Document Type : Review Article

Authors

1 LPHE-MS, Faculty of Sciences, University Mohammed V in Rabat, Rabat, Morocco

2 ECE Department, Lyallpur Khalsa College Technical Campus, Jalandhar, Punjab, India

3 Department of Physics, Faculty of Sciences El Jadida, University Chouaib Doukkali of El Jadida, Morocco

4 James Watt School of Engineering, University of Glasgow, Glasgow City, Scotland, United Kingdom

10.57647/j.mjee.2025.17700

Abstract

CubeSats are a developing disruptive technology with a broad range of applications, including moon missions supplied by some international space agencies. They have motivated the scientific community to focus on this sector with various technologies aimed to be more suitable for advanced CubeSat and deep space missions. These CubeSat capabilities can be enhanced by designing a suitable new antenna design, which has the potential to significantly reduce manufacturing costs and energy consumption. This research investigates how to develop Fabry-Perot antenna designs and their use for advanced CubeSat missions. In order to identify the best CubeSat application for each design examined in this work, tens of Fabry-Perot antenna designs put forth by the scientific community are evaluated for their geometrical, mechanical, and electrical appropriateness for an advanced CubeSat mission. This study provides comprehensive data to examine the current status of Fabry-Perot antennas and if they are suitable for CubeSats. Furthermore, we offer a collection of design-based analytical models that could be applied to various upcoming advanced CubeSat projects at academic institutions or in collaboration with private or national space agencies.

Keywords

  1. J. C. Moltz, “3. Civil Space: Science and Exploration”, Crowded Orbits: Conflict and Cooperation in Space, New York Chichester, West Sussex: Columbia University Press, pp. 61-100, 2014. https://doi.org/10.7312/columbia/9780231159128.003.0003.
  2. L. Kepko, R. Nakamura, Y. Saito, A. Vourlidas, M. G.G.T. Taylor, C. H. Mandrini, X. Blanco-Cano, D. Chakrabarty, I. A. Daglis, C. M. De Nardin, A. Petrukovich, M. Palmroth, G. Ho, L. Harra, J. Rae, M. Owens, E. Donovan, B. Lavraud, G. Reeves, D. Tripathi, N. Vilmer, J. Hwang, S. Antiochos, C. Wang, “Heliophysics Great Observatories and international cooperation in Heliophysics: An orchestrated framework for scientific advancement and discovery”, Advances in Space Research, vol. 73, no. 10, pp. 5383-5405, 2024. https://doi.org/10.1016/j.asr.2024.01.011.
  3. J. C. Moltz, “4. Commercial Space Developments”, Crowded Orbits: Conflict and Cooperation in Space, New York Chichester, West Sussex: Columbia University Press, pp. 101-136, 2014. https://doi.org/10.7312/columbia/9780231159128.003.0004.
  4. M. Salmaso, Z. Wang, L. Duenas-Osorio& M. Jernigan, “Sustainable Space Logistics for Artemis Missions and Deep Space Exploration”, AIAA SCITECH 2025 Forum, vol. 1479, 2025.‏ https://doi.org/10.2514/6.2025-1479.
  5. NASA CubeSat Launch Initiative, CubeSat101: Basic Concepts and Processes for First-Time CubeSat Developers, U.S. Launch Vehicles Used for CubeSat Launch, 08, 2017.
  6. M. El Bakkali “Planar Antennas with Parasitic Elements and Metasurface Superstrate Structure for 3U CubeSats”, PhD. Thesis, July 2020, Sidi Mohamed Ben Abdellah University, city of Fez, Morocco.
  7. A. Dahir, C. Gillard, B. Wallace, J. Sobtzak, S. Palo, & D. Kubitschek, “Forgoing Time and State—The Challenge for CubeSats on Artemis-1”, JoSS J. Small Satell, vol. 10, pp. 1049-1060, 2021.‏
  8. A. Babuscia, C. Hardgrove, K. M. Cheung, P. Scowen, & J. Crowell, “Telecommunication system design for interplanetary CubeSat missions: LunaH-Map”, 2017 IEEE Aerospace Conference, IEEE, pp. 1-9, Mar. 2017.‏ https://doi.org/10.1109/AERO.2017.7943826.
  9. T. R. Lockett, J. Castillo-Rogez, L. Johnson, J. Matus, J. Lightholder, A. Marinan, and A. Few, “Near-Earth asteroid scout flight mission”, IEEE Aerospace and Electronic Systems Magazine, vol. 35, no. 3, pp. 20-29, 2020.‏ https://doi.org/10.1109/MAES.2019.2958729.
  10. P. C. Lai, D. C. Sternberg, R. J. Haw, E. D. Gustafson, P. C. Adell, & J. D. Baker, “Lunar flashlight CubeSat GNC system development”, Acta Astronautica, vol. 173, pp. 425-441, 2020.‏ https://doi.org/10.1016/j.actaastro.2020.01.022.
  11. A. J. Ricco, S. R. Santa Maria, R. P. Hanel, & S. Bhattacharya, “BioSentinel: a 6U nanosatellite for deep-space biological science”, IEEE Aerospace and Electronic Systems Magazine, vol. 35, no. 3, pp. 6-18, 2020.‏ https://doi.org/10.1109/MAES.2019.2953760.
