is represented by Y .

Ws =


1√
2

1 1√
2

1 0 1
1√
2

1 1√
2

 (19)

The data fusion block estimates the internal activity, repre-
sented by U , of the EDPCNN model in order to combine
the complimentary data from both input images. Using
equation (20), the internal activity for a specific iteration is
calculated.

Un(p,q) = e−αU Un−1(p,q)+max{U I
n(p,q),UJ

n (p,q)}
(20)

where U I
n and UJ

n are the internal activities that correspond
to the inputs F I and FJ , respectively, at the nth iteration, and
αU is the exponential decay constant of U . Equations (21)
and (22), which linearly modulates the feeding and con-
necting inputs, is used to compute these activities. Since
neurons with higher internal activity tend to capture more
prominent information, the input with the largest internal
activity is usually selected for the fused image. To make
it easier to integrate complementary information, a decay
factor is included to the internal activity.

U I
n(p,q) = F I

n (p,q)(1+β
I(p,q)Ln(p,q)) (21)

UJ
n (p,q) = FJ

n (p,q)(1+β
J(p,q)Ln(p,q)) (22)

Figure 3. Enhanced Dual Channel Pulse Coupled Neural Network (EDPCNN) model.
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Depending on the input images, β I and β J are adaptive
connecting strengths. To build a robust linking strength, the
eight-neighborhood modified Laplacian (EML) operator is
utilized, which combines diagonal coefficients with neigh-
borhood information. The EML [35] for FX |X ∈ (I,J) is
calculated as follows:

EMLX (p,q) = |FX (p,q)−FX (p,q−1)|
+ |FX (p,q)−FX (p,q+1)|
+ |FX (p,q)−FX (p−1,q)|
+ |FX (p,q)−FX (p+1,q)|

+
1√
2
|FX (p,q)−FX (p−1,q−1)|

+
1√
2
|FX (p,q)−FX (p−1,q+1)|

+
1√
2
|FX (p,q)−FX (p+1,q−1)|

+
1√
2
|FX (p,q)−FX (p+1,q+1)|

(23)

The EMLX is smoothed using an averaging filter to reduce
noise, producing an averaged EML (AEMLX ). Then, by
giving the pixels weights, the weighted EML (WEMLX ) is
obtained from AEMLX , where the central pixel is given the
highest weight.

WEMLX (p,q) =
1

∑
i=−1

1

∑
j=−1

WE(i+2, j+2)

×
√

AEMLX (p+ i,q+ j)

(24)

where WE is the weight matrix

WE =
1

16

1 2 1
2 4 2
1 2 1

 (25)

To operate with smaller values, this model uses
√

AEMLX

rather than AEMLX . Equation (14) is used to calculate the
connecting strength of EDPCNN model, β X . Since various
pixels represent different kinds of information, variable
connection strength is used.

β
X (p,q) = WEMLX (p,q) (26)

When neurons surpass their threshold, the firing module
produces pulses, and equation (27) is used to calculate the
binary output Y . When internal activity exceeds the thresh-
old, a neuron fires and outputs a value of 1; if not, it outputs
0.

Yn(p,q) =

{
1 if Un(p,q)> En−1(p,q)
0 otherwise

(27)

The threshold function, E, is adjusted according to equa-
tion (28)

En(p,q) = e−αE En−1(p,q)+CEYn(p,q) (28)

where αE is the exponential decay constant for the threshold
E and CE is the amplitude constant. The threshold rises

dramatically when a neuron activates, then progressively
decreases till the neuron fires once again. In this study, αE =
0.7, αE = 0.2 and CE = 20 is chosen based on information
from literature [12, 13] in which similar models were used
for image fusion.

3.2 Fusion of detail layers using EDPCNN
Here, the fused detail images are produced by using the
internal dynamics of the inputs in the suggested EDPCNN
model. The following settings are used to initialize the
EDPCNN model for each detail layer ID1 and ID2 of the
input images.

F I(p,q) = |ID1|

FJ(p,q) = |ID2|

U0(p,q) = 0

Y0(p,q) = 0

E0(p,q) = 1

Equation (26) is utilized to compute the parameter β X |X ∈
(I,J), and αU is assigned based on the correlation between
the EDPCNN model and the spiking cortical model [36].
The values for αE and CE are selected based on knowledge
from previous research [37, 38]. The following are the
specific values EDPCNN model.

