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manual intervention. The research employed the DEtection TRansformer with ResNet-50 backbone (DETR-
ResNet50) model for its precision and high confidence in detection, running on both Central Processing
Unit (CPU) and FPGA configurations to optimize performance. Results showed significant improvements
in latency and frames per second (FPS) when using FPGA acceleration, demonstrating effective real-time
bird detection capabilities. The system’s implementation enhanced crop protection, promoted eco-friendly
practices, and improved overall farming efficiency by reducing manual surveillance and providing valuable
data for long-term pest management strategies. Key quantitative findings revealed that FPGA acceleration
improved FPS by over 200% compared to CPU performance.
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1. Introduction including crime intention detection, where it can identify
individuals carrying firearms and alert authorities before a
crime occurs [2].

Paddy farmers face significant challenges from bird pests,
especially species like pipits and sparrows, which can cause
severe crop damage during the grain-filling stage. These
birds can reduce yields by up to 70%, leading to substantial
economic losses [3]. Most farmers do not have the time
or resources to monitor their fields continuously, creating
gaps in protection and making it difficult to prevent damage.
This challenge highlights the need for innovative solutions
that can monitor and deter threats in real time. Traditional
methods such as scarecrows or periodic field checks are

Nowadays, object detection is widely used in various fields
such as transportation, surveillance, and artificial intelli-
gence (AI). Computer vision is typically employed to detect
objects, which are instances of specific items within images
and videos. Object detection algorithms identify the out-
lines, locations, dimensions, and characteristics of objects
in an image for subsequent identification, categorization,
and monitoring.

Accurate object detection can segment and contour the ob-
jects contained in images. Commonly used object detection
algorithms often rely on machine learning or deep learning

to yield meaningful results, enabling them to recognize and
classify objects within images or videos after being trained
on large datasets. Object detection has various applications,

no longer sufficient, particularly for larger fields or during
peak harvest seasons. This underscores the importance of
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automated systems, such as Al-based bird detection using
Field-Programmable Gate Array (FPGA) technology, which
offer the potential to bridge these gaps in protection while
optimizing farmers’ time and resources.

This paper proposes an Al-based solution that utilizes ob-
ject detection technology to help farmers protect their paddy
fields. The system detects bird activity through continuous
monitoring and sends alerts when a specific number of birds
are identified. Upon detection, it transmits images and noti-
fications to farmers via Telegram, allowing for immediate
action to deter the birds. This reduces the need for con-
stant manual surveillance and promotes sustainable farming
practices. Additionally, by providing data on bird activity
patterns, the system enables farmers to develop more effec-
tive long-term pest control strategies. The main objectives
of this research are to enhance crop protection, encourage
eco-friendly practices, and improve overall farm efficiency
resulting in a more effective and sustainable approach to
managing bird pests in rice fields.

2. Literature review

Object detection has become a crucial area of research
within the fields of computer vision and artificial intelli-
gence, driving advancements in applications such as au-
tonomous driving, surveillance, and the Internet of Things
(IoT). This review examines the development and perfor-
mance of three prominent object detection algorithms: You
Only Look Once (YOLO), Detection Transformer (DETR),
and CenterNet (Center Network).

2.1 Integration of FPGA-accelerated object detection

FPGAs have emerged as a compelling solution for acceler-
ating object detection algorithms due to their parallel pro-
cessing capabilities and reconfigurability. The integration
of FPGAs with CPUs in object detection tasks involves a
co-design approach, where computationally intensive oper-
ations are offloaded to the FPGA, while the CPU manages
control flow, preprocessing, and postprocessing tasks [4].

In a typical setup, the FPGA is responsible for accelerating
the core computations of object detection algorithms, such
as convolutional neural network (CNN) layers, which are
resource-intensive [1, 5]. To optimize the selected models
for FPGA execution, the Intel OpenVINO toolkit was em-
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ployed. The CPU handles tasks such as image acquisition,
initial preprocessing, and postprocessing. During prepro-
cessing, image resizing ensures uniform input dimensions,
normalization scales pixel values to a standard range, and
data augmentation enhances model robustness by introduc-
ing variations in the training data.