  12. Ö. Karatekin, E. Le Bras, A. Herique, P. Tortora, B. Ritter, M. Scoubeau, & V. M. Moreno, “Juventas Cubesat for the Hera mission”, European Planetary Science Congress, EPSC2021-750, Sep. 2021.‏ https://doi.org/10.5194/epsc2021-750.
  13. K. Oguri, K. Oshima, S. Campagnola, K. Kakihara, N. Ozaki, N. Baresi, Y. Kawakatsu& R. Funase, “EQUULEUS trajectory design”, Journal of the Astronautical Sciences, vol. 67, no. 3, pp. 950-976, 2020.‏ https://doi.org/10.1007/s40295-019-00206-y.
  14. J. Puig-Suari, C. Turner, and W. Ahlgren, “Development of the standard CubeSat deployer and a CubeSat class picosatellite”, IEEE Aerospace Conf. Proceedings, pp. 1347–1353, 2001.https://doi.org/10.1109/AERO.2001.931726.
  15. B. Benhmimou, F. Omari, N. Gupta, K. El Khadiri, R. A. Laamara, & M. El Bakkali, “Air-Gap Reduction and Antenna Positioning of an X-Band Bow Tie Slot Antenna on 2U CubeSats”, Journal of Applied Engineering and Technological Science (JAETS), vol. 6, no. 1, pp. 86–102, 2024. https://doi.org/10.37385/jaets.v6i1.6158.
  16. N. Oubahsis, B. Benhmimou, M. Karim, N. Hussain, F. Omari, N. Gupta, K. El Khadiri, K. Cengiz, S. Garg, R. A. Laamara, J. M. Guerrero & M. El Bakkali, “Comparative Analysis of Monopole and Dipole Antennas for CubeSats: A Review”, In: Gonçalves, P.J.S., Singh, P.K., Tanwar, S., Epiphaniou, G. (eds) Proceedings of Fifth International Conference on Computing, Communications, and Cyber-Security. IC4S 2023. Lecture Notes in Networks and Systems, Springer, Singapore, vol. 1128, 2025. https://doi.org/10.1007/978-981-97-7371-8_39.
  17. L. Zhiming, B. Jens, L. Shaobin, and K.Xiangkun, “Investigations and prospects of Fabry-Perot antennas: A review”, Journal of Systems Engineering and Electronics, vol. 32, no. 4, pp. 731-747, 2021.‏ https://doi.org/10.23919/JSEE.2021.000063.
  18. A. Feresidis, K. Konstantinidis, and P. Gardner, “Fabry-Perot cavity antennas”, Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications, pp. 221-241, 2018.‏ https://doi.org/10.1007/978-3-319-62773-1_7.
  19. A. Goudarzi, M. M. Honari, and R.Mirzavand, “Resonant cavity antennas for 5G communication systems: A review”, Electronics, vol. 9, no. 7, pp. 1080, 2020.‏https://doi.org/10.3390/electronics9071080.
  20. X. Zhang, C. Chen, S. Jiang, Y. Wang, and W. Chen, “A high-gain polarization reconfigurable antenna using polarization conversion metasurface”, Progress In Electromagnetics Research C, vol. 105, pp. 1-10, 2020.‏10.2528/PIERC20052001.
  21. S. P. Swapna, G. S. Karthikeya, S. K. Koul, and A.Basu, “Three-port pattern diversity antenna module for 5.2 GHz ceiling-mounted WLAN access points”, Progress In Electromagnetics Research C, vol. 98, pp. 57-67, 2020.‏10.2528/PIERC19101605.
  22. Y. Xu, R. Lian, Z. Wang, and Y. Z. Yin, “Wideband Fabry-Perot resonator antenna with single-layer partially reflective surface”, Progress In Electromagnetics Research Letters, vol. 65, pp. 37-41, 2017.‏https://doi.org/10.1109/CSRSWTC50769.2020.9372475.
  23. H. F. Huang, and Q. S. Fan, “Broadband and high-aperture efficiency Fabry-Perot antenna with low RCS based on nonuniform metamaterial superstrate”, Progress In Electromagnetics Research M, vol. 101, pp. 59-68, 2021.‏10.2528/PIERM20120903.
  24. N. Chaskar, S. D. Jagtap, R. Thakare, and R. K. Gupta, “Gain flattening of wideband FPC antenna using elliptical and rectangular slotted AMC layers”, Progress In Electromagnetics Research C, vol. 110, pp. 81-89, 2021.‏10.2528/PIERC21010402.
  25. S. Karamzadeh, V. Rafiei, and M.Kartal, “Beam steering fabryperot array antenna for mm-wave application”, Progress In Electromagnetics Research M, vol. 91, pp. 81-89, 2020.‏10.2528/PIERM20020101.
  26. F. Wu, and K. M.Luk, “A Cavity-Integrated Self-Polarizing Method for Circularly Polarized Fabry-Perot Antenna Design”, 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, IEEE, pp. 1091-1092, Jul. 2018.‏https://doi.org/10.1109/APUSNCURSINRSM.2018.8608186.