αU = 0.7, αE = 0.2 and CE = 20

The EDPCNN model is simulated for N iterations after it has
been configured, with N being set to 120. The fused detail
layer IDF is then calculated using the internal activities
of the inputs, represented as ID1 and ID2. Suppose that
U ID1

N (p,q) and U ID2
N (p,q) indicate the internal activity of

the input ID1 and ID2 respectively for the EDPCNN model at
the (p,q)th neuron following the Nthiteration. The following
equation is used to calculate the fused detail image.

IDF(p,q) =

{
ID1(p,q) if U ID1

N (p,q)≥U ID2
N (p,q)

ID2(p,q) if U ID1
N (p,q)<U ID2

N (p,q)
(29)

3.3 Proposed algorithm based on Tri-scale decomposi-
tion and GWO

The proposed approach of image fusion is illustrated in
figure 4 and it contain following steps:

Step 1: Read Input images I1 and I2 that needs to be
fused

Step 2: Apply proposed tri-scale decomposition mech-
anism and decompose the source images into base
layers (IB1 and IB2), detail layers with significant varia-
tions (IDL1 and IDL2) and detail layers with small scale
variations (IDS1 and IDS2).

Step 3: Fuse the detail layers using proposed fusion
rule based on EDPCNN.

Da = EDPCNN(IDS1, IDS2) (30)

Db = EDPCNN(IDL1, IDL2) (31)
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Figure 4. Proposed mechanism of image fusion for CT-MRI images.

Step 4: The base layer fusion is performed using a lin-
ear combination of two base layers, controlled by the
fusion parameter β ∈ [0,1] which will be optimized.

Fused base layer, IB f = β × IB1 +(1−β )× IB2 (32)

Step 5: Combining the fused based layer and the fused
detail layers yields the final fused image.

Fused Image, Ifused = IB f +Da +Db (33)

Step 6: Objective function is modeled as weighted
sum of edge strength, entropy and mean pixel intensity
and is used as maximization problem.

Objective function, OF = β1 ×Eedge(Ifused)

+β2 ×H(Ifused)

+β3 ×SD(Ifused)

(34)

where Eedge (Ifused) indicates the edge strength of fused
image and is calculated using the Laplacian filter. It is
defined as the accumulation of the absolute values of
the Laplacian-filtered image.

Eedge(Ifused) = ∑
i

∑
j
|L(Ifused(i, j))| (35)

where (i, j)-coordinates of pixels of an image.
H(Ifused) - Indicates entropy, which measures informa-
tion content in an image. For an image with probability
of pixel intensity distribution Pk, H(Ifused) can be cal-
culated using equation (36).

H(Ifused) =−
255

∑
k=0

Pk log(Pk) (36)

SD(Ifused)- Indicates the standard deviation of the fused
image. For a 256 × 256 image, M = 256 and N = 256
and SD(Ifused) is computed using equation (37).

SD =

√√√√ 1
MN

M

∑
i−1

N

∑
j=1

( f (i, j)−µ)2 (37)

where µ = 1
MN ∑

M
i=1 ∑

N
j=1 f (i, j).

β1, β2 and β3 are the weighting factors of edge strength,
entropy and standard deviation of fused image. Choos-
ing appropriate values for the weights β1, β2 and β3 in
the objective function depends on the specific require-
ments and characteristics of the image fusion task. If
the primary goal is to preserve the sharpness, struc-
tural details, and boundaries (e.g., in medical or satel-
lite images), edge strength should be prioritized. In
this case, β1 is assigned higher value. If the objective
is to maximize information content or contrast (e.g.,
for high-contrast imaging tasks), then entropy should
have more influence. Increasing β2 will help empha-
size contrast and fine details. To have an image with
more brightness, β3 is assigned more value. In this
work, values of β1, β2 and β3 are taken as 0.4, 0.3, 0.3
respectively.

Step 7: The objective function is used to guide the
GWO in finding the optimal fusion parameter (β ), en-
suring the maximization of edge strength, entropy, and
standard deviation.

βoptimal = argmax(OF(β )) (38)

Step 8: Using the βoptimal, Fused base layer relation of
equation (32) is modified as follows:

IB f optimal = βoptimal × IB1 +(1−βoptimal)× IB2 (39)
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Step 9: From the optimal fused base layer, Optimal
fused image is obtained using equation (40).