After inference, postprocessing refines the detection outputs,
including bounding box refinement, confidence threshold-
ing, and non-maximum suppression (NMS). NMS plays a
crucial role in eliminating redundant overlapping boxes
by selecting the bounding box with the highest confi-
dence score and suppressing others with significant overlap,
thereby reducing false positives. This division of labor
ensures that each component operates within its optimal
performance envelope, leading to enhanced overall system
efficiency.

Communication between the CPU and FPGA is facilitated
through high-speed interfaces, ensuring low-latency data
transfer [6]. Synchronization mechanisms are essential to
maintain data coherence and ensure seamless pipeline oper-
ation. For instance, in real-time object detection systems,
the CPU captures and preprocesses image frames, which are
then dispatched to the FPGA for accelerated inference. The
results are subsequently retrieved by the CPU for further
processing and decision-making.

To illustrate this workflow, Fig. 1 depicts the process
of integrating object detection algorithms into an FPGA-
accelerated pipeline. It highlights the critical steps of re-
quirement analysis, hardware optimization, and evaluation
metrics, which are essential for the efficient co-design and
deployment of FPGA-accelerated systems. The figure also
aligns with object detection models like YOLO and DETR,
where FPGA acceleration optimizes the execution of con-
volutional layers or transformer operations to achieve im-
proved speed and throughput.

It is also shown that the typical architecture of an FPGA-
based object detection system involves a division of compu-
tational tasks between the CPU and FPGA [7]. The CPU
handles preprocessing tasks, such as resizing and normaliza-
tion, before forwarding the data to the FPGA for accelerated
inference. Postprocessing operations, including bounding
box refinement and confidence score calculation, are also
managed by the CPU. This pipeline ensures efficient utiliza-
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Figure 1. The design flow of FPGA-based object detection architecture [1].
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tion of resources, reducing latency and enhancing through-
put, as highlighted in previous studies.

Recent research has demonstrated the efficacy of this inte-
gration. For example, an FPGA-based accelerator for object
detection was shown to significantly enhance performance
by offloading computationally intensive tasks from the CPU
to the FPGA, resulting in improved throughput and reduced
latency [9]. Another study highlighted the benefits of FPGA
acceleration in real-time object detection and classification
systems, emphasizing the importance of efficient integration
between hardware and software components [10].

2.2 Comparison of object detection models

Object detection models differ in their architectures and
computational efficiencies, directly influencing their suit-
ability for FPGA acceleration. The three models selected
for this study were chosen based on their architectural com-
patibility with FPGA implementation, balancing accuracy,
computational efficiency, and resource utilization.

o detr-resnet50: This transformer-based object detec-
tion model eliminates the need for anchor boxes and
non-maximum suppression (NMS), enabling end-to-
end detection. While DETR’s innovative architecture
offers high accuracy, its complexity and computational
demands present challenges for FPGA deployment.
Nevertheless, its potential for precise detection makes
it a promising candidate for FPGA exploration [8].

e yolov4-tf: As a one-stage detection framework op-
timized for both speed and accuracy, YOLOV4 is
well-suited for real-time applications on resource-
constrained hardware. Its design emphasizes efficient
computation, aligning with the parallel processing ca-
pabilities of FPGAs. Previous studies have demon-
strated its adaptability to FPGA platforms, highlighting
its balance between performance and resource utiliza-
tion [11].

o ctdet_coco_dlav0_512: This keypoint-based approach
detects object center points, reducing computational
complexity while maintaining accuracy. CenterNet’s
methodology simplifies the detection process, which is
advantageous for FPGA implementation. Its reduced
computational requirements allow for efficient map-
ping onto FPGA architectures, facilitating real-time
performance [11].

Alternative models such as YOLOvS5 and YOLOV7 are
widely used in embedded Al applications due to their im-
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proved efficiency and accuracy. However, they were ex-
cluded from this study due to the lack of mature, opti-
mized FPGA implementations and the focus on models
with well-documented FPGA compatibility. While emerg-
ing efforts aim to adapt YOLOvVS5 for FPGA platforms-such
as a novel 4-bit quantization-based neural network acceler-
ator designed to enhance real-time processing—these im-
plementations remain under development and are not yet
standardized, making them unsuitable for the objectives of
this study [12]. Similarly, although FPGA implementations
of YOLOV7 have been reported, the performance trade-offs
and resource utilization require further investigation to en-
sure compatibility with the specific requirements of this
work [13].