  27. P. B. M. Chandran, B. Zheng, S. An, H. Tang, H. Li, and H. Zhang, “Sandwiched PRS Fabry-Perot Structure for Achieving Compactness and Improved Aperture Efficieny”, 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, IEEE, pp. 2043-2044, Jul. 2018.‏https://doi.org/10.1109/APUSNCURSINRSM.2018.8608652.
  28. J. Yang, F. Xu, and S. Yao, “A dual frequency Fabry-Perot antenna based on metamaterial lens”, 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), IEEE, pp. 1-3, Dec. 2018.‏https://doi.org/10.1109/ISAPE.2018.8634017.
  29. Z. P. Li, J. Ma, B. Shi, and L. Peng, “Ultra-wideband and high gain Fabry-Perot cavity antenna using frequency selective surface and parasitic patch”, 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), IEEE, pp. 1-3, Dec. 2018.‏https://doi.org/10.1109/ISAPE.2018.8634123.
  30. S. Sun, Z. Liu, S. Liu, X. Pang, X. Kong, and X. Zhao, “Bandwidth enhancement and RCS reduction for a wideband high-gain Fabry-Perot antenna”,2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), IEEE, pp. 1-4, Dec. 2018.‏https://doi.org/10.1109/ISAPE.2018.8634254.
  31. C. Chen, B. Zhang, and K. Huang, “Non uniform Fabry–Perot leaky-wave antenna with flat-topped radiation patterns for microwave wireless power transmission”, IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 9, pp. 1863-1867, 2019.‏https://doi.org/10.1109/LAWP.2019.2931593.
  32. F. Deng, and J. Qi, “Shrinking profile of Fabry–Perot cavity antennas with stratified metasurfaces: Accurate equivalent circuit design and broadband high-gain performance”, IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 1, pp. 208-212, 2019.‏https://doi.org/10.1109/LAWP.2019.2958108.
  33. R. Fakhte, and I.Aryanian, “Compact Fabry–Perot antenna with wide 3 dB axial ratio bandwidth based on FSS and AMC structures”, IEEE Antennas and Wireless Propagation Letters, vol. 19(8), pp. 1326-1330, 2020.‏https://doi.org/10.1109/LAWP.2020.2999745.
  34. M. W. Niaz, Y. Yin, R. A. Bhatti, Y. M. Cai, and J. Chen, “Wideband Fabry–Perot resonator antenna employing multilayer partially reflective surface”, IEEE Transactions on Antennas and Propagation, vol. 69(4), pp. 2404-2409, 2020.‏http://dx.doi.org/10.1109/TAP.2020.3022555.
  35. J. G. Lee, and J. H. Lee, “Low-profile dual-band superstrate antenna using metasurface”, Progress in Electromagnetics Research C, vol. 77, pp. 175-184, 2017.‏10.2528/PIERC17060603.
  36. H. H. Tran, and T. K. Nguyen, “Wideband high gain circularly polarized Fabry-Perot Resonator antenna with asymmetric superstrates”,2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, IEEE, pp. 775-776, Jul. 2017.‏https://doi.org/10.1109/APUSNCURSINRSM.2017.8072430.
  37. M. Akbari, S. Zarbakhsh, F. Samadi, M. Moghadam, and A. R.Sebak, “High gain CP antenna with low RCS based on Fabry-Perot cavity”,2018 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), IEEE, pp. 1-2, Aug. 2018.‏https://doi.org/10.1109/ANTEM.2018.8572835.
  38. P. Y. Qin, Y. J. Guo, and L. Y. Ji, “A Wideband Fabry-Perot Antenna with Quad-Layer Partially Reflective Surface”.‏
  39. H. Klaina, B. Ratni, A. V. Alejos, O. Aghzout, and S. N.Burokur, “Directive dual-band Fabry–Pérot cavity antenna for 5G-IoT near-ground communications”,2019 13th European Conference on Antennas and Propagation (EuCAP), IEEE, pp. 1-5, Mar. 2019.‏
  40. D. Abbou, T. P. Vuong, R. Touhami, F. Ferrero, D. Hamzaoui, and M. C.Yagoub, “High-gain wideband partially reflecting surface antenna for 60 GHz systems”, IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 2704-2707, 2017.‏https://doi.org/10.1109/LAWP.2017.2742862.
  41. K. Cao, F. Xu, and L. Yang, “Low-profile dual-band fabry-perot resonator antenna”,2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), IEEE, pp. 1-3, Oct. 2017.‏https://doi.org/10.1109/APCAP.2017.8420447.
  42. X. Z. Xiang, Z. G. Liu, and W. B. Lu, “Small-aperture and low sidelobe level Fabry-Perot resonator antenna”, 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP), IEEE, pp. 292-293, Aug. 2018.‏https://doi.org/10.1109/APCAP.2018.8538128.
  43. C. L. Chen, Z. G. Liu, and H. Wang, “A wideband circularly polarized Fabry-Perot resonator antenna with chiral metamaterial”,2019 IEEE Asia-Pacific Microwave Conference (APMC), IEEE, 2019, pp. 795-797, Dec. 2019.‏https://doi.org/10.1109/APMC46564.2019.9038264.