Fused Image, Ifusedoptimal = IB f optimal+Da+Db (40)

In case of PET/SPECT source images, they are first
converted from RGB color space to HIS color space
and Intensity channel ‘I’ is used for fusion process.
Once fused image is obtained, Hue (H) and Saturation
channels of source image are used to obtain fused RGB
image by performing HIS to RGB color space conver-
sion. The detailed flow diagram of fusion process is
illustrated in figure 5.

4. Results and discussion

4.1 Subjective analysis
A brain imaging-related PET-SPECT dataset and five MRI
and CT datasets, referred to as “Dataset-I” through “Dataset-
VII,” were selected to evaluate the effectiveness of the pro-
posed image fusion method. These include images of a
healthy brain (Dataset-I), a brain with cerebellar metas-
tases (Dataset-V), a brain that has had a fatal hemorrhage
(Dataset-II), a brain that has been damaged by neoplas-
tic cancer (Dataset-III), and sagittal brain and skull im-
ages (Dataset-IV). Additional analysis was done on the
SPECT and MR-T2 datasets related to Metastatic Bron-
chogenic Disease (Dataset-VI) and the MR-T2 and PET
datasets related to Alzheimer’s disease (Dataset-VII). There
are 256 grayscale levels and 256 × 256 pixels in each im-
age. [http://www.med.harvard.edu/aanlib/home.html [39]].
The datasets are sourced from the Benchmark Brain Atlas.
Figure 7 shows the fusion outcomes for Dataset-I, while
Figs. 6 (a) and (b) show the original CT and MRI images, re-
spectively. The results of fusion using a range of strategies,
including the recommended method, Convolutional Neu-
ral Network (CNN), Non-Subsampled Shearlet Transform

(NSST), guided filter, Sparse Representation (SR), Discrete
Wavelet Transform (DWT), and Convolutional Neural Net-
work (CNN), are displayed in figure 6 (c) through (h) [40].
While skeletal structure is generally preserved in CT and
connective tissue details in MRI, there are minor varia-
tions in contrast and detail preservation among the different
modalities. These changes, particularly in the highlighted
area, are shown by a yellow rectangle. The fused pictures in
Figs. 6 (c) and (d) exhibit dim brightness in the highlighted
area. While CNN and NSST fusion images successfully re-
tain CT details (Figs. 6 (f) and (g)), MRI image information
is often lost. Even though the guided filter produces visu-
ally clear results that are comparable to the recommended
approach, the contrast is less, as seen in Figs. 6 (e) and 6(h).
According to results of Dataset-II, which depicts a brain
afflicted by a fatal hemorrhage, DWT and SR-based ap-
proaches perform poorly because to low contrast and a
restricted ability to record bony structures and hemorrhagic
severity, as seen in figure 7. While GFF and CNN provide
substantial visual improvements, they sometimes lose essen-
tial pathological information. The suggested methodology,
while significantly limited in its ability to preserve very tiny
CT pixel intensity variations along row and column wise,
maintains a better balance of contrast and structural accu-
racy than existing methods. Dataset-III, which represents a
brain with neoplastic pathology, shows a dramatic disparity
in performance as illustrated in figure 8. While standard
approaches such as DWT, SR, and NSST fail to capture the
full extent of soft tissue deformation induced by tumors, the
suggested method excels at providing high contrast while
preserving sensitive soft tissue features. This is especially
important in clinical settings where tumor boundaries and
penetration zones must be precisely defined.
Dataset-IV focuses on fusing MRI and CT scans of the
brain and skull in sagittal perspectives. This dataset poses
a unique challenge since it necessitates the integration of

Figure 5. Proposed mechanism of image fusion for MR T2 and PET/SPECT images.
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Figure 6. Fused images of Dataset-I (MRI-CT of healthy brain).

Figure 7. Fused images of Dataset-II (MRI-CT of Fatal stroke).