FPGAs are increasingly favored for object detection due
to their unparalleled parallel processing capabilities, low
latency, and power efficiency. Unlike CPUs and GPUs,
FPGAs can be dynamically reconfigured to optimize spe-
cific computational tasks-such as convolutional operations
in deep learning models-making them ideal for real-time
applications [6, 14]. Notable algorithms like yolov4-tf, ct-
det_coco_dlav0_512, and detr-resnet50 have already been
successfully adapted for FPGA platforms, meeting the de-
mands of high-performance, low-power object detection
systems.

DETR, in particular, stands out with its end-to-end object
detection framework. It employs a transformer-based en-
coder—decoder architecture combined with a ResNet-50
backbone, as shown in Fig. 2, to process global relation-
ships between objects. Unlike traditional detectors, DETR
removes the need for post-processing steps such as NMS
and anchor generation by leveraging a bipartite matching
loss. This direct set prediction approach simplifies the de-
tection pipeline while maintaining competitive accuracy.
Although DETR demonstrates robust performance for large
objects, it faces challenges in detecting small objects-a lim-
itation that can be mitigated through further optimization
[8].

The ctdet_coco_dlav0_512 model, as illustrated in Fig. 3,
adopts a center-point detection approach in which objects
are represented as keypoints. It employs a fully convo-
lutional network to generate heatmaps for object centers,
making it particularly efficient for small-scale applications.
While its computational efficiency is notable, its perfor-
mance can vary depending on object density and size within
the input images. Owing to its lightweight design, this
model is a strong candidate for real-time applications on
FPGA platforms [8].

The yolov4-tf model is another prominent algorithm

Encoder -
Decoder

Transformer

Set of image features

Set of box prediction

Bipartite matching loss

Figure 2. Diagram of detr-resnet50 Architecture (encoder-decoder with resnet50 backbone) [8].
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Figure 3. Example of ctdet_coco_dlav0_512 keypoint detection process [11].

adapted for FPGA systems, focusing on multi-scale de-
tection as illustrated in Fig. 4. Renowned for its balance
between speed and accuracy, it is well-suited for real-time
applications. YOLOv4-tf incorporates an improved fea-
ture pyramid network (FPN) and path aggregation network
(PAN) to enhance detection performance across different
object scales. Its straightforward architecture and high
throughput make it a popular choice for FPGA deployment,
particularly in scenarios requiring real-time detection of
multiple object types [9, 15].

FPGAs excel not only because of their adaptability but
also due to their energy efficiency, a critical advantage in
resource-constrained environments. A 2022 survey by Zeng
et al. highlights the suitability of FPGAs for object detec-
tion, particularly in edge computing applications where
low power consumption and real-time performance are
paramount [9]. These findings underscore the growing im-
portance of FPGA-based solutions in developing advanced
and efficient object detection systems.

The synergy between CPUs and FPGAs plays a pivotal role
in achieving optimal performance. CPUs typically man-
age high-level orchestration tasks, such as system control
and coordination, while FPGAs handle computationally
intensive processes like feature extraction, convolutional
operations, and bounding box calculations. By offloading
these tasks, FPGAs eliminate bottlenecks that can hinder
a system’s real-time capabilities. Further optimizations,
such as quantization (reducing model precision without
significantly compromising accuracy) and loop unrolling
(minimizing iteration overhead), enhance computational ef-
ficiency. Studies have shown that FPGA platforms such
as the Zynq UltraScale + MPSoC-can achieve frame rates
exceeding 60 FPS while maintaining remarkably low power
consumption, making them ideal for both standalone and
integrated applications.

In agricultural applications, FPGAs often serve as primary
accelerators for processing high-throughput video streams

and real-time object detection tasks. For instance, FPGA-
based bird detection systems can process high-resolution
images in under 50 milliseconds, enabling real-time detec-
tion and immediate alerts via communication platforms like
Telegram. Such systems allow farmers to respond rapidly
to potential crop threats, reducing damage and promoting
sustainable agricultural practices. Moreover, these FPGA
solutions provide eco-friendly alternatives to chemical de-
terrents by offering non-invasive, data-driven pest control
methods [15].