  44. J.Xie, F. Qin, W. Cheng, H. Zhang, and S. Gao, “A Design of Extremely Wideband Fabry-Perot Cavity Antenna”,2019 IEEE International Conference on Computational Electromagnetics (ICCEM), IEEE, 2019, pp. 1-3, Mar. 2019.‏https://doi.org/10.1109/COMPEM.2019.8779075.
  45. Y. Ge and K. Qin, “Wideband high-gain circularly-polarised antenna based on fabry-perot concept and a conical horn”, 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, pp. 1-3, 2018.https://doi.org/10.1049/cp.2018.0614.
  46. M. A. Meriche, H. Attia, A. Messai, S. S. I. Mitu, and T. A.Denidni,“Directive wideband cavity antenna with single-layer meta-superstrate”, IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 9, pp. 1771-1774, 2019.‏https://doi.org/10.1109/LAWP.2019.2929579.
  47. T. K. Nguyen, “High‐gain circularly polarised Fabry–Perot antenna with tapered frequency selective surface for X-band”, Electronics Letters, vol. 55, no. 5, pp. 241-242, 2019.‏https://doi.org/10.1049/el.2018.7831.
  48. H. Song, Q. Zhang, S. Liu, Z. Liu, X. Kong, & X. Zhao, “Wideband High-Gain Fabry-Perot Antenna with RCS Reduction Based on Symmetric Polarization Conversion Metasurface”,2019 IEEE 2ndInternational Conference on Electronics Technology (ICET), IEEE, pp. 644-647, May 2019.‏https://doi.org/10.1109/ELTECH.2019.8839624.
  49. N. Hussain, J. Park, A. Abbas, M. Jeong, H. Bong, S. Y. Rhee, P. Kim, and N. Kim, “A circularly polarized fabry-perot cavity antenna for millimeter-wave applications”, 2019 8th Asia-Pacific Conference on Antennas and Propagation (APCAP), IEEE, pp. 424-425, Aug. 2019.‏https://doi.org/10.1109/APCAP47827.2019.9472166.
  50. F. Omari, B. Benhmimou, N. Hussain, R. A. Laamara, S. K. Arora, J. M. Guerrero, andM. E. Bakkali,“UM5 of Rabat to Deep Space: Ultra-Wide Band and High Gain Only-Metal Fabry–Perot Antenna for Interplanetary CubeSats in IoT Infrastructure”, Low Power Architectures for IoT Applications, Singapore: Springer Nature Singapore, pp. 153-164, 2023.‏ https://doi.org/10.1007/978-981-99-0639-0_8.
  51. X. Yang, Y. Liu, H. Lei, Y. Jia, P. Zhu and Z. Zhou, “A Radiation Pattern Reconfigurable Fabry–Pérot Antenna Based on Liquid Metal”, IEEE Transactions on Antennas and Propagation, vol. 68, no. 11, pp. 7658-7663, Nov. 2020.https://doi.org/10.1109/TAP.2020.2993310.
  52. A.D. Chaudhari, P. Chand, R. Keley, and K.P. Ray, “Design and Development of Printed Antennas for Satellite-Based AIS Applications”, 2019 TEQIP III Sponsored Intern. Conf. on Microwave Integrated Circuits, Photonics & Wireless Networks (IMICPW), IEEE, pp. 341-344, 2019. http://dx.doi.org/10.1109/IMICPW.2019.8933263.
  53. J. Ren, W. Jiang, K. Zhang and S. Gong, “A High-Gain Circularly Polarized Fabry–Perot Antenna With Wideband Low-RCS Property”, in IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 5, pp. 853-856, May 2018.https://doi.org/10.1109/LAWP.2018.2820015.
  54. W. Cao, Q. Wang, J. Jin and H. Li, “Magneto-Electric Dipole Antenna (MEDA)-Fed Fabry-Perot Resonator Antenna (FPRA) With Broad Gain Bandwidth in Ku Band”, IEEE Access, vol. 6, pp. 65557-65562, 2018.https://doi.org/10.1109/ACCESS.2018.2878054.
  55. K. Sumathi, S. Lavadiya, P. Yin, et al., “High gain multiband and frequency reconfigurable metamaterial superstrate microstrip patch antenna for C/X/Ku-band wireless network applications”, Wireless Netw., vol. 27, pp. 2131–2146, 2021. https://doi.org/10.1007/s11276-021-02567-5.
  56. F. Qin et al., “Wideband Circularly Polarized Fabry-Perot Antenna [Antenna Applications Corner]”, IEEE Antennas and Propagation Magazine, vol. 57, no. 5, pp. 127-135, Oct. 2015.http://dx.doi.org/10.1109/MAP.2015.2470678.
  57. Q. Chen and H. Zhang, “High-Gain Circularly Polarized Fabry–Pérot Patch Array Antenna With Wideband Low-Radar-Cross-Section Property”, IEEE Access, vol. 7, pp. 8885-8889, 2019.https://doi.org/10.1109/ACCESS.2018.2890691.
  58. K. K. Naik and P. A. Vijaya Sri, “Design of Hexadecagon Circular Patch Antenna with DGS at Ku Band for Satellite Communications”, Progress In Electromagnetics Research M, vol. 63, pp. 163-173, 2018.http://dx.doi.org/10.2528/PIERM17092205.