Figure 8. Fused images of Dataset-III (CT-MRI of neoplastic tumor).

complementary structural features—bony anatomy from
CT and soft tissue contrast from an MRI. Traditional ap-
proaches, such as DWT and SR, fail in this situation. They
fail to retain the fine details of the cranial bones, as illus-
trated in Figs. 9 (c) and 9 (d), resulting in blurred edges and
poor anatomical clarity. Although the guided filter improves
soft tissue visibility significantly, it ignores high-frequency
components such as crisp skull outlines. CNN and NSST
generate high contrast images while suppressing subtle MRI
characteristics. In contrast, the proposed approach success-
fully maintains both the detailed bone features of CT and
the subtle brain textures of MRI. The fused image in fig-
ure 9 (h) has sharp edges, smooth grayscale transitions, and

a well-balanced representation of both modalities. This
highlights the ability of proposed algorithm to retain critical
clinical data, making it useful in neurological and cranial
examinations.
Dataset-V consists of the fusion of MRI and CT images
from a brain impacted by Cerebella metastases. This infor-
mation is especially important since it highlights structural
deformations induced by metastatic lesions as well as the
surrounding bone structure. As illustrated in Figs. 10 (c) and
10 (d), the DWT and SR approaches have limitations; they
produce images with poor contrast and insufficient clarity
in tumor-affected regions. Although NSST and guided filter
approaches improve visual appearance, they do not capture
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Figure 9. Fused images of Dataset-IV (MRI-CT of brain skull).

Figure 10. Fused images of Dataset-V (MRI-CT of Cerebella metastasis).

the full degree of lesion-induced changes in soft tissue. The
CNN-based technique improves texture but adds slight arti-
facts that may complicate clinical interpretation. The sug-
gested technique, illustrated in Fig. 10 (h), produces a bal-
anced fusion output with increased contrast, well-preserved
lesion boundaries, and detailed bone features. It success-
fully highlights the metastatic location while maintaining
anatomical integrity. This feature is especially important for
pre-operative planning and radiological evaluations, which
need accurate visibility of tumor boundaries and surround-
ing anatomical structures.
In figure 11, MR-T2 and SPECT-TC images of metastatic
bronchogenic lesions are combined. For the purpose of clar-
ity, segmented portions of the photographs are displayed
independently. The Guided Filter Fusion (GFF) approach
does not preserve the original colors, and the Discrete
Wavelet Transform (DWT) approach provides too little con-
trast. Despite their capacity to provide high contrast, the
NSST and SR methods fall short in maintaining the struc-
tural integrity of the MR-T2 image. By successfully pre-
serving the energy, structural, and color components of the
source images, the proposed approach ensures superior fu-
sion quality. Figure 12 displays a patient with intermediate-
stage Alzheimer’s disease whose PET and MR-T2 scans
were fused. To improve visibility, segmented pieces are

displayed independently. Similar to the last dataset, DWT
offers little contrast, however GFF struggles to maintain the
original hues. CNN and SR techniques successfully restore
the image attributes, however they do not retain the original
colors. Additionally, the NSST method over-enhances the
image, taking away from its natural look. On the other hand,
the proposed technique successfully preserves crucial color
and structural information while maintaining the unique-
ness of the fused image, resulting in a balanced and visually
accurate representation.

4.2 Objective analysis

To measure fusion performance, evaluation criteria that are
qualitative as well as quantitative must be applied. In this
paper, various fusion processes are assessed for their ef-
fectiveness using quantitative assessment measures such as
standard deviation (SD), mutual information (MI), image
entropy (IE), spatial frequency (SF), mean structural simi-
larity (MSSIM), and margin information retention (QAB/F).
Table 1 presents an explanation of these measurements.
Table 2 displays the quantitative analysis of image evalu-
ation measures, with bold indicating the best-performing
results. Measures such as Mutual Information (MI), Image
Entropy (IE), QAB/F, and MSSIM all significantly improve
with the proposed fusion procedure. These results show
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Figure 11. Fused images of SPECT and MR-T2 of Metastatic Bronchogenic.

Figure 12. Fused images of PET and MR-T2 of Alzheimer’s disease.

how well the suggested approach preserves edge charac-
teristics and saliency information. For other criteria, the
performance of the proposed strategy is comparable to ex-
isting methods. Figure 13 provides a visual comparison of
alternative methods based on the average values of four key
assessment metrics-MI, IE, MSSIM, and QAB/F—analyzed
over thirty different datasets. This comparison shows how
effectively the recommended method maintains significant
image quality and characteristics.