The applicability of FPGA-based systems extends well be-
yond agriculture. They have been successfully deployed
in edge computing scenarios for surveillance, autonomous
navigation, and industrial monitoring. Zeng et al. notably
demonstrated the flexibility and scalability of FPGA-based
solutions, showcasing their ability to adapt to evolving de-
tection requirements across diverse industries [9]. These
innovations position FPGAs not only as co-processors but
also as standalone accelerators capable of transforming real-
time systems through their reconfigurability, high perfor-
mance, and energy efficiency.

This review highlights how FPGA-accelerated systems ad-
dress the computational challenges of real-time object detec-
tion while providing scalable and energy-efficient solutions.
By emphasizing their transformative potential in agricul-
tural and other real-world applications, this section estab-
lishes a solid foundation for the methodology and system
design discussed in the following sections.

3. Methodology

This study aimed to develop an Al-based bird detection
system using FPGA technology to address the real-time
detection requirements of agricultural applications. The
methodology followed a systematic process involving itera-
tive stages of software and hardware implementation, opti-
mization, and testing to maximize system efficiency. The
development process, illustrated in Fig. 5, begins with data

1. Resize image.
2. Run convolutional network.
3. Threshold detections.

Figure 4. The yolov4-tf architecture focusing on multi-scale detection [14].
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Figure 5. Flowchart of the development process.

acquisition, where relevant datasets of birds in paddy fields
were collected. A smart camera system was deployed in a
controlled environment replicating paddy field conditions.
Video footage of birds was captured at a fixed distance of
10 meters to simulate real-world scenarios, with specific
markers placed to ensure accurate distance measurements
during testing. This allowed precise evaluation of detection
sensitivity and accuracy. The video resolution was set to
720 x 480 pixels, and recordings were made at 60 frames
per second (FPS), ensuring high-quality inputs for model
assessment. These datasets were used for both training and
evaluating the object detection models.

Following data acquisition, the model development and
optimization phase was conducted.  Pre-trained ob-
ject detection models yolov4-tf, detr-resnet50, and ct-
det_coco_dlav0_512 were selected based on their suitability
for real-time applications. These models were optimized us-
ing the Intel OpenVINO toolkit to ensure compatibility with
the FPGA platform and to enhance inference efficiency.
One of the critical steps in this methodology was the modi-
fication of the Python scripts and the development of a new
inference core capable of operating in a hybrid HETERO

configuration (FPGA + CPU). The original OpenVINO
demo code was designed to run exclusively on CPUs, limit-
ing the ability to exploit the parallel processing power and
speed of the FPGA. To overcome this limitation, a custom
inference core was developed and integrated into the object
detection pipeline, as illustrated in Fig. 6. This core enabled
dynamic workload distribution between the FPGA and CPU,
significantly reducing latency and improving overall system
performance. By allowing computationally intensive tasks
such as neural network inference to execute in parallel on
the FPGA, the system fully leveraged the combined capa-
bilities of both hardware components.

The decision to base the implementation on OpenVINO’s
pre-existing code, rather than developing an Al model from
scratch, was both strategic and practical. Training a new
Al model from the ground up would have required vast
computational resources, extensive datasets, and significant
time to ensure accuracy and robustness. In contrast, the
OpenVINO toolkit provided pre-trained models already op-
timized for Intel hardware, offering a proven foundation for
real-time object detection. This approach reduced develop-
ment time and enabled the project to focus on integrating

2345-3796[https://doi.org/10.57647/j.mjee.2025.17276]
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Figure 6. Modified Core for FPGA.

and enhancing these models for the specific application of
bird detection in paddy fields. Furthermore, OpenVINO
includes tools for fine-tuning models for different hardware
configurations, ensuring they are not only functional but
also highly efficient when deployed on FPGA. Leveraging
this toolkit represented a logical balance between resource
efficiency and achieving high-performance results.