  59. A. Calleau, M. García-Vigueras, H. Legay, R. Sauleau and M. Ettorre, “Circularly Polarized Fabry–Perot Antenna Using a Hybrid Leaky-Wave Mode”, in IEEE Transactions on Antennas and Propagation, vol. 67, no. 9, pp. 5867-5876, Sept. 2019.https://doi.org/10.1109/TAP.2019.2920266.
  60. Y. Cheng and Y. Dong, “Bandwidth Enhanced Circularly Polarized Fabry–Perot Cavity Antenna Using Metal Strips”, IEEE Access, vol. 8, pp. 60189-60198, 2020.http://dx.doi.org/10.1109/ACCESS.2020.2983062.
  61. Y.Azizi, N. Komjani, M. Karimipour, and I.Aryanian, “Demonstration of a self-polarizing dual-band single-feed circularly polarized Fabry-Perot cavity antenna with a broadband axial ratio”, AEU-International Journal of Electronics and Communications, vol. 111, pp. 152909, 2019.‏https://doi.org/10.1016/j.aeue.2019.152909.
  62. T. Wu, J. Chen, and P. F. Wu, “Broadband and multi-mode Fabry–Pérot cavity antenna with gain enhancement”, AEU-International Journal of Electronics and Communications, vol. 127, pp. 153440, 2020.‏https://doi.org/10.1016/j.aeue.2020.153440.
  63. M. El Bakkali, M. E. Bekkali, G. S. Gaba, J. M. Guerrero, L. Kansal, M. Masud, “Fully Integrated High Gain S-Band Triangular Slot Antenna for CubeSat Communications”, electronics, 2021. https://doi.org/10.3390/electronics10020156.
  64. L. Leszkowska, M. Rzymowski, K. Nyka, and L.Kulas, “High-gain compact circularly polarized X-band superstrate antenna for CubeSat applications”, IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 11, pp. 2090-2094, 2021.‏https://doi.org/10.1109/LAWP.2021.3076673.
  65. Y. Liu, L. Zhu, W. Zhang, and W. Wang, “Mechanical azimuthal beam‐steering Fabry–Perot resonator antenna with large deflection angle”, IET Microwaves, Antennas & Propagation, vol. 18, no. 6, pp. 413-421, 2024.‏https://doi.org/10.1049/mia2.12471.
  66. K. Konstantinidis, A. P. Feresidis, and P. S. Hall, “Multilayer partially reflective surfaces for broadband Fabry-Perot cavity antennas”, IEEE Transactions on Antennas and Propagation, vol. 62, no. 7, pp. 3474-3481, 2014.‏https://doi.org/10.1109/TAP.2014.2320755.
  67. N. Melouki, A. Hocini, and T. A.Denidni, “High gain and Wideband Fabry-Perot Resonator Antenna based on a compact single PRS layer”, IEEE Access, vol. 10, pp. 96526-96537, 2022.‏https://doi.org/10.1109/ACCESS.2022.3205605.
  68. R. De, M. P. Abegaonkar, and A.Basu, “A broadband circularly polarized Fabry Perot antenna with spatially separated superstrate area excitation for CubeSat applications”, Scientific Reports, vol. 13(1), pp. 11224, 2023.‏https://doi.org/10.1038/s41598-023-38440-y.
  69. X. Sheng, X. Lu, N. Liu, and Y. Liu, “Design of Broadband High-Gain Fabry–Pérot Antenna Using Frequency-Selective Surface”, Sensors, vol. 22, no. 24, pp. 9698, 2022.‏https://doi.org/10.3390/s22249698.
  70. W. Cao, X. Lv, Q. Wang, Y. Zhao, and X. Yang, “Wideband circularly polarized Fabry–Pérot resonator antenna in Ku-band”, IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 4, pp. 586-590, 2019.‏https://doi.org/10.1109/LAWP.2019.2896940.
  71. Y. I. Abdulkarim, H. N. Awl, F. F. Muhammadsharif, M. Karaaslan, R. H. Mahmud, S. O. Hasan, O. Isik, H. Luo, and S. Huang, “A Low-Profile Antenna Based on Single-Layer Metasurface for Ku‐Band Applications”, International Journal of Antennas and Propagation, vol. 2020, no. 1, pp. 8813951, 2020.‏https://doi.org/10.1155/2020/8813951.
  72. N. Melouki, A. Hocini, and T. A.Denidni, “High-gain and Wideband Fabry-Perot Resonator Antenna based on a Pixelated single PRS layer for Ku-band Applications”, 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), IEEE, pp. 988-989, 2022.‏https://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9887266.
  73. C. W. Luo, Y. C. Jiao, G. Zhao, and G. T. Chen, “Novel low-profile dual-band and dual-polarization Fabry-Perot resonator antenna”, International Journal of RF and Microwave Computer‐Aided Engineering, vol. 31, no. 4, pp. e22566, 2021.‏https://doi.org/10.1002/mmce.22566.
  74. Y. Zou, X. Kong, Z. Cao, X. Zhang, and Y. Zhao, “Reconfigurable integrated structures with functions of Fabry–Perot antenna and wideband liquid absorber for radar system stealth”, Scientific Reports, vol. 13, no. 1, pp. 14678, 2023.‏ https://doi.org/10.1038/s41598-023-41934-4.