4.3 Result analysis

The experimental data indicates that low intensity and a lack
of knowledge about bone structure are the main causes of
poor fusion results in Sparse Representation (SR) and DWT
techniques. While methods such as NSST, CNN, and the
guided filter perform visually well, they cannot fully pre-
serve edge and texture details in the yellow-marked MR-CT
fusion zones. Moreover, the Guided filter approach loses
color fidelity in MR-SPECT and MR-PET fusion scenarios.
The recommended method, on the other hand, effectively
preserves crucial features, enhancing the depiction of soft
tissues and bone structures and producing merged images
that are clearer and more vibrant. The quality of fused
images was assessed using six metrics, including image

entropy (IE), standard deviation (SD), and spatial frequency
(SF), which are commonly used to assess intrinsic image
properties. SF ensures that the image appears sharp, IE
indicates the information content of the fused image, and
SD measures contrast by examining the distribution of grey
levels. Higher SD values suggest greater contrast, which
facilitates the visualization of the fused image. By includ-
ing extraneous elements, some modern methods exaggerate
these measurements. Three more metrics-MI, MSSIM, and
QAB/F are included in this paper for a more comprehensive
evaluation. Greater values signify increased activity and
clarity in the combined image. MI evaluates the amount of
recovered information by comparing the intensity distribu-
tions in the source image pair. MSSIM measures the amount
of distortion in the composite image, whereas QAB/F evalu-
ates the edge information preserved from the source images,
which is particularly crucial in clinical image fusion for
accurate pathology assessments. Higher QAB/F values
indicate better integration of edge characteristics, texture,
and bone structures. A statistical examination of the test-
ing results shows that the proposed algorithm performs
significantly better than existing methods. Standard devia-
tion rises from 15.5 to 32.7%, spatial frequency from 38.2
to 70.5%, mutual information from 42.8 to 62.9%, edge
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Table 1. Description of image quality assessment metrics.

Performance Metric Mathematical formulae

Average Pixel
Intensity

(API)

For an image f (i, j) of size MXN,
API = 1

MN ∑
M
i=1 ∑

N
j=1 f (i, j)

Higher value of API produces an image with more contrast.

Standard
Deviation

(SD)

It is a metric for the level of deviation in a mean collection of image data.

SD =
√

1
MN ∑

M
i−1 ∑

N
j=1( f (i, j)−API)2

Entropy
(H)

It estimates information content in an image. Large value of H indicates an image
with more information. For an image with probability of pixel intensity distribution
Pk, entropy is calculated as follows:
H =−∑

255
k=0 Pk log(Pk)

Mutual
Information

(MI)

For two source images A, B and fused image F , Mutual information is given as
MIAB

F = MI(A,F)+MI(B,F)

MI(A,F) = ∑z∈Z ∑y∈Y p(A,F) log2
p(A,F)

p(A)p(F)

MI(B,F) = ∑z∈Z ∑y∈Y p(B,F) log2
p(B,F)

p(B)p(F)

The quantity of activity level data that is transmitted from the source images
into the fused image is measured.

Spatial
Frequency

(SF)

It measures an resolution level of an image. Higher value is desired.
SF(i, j) =

√
|RF(i, j)|2 + |CF(i, j)|2

RF(i, j) =
√

1
MN ∑

M
i=2 ∑

N
j=2[I(i, j)− I(i, j−1)]2

CF(i, j) =
√

1
MN ∑

M
i=2 ∑

N
j=2[I(i, j)− I(i−1, j)]2

Edge
strength
(QABF )

QABF represents the degree to which the edge information from the input images
transitions into the fused image. The evaluation is as follows:

QABF =
∑

M
i=1 ∑

N
j=1(QAF (i, j)WA(i, j)+QBF (i, j)WB(i, j))

∑
M
i=1 ∑

N
j=1(WA(i, j)+WB(i, j))

Mean Structural
Similarity Index

Measure
(MSSIM)

SSIM(A,F) = (2µAµF+C1)(2σAF+C2)
(µ2

A+µ2
F+C1)(σ2

A+σ2
F+C2)

Where µA is the mean of A and µF is the mean of F , σAF is the covariance of A and F ,
σ2

A is the variance of A, and σ2
F is the variance of F . To avoid instability that can result

from a division with a value near to zero, two constants, C1 and C2, are used.
SSIM readings can range from 0 to 1, with 0 signifying poor quality and 1 signifying
excellent quality. A higher MSSIM score results in less distortion within the fused image.
MSSIM = SSIM(A,F)+SSIM(B,F)

2
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Table 2. Statistical evaluations of the suggested approach for multimodal data.