Once the models were prepared and the custom inference
core developed, the Python scripts were modified to support
FPGA-based inference. This optimization involved config-
uring several key parameters such as nireq, nstreams, and
nthreads, to balance performance, latency, and hardware
utilization:

e nireq (Number of Inference Requests) = 1: Real-
time responsiveness is critical for timely alerts; there-
fore, single-frame processing was prioritized to avoid
delays caused by queuing multiple inference requests.
The FPGA’s computational resources are optimized for
processing one task efficiently, rather than splitting ca-
pacity across multiple simultaneous tasks, which could
degrade performance.

e nstreams (Number of Streams) = 6: This value was
determined based on the FPGA’s ability to handle mul-
tiple streams without introducing CPU bottlenecks. Six
streams allow the system to process data from multiple
sources (e.g., live camera feeds) concurrently, maxi-
mizing hardware utilization while maintaining smooth
operation under varying workloads.

e nthreads (Number of Threads) = 4: Modern
CPUs often include multiple cores, and allocating
four threads ensures adequate processing power for
lightweight yet frequent tasks such as data transfer
between FPGA and CPU, image resizing, and alert
handling. This configuration supports smooth mul-
titasking while leaving sufficient cores available for
other processes. Careful testing confirmed that this set-
ting avoids excessive context switching, which could
otherwise degrade performance through unnecessary
overhead.

Fig. 7 shows the command and arguments used for
executing object detection with inference on the hybrid
HETERO configuration. The final parameter values were
determined experimentally, based on tests that balanced
latency, frame rate, and system stability.

System integration followed, combining the object detec-
tion models with a Telegram bot for real-time notifications.
As shown in Fig. 8, the bot sends annotated images of
detected birds directly to the user, enabling farmers to take
immediate action without the need for continuous manual
field monitoring. The bot was programmed to operate
seamlessly with the FPGA processing pipeline, ensuring
minimal latency in communication. To prevent interference
with the primary detection pipeline, the notification
process was implemented using multi-threading, allowing
detection and alert transmission to run concurrently without
performance degradation.

Figure 7. Command and arguments for object detection.
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Figure 8. Example of a notification sent via the “Bird Detection” Telegram bot.

The annotated images sent via the Telegram bot include
bounding boxes to highlight detected birds, providing
clear and actionable insights to the user. This integration
minimizes the need for physical presence in the fields and
improves overall operational efficiency. Fig. 8 presents an
example of notifications received through the Telegram bot
during field testing.

The end-to-end delay of the system was measured by
recording timestamps at three key points:

e Frame Capture Time — the moment the camera cap-
tured the frame.

e Inference Completion Time — when the FPGA com-
pleted processing and generated detection results.

o Notification Sent Time — when the Telegram notifica-
tion was successfully delivered.

The delay was calculated using the following formula:
Delay (ms) = Notification Sent Time — Frame Capture Time

The final step of the process, as outlined in the flowchart,
was prototype development and evaluation. A smart cam-
era system was deployed in paddy fields to capture real-
time footage, which was processed using the optimized
DETR-ResNet50 model running on the FPGA. Rigorous
testing was conducted to evaluate key performance metrics,
including latency, confidence, and frame rate. The final im-
plementation demonstrated notable improvements: latency
decreased from 1429.6 ms (CPU-only) to 466.1 ms, while

the frame rate increased from 0.7 FPS to 2.1 FPS using the
HETERO (FPGA + CPU) configuration.

The hardware implementation was carried out on the In-
tel Arria 10 FPGA, selected for its flexibility and high-
performance capabilities. As shown in Fig. 9, the FPGA
provided the necessary hardware platform for high-speed
object detection. It was programmed using Intel Quartus
Prime software, enabling custom design implementation
and real-time performance optimization.

The software implementation was carried out using Python
in combination with frameworks such as TensorFlow, Py-
Torch, and Keras. OpenVINO served as the primary op-
timization toolkit, enabling efficient execution of the ob-
ject detection models on the FPGA. Visual Studio Code
(VS Code) was employed as the integrated development
environment (IDE), providing robust debugging and code
enhancement capabilities. The Intel Arria 10 FPGA was
programmed using Intel Quartus Prime software, delivering
the high-speed hardware platform required for real-time
object detection.

This detailed methodology illustrates a seamless progres-
sion from data acquisition and model optimization to sys-
tem integration and performance evaluation. The iterative
approach combined with strategic decisions such as leverag-
ing pre-trained models and developing a custom optimized
inference core enabled the system to achieve real-time de-
tection with high accuracy and low latency. This practical
and resource-efficient design resulted in a robust solution
for effectively mitigating bird pest issues in agricultural
environments.

2345-3796[https://doi.org/10.57647/j.mjee.2025.17276]
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Figure 9. Intel Arria 10 FPGA [16].