  75. Y. H. Lv, X. Ding, and B. Z. Wang, “Dual-wideband high-gain Fabry-Perot cavity antenna”, IEEE Access, vol. 8, pp. 4754-4760, 2019.‏https://doi.org/10.1109/ACCESS.2019.2962078.
  76. F. Omari, N. Hussain, B. Benhmimou, N. Gupta, R. A. Laamara, M.K.A. Rahim, J.M. Guerrero, A. Kogut, F. Arpanaei, I. Kuzmechive, G. Annino, S.K. Arora, M. Alibakhshikenari, Y. I. Abdulkarim, M. El Bakkali, “Only-Metal Ultra-Small Circular Slot Antenna for 3U CubeSats”, 13th International Conference on Computing, Communication and Technologies (13th ICCCNT), IEEE, pp. 1-6, Oct. 2022.https://doi.org/10.1109/ICCCNT54827.2022.9984579.
  77. B. Benhmimou, N. Hussain, N. Gupta, R. A. Laamara, J. M. Guerrero, A. Kogut, G. Annino, S.K. Arora, M.K.A. Rahim, M. El Bakkali, F. Arpanaei, and M. Alibakhshikenari, “Miniaturized Transparent Slot Antenna for 1U and 2U CubeSats: CRTS Space Missions”, 13th International Conference on Computing, Communication and Technologies (13th ICCCNT), IEEE, pp. 1-6, Oct. 2022.https://doi.org/10.1109/ICCCNT54827.2022.9984279.
  78. A. Cervone, F. Topputo, S. Speretta, A. Menicucci, E. Turan, P. Di Lizia, M. Massari, V. Franzese, C. Giordano, G. Merisio, D. Labate, G. Pilato, E. Costa, E. Bertels, A. Thorvaldsen, A. Kukharenka, J. Vennekens, R. Walker, “LUMIO: A CubeSat for observing and characterizing micro-meteoroid impacts on the Lunar far side”, Acta Astronautica, vol. 195, pp. 309-317, 2022.https://doi.org/10.1016/j.actaastro.2022.03.032.
  79. T. Hestad, V. Barabash, R.Laufer, “The APTAS student CubeSat Mission: A case study for reflective practitioner in education and student teams”, Advances in Space Research, vol. 72, no. 6, pp. 2245-2258, 2023.https://doi.org/10.1016/j.asr.2023.06.024.
  80. S. Bollattino, and F.Stesina, “Fast development and validation of a Sensing Suite system for CubeSats”, Acta Astronautica, vol. 223, pp. 342-354, 2024.‏https://doi.org/10.1016/j.actaastro.2024.07.005.
  81. I. A. Lomaka, N. A.Elisov, E. A. Boltov, and S. V.Shafran, “A novel design of CubeSat deployment system for transformable structures”, Acta Astronautica, vol. 197, pp. 179-190, 2022.‏https://doi.org/10.1016/j.actaastro.2022.05.027.
  82. R. T. Rajan, S. Ben-Maor, S. Kaderali, C. Turner, M. Milhim, C. Melograna, D. Haken, G. Paul, Vedant, V. Sreekumar, J. Weppler, Y. Gumulya, R. Bunt, A. Bulgarini, M. Marnat, K. Bussov, F. Pringle, J. Ma, R. Amrutkar, M. Coto, J. He, Z. Shi, S. Hayder, D. Saad, F. Jaber, J. Zuo, M. Alsukour, C. Renaud, M. Christie, N. Engad, Y. Lian, J. Wen, R. McAvinia, A. Simon-Butler, A. Nguyen, and J. Cohen, “Applications and Potentials of Intelligent Swarms for magnetospheric studies”, Acta Astronautica, vol. 193, pp. 554-571, 2022.‏https://doi.org/10.48550/arXiv.2107.01601.
  83. N. Saeed, A.Elzanaty, H. Almorad, H.Dahrouj, T. Y. Al-Naffouri, and M. S.Alouini, “CubeSat communications: Recent advances and future challenges”, IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp. 1839-1862, 2020.‏https://doi.org/10.1109/COMST.2020.2990499.
  84. D. Calabria, I. Trozzi, E. Lazzarini, A. Pace, M. Zangheri, L. Iannascoli, N. M. Davis, S. S. G. Matadha, T. B. De Albuquerque, S. Pirrotta, M. D. Bianco, G. Impresario, L. Popova, N. Lovecchio, G. de Cesare, D. Caputo, J. Brucato, A. Nascetti, M. Guardigli, and M. Mirasoli, “AstroBio-CubeSat: A lab-in-space for chemiluminescence-based astrobiology experiments”, Biosensors and Bioelectronics, vol. 226, pp. 115110, 2023.‏https://doi.org/10.1016/j.bios.2023.115110.
  85. J. Zhang, C. Wang, H. Xing, and J.Guo, “CubeSat standardized modular assembly method and design optimization”, Acta Astronautica, vol. 216, pp. 370-380, 2024.‏https://doi.org/10.1016/j.actaastro.2024.01.011.