Dataset type Method
Standard
Deviation

(SD)

Mutual
Information

(MI)

Spatial
Frequency

(SF)

Image
entropy

(H)

Edge
strength
(QAB/F)

MSSIM

Dataset-I

SR 30.82 2.57 11.68 5.80 0.5756 0.5122
DWT 44.71 1.92 17.13 6.17 0.6073 0.5246
NSST 44.16 2.05 17.05 6.20 0.6816 0.5366
CNN 52.89 2.43 17.40 6.07 0.7184 0.5518

Guided filter (GF) 52.89 2.31 16.97 6.52 0.7210 0.5634
Proposed 58.29 5.68 20.42 6.79 0.8460 0.9949

Dataset-II

SR 51.40 3.42 17.76 4.94 0.5178 0.8248
DWT 55.73 3.19 22.01 5.19 0.5051 0.7915
NSST 54.56 3.34 20.95 5.12 0.5887 0.8160
CNN 59.92 3.34 21.93 4.89 0.5888 0.8146

Guided filter (GF) 55.68 3.79 20.25 5.20 0.6028 0.8207
Proposed 63.12 4.72 36.85 5.90 0.8250 0.9961

Dataset-III

SR 61.50 3.18 20.19 4.52 0.5157 0.7640
DWT 66.53 3.12 25.11 4.86 0.5473 0.7489
NSST 65.89 3.20 24.52 4.88 0.5971 0.7733
CNN 69.60 3.38 25.99 4.39 0.6042 0.7775

Guided filter (GF) 69.63 3.34 24.39 5.05 0.6119 0.7762
Proposed 73.53 4.45 35.14 5.83 0.8089 0.9929

Dataset-IV

SR 69.84 3.33 28.98 7.56 0.4964 0.6532
DWT 76.80 3.08 35.94 7.41 0.4699 0.6263
NSST 79.49 3.23 34.60 7.44 0.5349 0.6628
CNN 79.84 3.26 32.85 7.31 0.5171 0.6462

Guided filter (GF) 75.36 3.52 34.30 7.60 0.5510 0.6602
Proposed 90.15 5.43 50.54 7.93 0.8727 0.9945

Dataset-V

SR 51.71 3.19 17.58 5.24 0.4823 0.7427
DWT 55.72 2.80 22.28 5.36 0.4573 0.7098
NSST 53.79 2.94 21.47 5.44 0.5226 0.7311
CNN 61.11 3.18 23.06 4.83 0.5214 0.7448

Guided filter (GF) 66.98 3.23 21.56 5.60 0.5330 0.7342
Proposed 81.63 4.67 37.27 6.01 0.8711 0.9927

Dataset-VI
(MR-SPECT)

SR 47.02 4.02 18.86 4.21 0.6056 0.7617
DWT 41.36 3.37 18.74 3.63 0.5783 0.7239
NSST 48.53 4.07 19.28 4.13 0.7120 0.7451
CNN 45.82 3.86 20.06 4.04 0.7248 0.7604

Guided filter (GF) 41.27 3.65 18.56 3.77 0.6761 0.7462
Proposed 58.19 4.67 24.86 4.43 0.9023 0.9940

Dataset-VII
(MR-PET)

SR 63.45 4.65 22.19 5.18 0.5660 0.7572
DWT 58.61 3.91 23.11 4.43 0.5371 0.7189
NSST 68.94 4.32 24.52 4.98 0.6708 0.7411
CNN 62.47 4.17 27.96 4.76 0.6836 0.7584

Guided filter (GF) 58.26 3.97 24.39 4.45 0.6449 0.7432
Proposed 73.99 5.19 28.87 5.88 0.8595 0.9987
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Figure 13. Comparative analysis of average value of quality assessment metrics.

strength from 37.4 to 61.9%, structural similarity index
from 37.8 to 43.8%, and image entropy from 12 to 18%.
These improvements demonstrate that the combined image
has minimal distortion and that crucial edges, soft tissues,
dense structures, and features are successfully maintained.

5. Conclusion

A new fusion method for MRI and CT medical images is
presented in this paper by decomposing the source images
into base and detail layers through proposed three scale
decomposition and fusing the base layers based on grey
optimization algorithm with maximization of entropy,
edge strength and standard deviation as objective function
while fusing the detail layers based on enhanced dual
channel PCNN. Comprehensive contrast experiments have
been carried out on many pairs of CT and MR images
together with SPECT and PET images, proving that
the proposed method is superior in both qualitative and
objective assessment. Therefore recommended technique is
more effective in aiding medical professionals in making
accurate disease diagnoses.
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