4. Results and discussion

The results presented in Table 1 reveal clear variations in la-
tency, FPS, and reliability across the three evaluated models
detr-resnet50, yolov4-tf, and ctdet_coco_dlav0_512 under
both CPU and FPGA configurations. A closer analysis of
these results provides insight into the underlying factors
contributing to these differences and underscores the advan-
tages of FPGA acceleration in real-time object detection
systems. These performance outcomes are directly linked
to the methodological choices made during development
and optimization, particularly the decision to run all three
models using identical parameter settings for a fair and con-
sistent comparison.

The detr-resnet50 model demonstrated the most substantial
improvement when transitioning from CPU to FPGA execu-
tion. Latency decreased from 1298.3 ms to 334 ms, while
FPS increased from 3.1 to 11.5. Although all models were
tested under identical parameter settings, detr-resnet50’s
architecture explains its dramatic performance gains. DETR
employs a transformer-based encoder—decoder mechanism
that demands considerable computational resources for
global attention and object matching. On the CPU, the
sequential nature of these operations increases latency; in
contrast, the FPGA’s parallel processing capabilities sub-
stantially reduce execution time by efficiently distributing
these computations. The ResNet-50 backbone, with 25.53
million parameters and requiring 8.2164 GFLOPs, adds
to the model’s computational intensity [17]. The FPGA’s
ability to accelerate convolutional operations was critical in

making detr-resnet50 both the most resource-intensive and
the most improved model in this study.

One notable advantage of FPGA-based inference over CPU
processing is power efficiency. Prior studies indicate that,
for complex vision pipelines, FPGAs can achieve ener-
gy/frame reductions between 1.2x and 22.3x compared
to CPUs, reflecting significant efficiency gains [18]. How-
ever, FPGAs may exhibit higher static power consumption,
potentially limiting their suitability for ultra-low-power ap-
plications. This study did not include precise power mea-
surements; future work should incorporate detailed power
profiling to quantify the energy efficiency of FPGA-based
agricultural systems [19].

The reliability of detr-resnet50 was evaluated under diverse
field scenarios. Upon successful bird detection, the system
captures the scene, processes the image, and sends a Tele-
gram notification to the farmer, containing detection time,
a snapshot of the bird, and the number of birds detected.
This real-time functionality allows for prompt responses
to potential threats, with average delays ranging between
1.1 s and 1.3 s depending on the model. Detr-resnet50 con-
sistently achieved accurate detections within a 10 m range
but showed slightly reduced accuracy for smaller birds at
greater distances, likely due to the lower-resolution inputs
challenging transformer-based architectures. The 1.3 s no-
tification delay was primarily attributed to the attention
computation overhead and the time required for data trans-
mission via Telegram.

In contrast, yolov4-tf exhibited minimal performance im-
provement on FPGA, with latency decreasing from 949.5

Table 1. Comparison between CPU and HETERO.

Latency (ms) FPS
Model
CPU HETERO:FPGA, CPU CPU HETERO:FPGA, CPU
detr-resnet50 1298.3 334 3.1 11.5
yolo-v4-tf 5787.7 609.6 4.2 3.6
ctdet_coco_dlav0_512  949.5 1116 6 11.8
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ms to 609.6 ms, while FPS dropped slightly from 4.2 to
3.6. This model uses a single-shot, grid-based detection
method with anchor boxes at multiple scales. While compu-
tationally efficient, yolov4-tf’s 129.56 GFLOPs and 64.33
million parameters make it more demanding than earlier
YOLO versions [20]. Under the tested conditions, yolov4-tf
failed to reliably detect birds within 10 meters, likely due to
its reliance on anchor boxes and difficulty handling small
objects. Its 1.1 s notification delay reflected efficient result
transmission but could not offset its detection accuracy lim-
itations.

The ctdet_coco_dlav0_512 model achieved balanced perfor-
mance gains on FPGA, with latency reduced from 578.7 ms
to 111.6 ms, and FPS increasing from 6.0 to 11.8. CTDet
uses a keypoint-based approach, representing objects as
center points and generating heatmaps to predict positions.
Bounding box size and placement are regressed from these
keypoints. Although lighter than DETR and yolov4-tf, CT-
Det still processes 17.91 million parameters and requires
62.21 GFLOPs [21]. Like yolov4-tf, CTDet struggled to
detect birds within 10 meters, likely due to sensitivity to
occlusions and small-object detection challenges. The noti-
fication delay was 1.2 s, and the model maintained stable
performance in other scenarios, but lacked the close-range
accuracy required for this application.