  86. G. Borelli, G. Gaias, Y. Nakajima, C. Colombo, V. Capuano, F. Saggiomo,... and S.Natalucci, “Mission analysis and guidance and control for the SpEye inspection CubeSat”, Acta Astronautica, vol. 220, pp. 75-87, 2024.‏https://doi.org/10.1016/j.actaastro.2024.04.025.
  87. K. Saddul, J. Saletes, M. Kim, and A. Wittig, “Mission analysis of a 1U CubeSat post-mission disposal using a thin-film vacuum arc thruster”, Acta Astronautica, vol. 219, pp. 318-328, 2024.‏https://doi.org/10.1016/j.actaastro.2024.03.019.
  88. J. Kikuchi, O. Toshihiro, R. Hirasawa, K. Tokunaga, N. Morishita, K. Miyoshi, W. Torii, N. Bando, C. Hirose, T. Kinjo, Y. Akizuki, and T. Hashimoto, “Passive Thermal Control Design and Flight Operation Results of Nano Moon Lander OMOTENASHI”, Acta Astronautica, 2024.‏https://doi.org/10.1016/j.actaastro.2024.06.034.
  89. N. Chahat, E. Decrossas, D. Gonzalez-Ovejero, O. Yurduseven, M. Radway, R. Hodges, P. Estabrook, J. Baker, D. Bell, T. Cwik, G. Chattopadhyay, “Advanced CubeSat Antennas for Deep Space and Earth Science Missions: A Review”, IEEE Ant. & Prop. Magazine, vol. 99:pp. 1-1, 2019.https://doi.org/10.1109/MAP.2019.2932608.
  90. A. Elshaal, M. Okasha, E. Sulaeman, A. H. Jallad, W. F. Aizat, and A. B.Alzubaidi, “Structural Analysis of AlAinSat-1 CubeSat”, The Egyptian Journal of Remote Sensing and Space Sciences, vol. 27, no. 3, pp. 532-546, 2024.‏https://doi.org/10.1016/j.ejrs.2024.06.006.
  91. M. Cech, and M. Januska, “Tailored continuous risk management in nanosatellite space project VZLUSAT-1 using FMECA”, Journal of Space Safety Engineering, vol. 11, no. 1, pp. 102-110, 2024.‏https://doi.org/10.1016/j.jsse.2023.11.008.
  92. D. González-Bárcena, L. Peinado-Pérez, A. Fernández-Soler, Á. G. Pérez-Muñoz, J. M.Álvarez-Romero, F. Ayape,... & Á.Sanz-Andrés, “TASEC-Lab: A COTS-based CubeSat-like university experiment for characterizing the convective heat transfer in stratospheric balloon missions”, Acta Astronautica, vol. 196, pp. 244-258, 2022.‏https://doi.org/10.1016/j.actaastro.2022.04.028.
  93. S.A. Connell, D.M. Applin, N.N. Turenne, E.A. Cloutis, C. Kiddell, S. Sidhu, P. Mann, P. Ferguson, M. Driedger, J. Campos, A. Barari, M. May, V. Reddy, S.A. Mertzman, and D. Trang, “The Iris CubeSat mission: Science payload description for a pathfinder geological space weathering investigation”, Acta Astronautica, vol. 216, pp. 381-394, 2024.‏https://doi.org/10.1016/j.actaastro.2024.01.009.
  94. J. Ju, D. Kim, W. Lee, and J. Choi, “Design method of a circularly‐polarized antenna using Fabry‐Perot cavity structure”, Etri Journal, vol. 33, no. 2, pp.163-168, 2011.‏https://doi.org/10.1109/TAP.2013.2286839.
  95. H., Boutayeb, and M., Nedil, “High Gain Slot Array with Fabry‐Perot Cavity Feeding Circuit”, International Journal of Antennas and Propagation, vol. 2016, no. 1, pp. 9674742, 2016.‏https://doi.org/10.1155/2016/9674742.
  96. A. Goudarzi, M. Movahhedi, M. M. Honari, and R.Mirzavand, “Design of a wideband single-layer partially reflective surface for a circularly-polarized resonant cavity antenna”, AEU-International Journal of Electronics and Communications, vol. 129, pp. 153535, 2021.‏https://doi.org/10.1016/j.aeue.2020.153535.
  97. N. Wang, Q. Liu, C. Wu, L. Talbi, Q. Zeng, and J. Xu, “Wideband Fabry-Perot resonator antenna with two complementary FSS layers”, IEEE Transactions on Antennas and Propagation, vol. 62, no. 5, pp. 2463-2471, 2014.‏https://doi.org/10.1109/TAP.2014.2308533.
  98. J. Ahmad, M. Hashmi, &G. Nauryzbayev,“Fabry–Perot Cavity Based Decagonal Shape Patch Antenna for Millimeter-Wave Band Applications”, 2023 International Symposium on Networks, Computers and Communications (ISNCC), IEEE, pp. 1-4, Oct. 2023.‏https://doi.org/10.1109/ISNCC58260.2023.10323791.
  99. Y. Zhang, W. Cao, Z. Qian, and T. Pan, “High gain and low grating lobe electrically large array antenna by using fabry-perot cavity”, IEEE Access, vol. 7, pp. 108677-108683, 2019.‏https://doi.org/10.1109/ACCESS.2019.2933404.
  100. L. Y. Ji, P. Y. Qin, and Y. J.Guo, “Wideband Fabry-Perot cavity antenna with a shaped ground plane”, IEEE Access, vol. 6, pp. 2291-2297, 2017.‏ https://doi.org/10.1109/ACCESS.2017.2782749.
  101. H. Hung Tran, and I. Park, “Compact wideband circularly polarised resonant cavity antenna using a single dielectric superstrate”, IET Microwaves, Antennas & Propagation, vol. 10, no. 7, pp. 729-736, 2016.‏ https://doi.org/10.1049/iet-map.2015.0490.
  102. M. Hussain, K. G. Lee, and D. Kim, “Tapered high-gain Fabry–Perot cavity antenna with high sidelobe suppression for 5G industry”, Scientific Reports, vol. 13, no. 1, pp. 15744, 2023.‏ https://doi.org/10.1038/s41598-023-42716-8.
  103. M. U. Illahi, M. U. Khan, R. Hussain, and F. A. Tahir, “A highly compact Fabry Perot cavity-based MIMO antenna with decorrelated fields”, Scientific Reports, vol. 12, no. 1, pp. 14021, 2022.‏ https://doi.org/10.1038/s41598-022-18050-w.
  104. P. Mateos-Ruiz, A. Hernández-Escobar, M. E. Abdo-Sánchez, and C. Camacho-Peñalosa, “Design and fabrication of a Fabry-Pérot cavity antenna for the Ku-band”, pp. 1-4, 2020.‏ https://hdl.handle.net/10630/19799.
  105. T. K. Nguyen, and I. Park, “Design of a Substrate‐Integrated Fabry‐Pérot Cavity Antenna for K‐Band Applications”, International Journal of Antennas and Propagation, vol. 2015, no. 1, pp. 373801, 2015.‏ https://doi.org/10.1155/2015/373801.
  106. H. Attia, M. L. Abdelghani, and T. A.Denidni, “Wideband and high-gain millimeter-wave antenna based on FSS Fabry–Perot cavity”, IEEE Transactions on Antennas and Propagation, vol. 65, no. 10, pp. 5589-5594, 2017.‏ https://doi.org/10.1109/TAP.2017.2742550.
  107. Z. G. Liu, W. B. Lu, and W. Yang, “Enhanced bandwidth of high directive emission Fabry-Perot resonator antenna with tapered near-zero effective index using metasurface”, Scientific Reports, vol. 7, no. 1, pp. 11455, 2017.‏ https://doi.org/10.1038/s41598-017-11141-z.
  108. T. Hayat, M. U. Afzal, A. Lalbakhsh, and K. P.Esselle, “3-D-printed phase-rectifying transparent superstrate for resonant-cavity antenna”, IEEE antennas and wireless propagation letters, vol. 18, no. 7, pp. 1400-1404, 2019.‏ https://doi.org/10.1109/LAWP.2019.2917767.
  109. Q. Chen, X. Zou, L. Hong, D. Zhang, S. Huang, F. Yu,... and H. Zhang, “Cross-Shaped Interconnected Receiver–Transmitter Metasurface for a Circularly Polarized Fabry–Pérot Antenna”, IEEE Access, vol. 10, pp. 112019-112027, 2022.‏ https://doi.org/10.1109/ACCESS.2022.3216373.
  110. T. K. Nguyen, and I. Park, “Broadband single-feed microstrip antenna in a fabry-perot resonator”, 2015 International Workshop on Antenna Technology (iWAT), IEEE, pp. 333-334, Mar. 2015.‏ https://doi.org/10.1109/IWAT.2015.7365276.
  111. D. Abbasi-Moghadam, S. M. H. N. Hotkani, and M. Abolghasemi, “Store and forward communication payload design for LEO satellite systems”, Majlesi Journal of Electrical Engineering, 10(3), 7-17, 2016. https://oiccpress.com/mjee/article/view/4754
  112. B. Benhmimou, F. Omari, N. Gupta, K. El Khadiri, R. Ahl Laamara, M. El Bakkali, “A survey on metasurface-based antennas for CubeSat spacecrafts”, Majlesi Journal of Electrical Engineering, 19(2), 2025, pp.1-17. https://doi.org/10.57647/j.mjee.2025.1902.42
  113. P. Kulkarni, L. S. Paragond, and S. Hiremath, “Hybrid Battery Management System Using the Internet of Things”, Majlesi Journal of Electrical Engineering, 19(2), June 2025. https://doi.org/10.57647/j.mjee.2025.10896
  114. P. Parvizi, A. Mohammadi Amidi, M. Jalilian, & M. R. Zangeneh, “Nine switch converter as promising technology to improve efficiency of power electronic equipment”, Majlesi Journal of Electrical Engineering, 19(1), March 2025. https://doi.org/10.57647/j.mjee.2025.1901.06
  115. K. Safaei, A. Esmaeilian-Marnani, H. Emami, and A. H. Zaeri, “Fuzzy controller optimized by the grasshopper algorithm to realize maximum power in photovoltaic systems”, Majlesi Journal of Electrical Engineering, 19(1), March 2025, pp.1-8. https://doi.org/10.57647/j.mjee.2025.1901.02