A visual comparison of the models’ detection accuracy is
shown in Table 2, Fig. 10, Fig. 11, and Fig. 12. These
results clearly indicate that detr-resnetS0 successfully de-
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tected birds within 10 meters, while yolov4-tf and ct-
det_coco_dlav0_512 failed under identical conditions. This
underscores the superior accuracy and robustness of detr-
resnet50, particularly in challenging, real-world agricul-
tural environments.

The performance variations among the three models stem
from their distinct architectural designs and the degree to
which their operations align with FPGA’s parallel process-
ing capabilities. The detr-resnet50 model showed the most
pronounced improvement due to its computationally in-
tensive transformer architecture and ResNet-50 backbone,
which leveraged parallel execution efficiently. yolov4-tf,
designed for single-shot detection, exhibited limited ac-
celeration gains because of its inherently efficient design
and underperformed for close-range detection tasks. ct-
det_coco_dlav(_512 offered a balance between complex-
ity and performance, benefiting moderately from FPGA’s
ability to process heatmap generation and regression tasks
concurrently, but struggled with detecting smaller, nearby
objects.

Reliability metrics including sensitivity, notification delay,
and system uptime further reinforce the real-world applica-
bility of these findings. The detr-resnet50 emerged as the
optimal choice for scenarios demanding precise detection
within a 10-meter range, offering both high accuracy and
substantial FPGA optimization benefits. The yolov4-tf per-
formed better for long-range detection but lacked depend-
ability at shorter distances, while CTDet provided balanced,

Table 2. Comparative performance and detection accuracy of models.

Model Latency (ms) Latency (ms) FPS FPS Notification Delay Detection Sensitivity
(CPU) (FPGA)  (CPU) (FPGA) s) accuracy range
detr-resnet50 1298.3 334 3.1 115 13 Detected target Upto
10 meters
yolo-v4-tf 949.5 609.6 42 3.6 1.1 Missed target Failed within
10 meters
ctdet_coco_dlav0.512 5787 111.6 60 118 1.2 Missed target | 2ied within
10 meters

Latency: 1444.7 ms
FPS: 0.7

Devics: CPU

Birds Inferencs: 108

Figure 10. Birds’ detection using detr-resnet50 model.
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Figure 11. Birds’ detection using ctdet_coco_dlav0_512 model. Birds’ detection using ctdet_coco_dlav0_512 model.

Latency: 1144.7 ms
FPS: 0.9

Devies: CPU

Birds inference: 0

Figure 12. Birds’ detection using yolo-v4-tf.

medium-range detection capabilities but was hindered by
object occlusions. Overall, these results underscore the im-
portance of hardware—software co-optimization in achieving
real-time object detection for agricultural applications such
as bird monitoring in paddy fields.

5. Conclusion

This project successfully developed a real-time bird
detection system leveraging FPGA-accelerated object
detection models to safeguard paddy fields from bird pests.
Three models named detr-resnet50, ctdet_coco_dlav0_512,
and yolo-v4-tf-were evaluated based on latency, FPS, and
detection confidence. Quantitative analysis revealed that
detr-resnet50 achieved the best performance within a
10-meter detection range, reducing inference latency from
1298.3 ms (CPU-only) to 334 ms (FPGA) and increasing
FPS from 3.1 to 11.5 representing an improvement of
over 200% compared to CPU performance. In contrast,

yolo-v4-tf and ctdet_coco_dlav(_512 exhibited reduced
accuracy in close-range detection, further emphasizing
detr-resnet50 as the most suitable model for this application.
To maintain high performance under concurrent operations,
multi-threading was implemented, ensuring that tasks
such as detection and notification ran without bottlenecks.
A Telegram bot notification system delivered annotated
images to farmers with an average delay of just 1.3 seconds,
substantially reducing the need for constant manual field
monitoring. By combining Al-driven object detection
with FPGA acceleration, this system not only enhanced
crop protection but also promoted eco-friendly pest
control and improved operational efficiency. The solution
provides a scalable and robust framework for real-time pest
management while generating valuable data for long-term
agricultural strategies, demonstrating the transformative
potential of AI-FPGA integration in precision agriculture.
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