Document Type : Reseach Article
Authors
- Guo Li. Ng 1
- Jagadheswaran Rajendran 1
- Selvakumar Mariappan 1
- Norhamizah Idros 1
- Asrulnizam Abdul. Manaf 1
- Narendra Kumar 2
- Arokia Nathan 3
1 Collaborative Microelectronics Design Excellence Centre (CEDEC), University Sains Malaysia, Penang 11900, Malaysia
2 Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
3 Darwin College, Cambridge University, Cambridge CB3 9EU, UK.
Abstract
A 65nm CMOS trimmable bandgap reference (BGR) circuit is developed to deliver stable reference voltages of 0.65V, with a supply voltage range of 1.5V to 3.6V. A key contribution is the incorporation of a 16-level 4-bit digital trimming circuit, allowing fine adjustment of the reference voltage. The trimming circuit employs a decoder and multiplexer structure to select different points along a resistor ladder, enabling post-manufacturing voltage tuning to compensate for process variations. This methodology ensures precise control of the output voltage, improving accuracy and reliability under varying conditions. The design aims to achieve a phase margin greater than 45°, a temperature coefficient below 2.5mV, and low current consumption under 6µA across Process, Voltage & Temperature (PVT) variations. The workflow includes calculating MOSFET and passive component parameters, designing the schematic of a single-stage operational amplifier and the trimmable BGR circuit, followed by pre-layout simulations. The pre-layout results show a DC gain of 60.88dB and a phase margin of 63° for the op-amp. The temperature coefficient for the 0.65V reference voltage trimmable BGR is 1.67mV across Process, Voltage & Temperature (PVT), with current consumption remaining below 6µA. Considering the degraded circuit performance caused by the process & manufacturing deviation, the addition of the trimming circuit significantly enhances the design's adaptability, ensuring it meets the performance targets even in the presence of manufacturing variations which allow us trim the affected output voltage back to desired voltage where in this work we set it at 0.65V.
Keywords
- J. Navarro and E. Ishibe, “A simple CMOS bandgap reference circuit with sub-1-V operation,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Rio de Janeiro, Brazil, 2011, pp. 2289–2292, doi: 10.1109/ISCAS.2011.5938059.
- B. Razavi, “The bandgap reference [A circuit for all seasons],” IEEE Solid-State Circuits Mag., vol. 8, no. 3, pp. 9–12, Summer 2016, doi: 10.1109/MSSC.2016.2577978.
- S. Jain, V. K. Kanchetla, and R. Zele, “A sub-1V, current-mode bandgap voltage reference in standard 65 nm CMOS process,” in Proc. IEEE 15th Dallas Circuits Syst. Conf. (DCAS), Dallas, TX, USA, 2022, pp. 1–5, doi: 10.1109/DCAS53974.2022.9845585.
- H.-Z. Chen, F. Chu, W.-T. Lu, T.-L. Zhang, W.-C. Li, and W. Gao, “Trimmable bandgap reference circuit with exponential curvature compensation,” J. Electron. Sci. Technol., vol. 21, no. 3, p. 100216, 2023, doi: 10.1016/j.jnlest.2023.100216.
- G. Zhu, Y. Yang, and Q. Zhang, “A 4.6-ppm/°C high-order curvature compensated bandgap reference for BMIC,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 66, no. 9, pp. 1492–1496, Sep. 2019, doi: 10.1109/TCSII.2018.2889808.
- B. Poongan, J. Rajendran, S. Mariappan, A. S. Rawat, N. Kumar, A. Nathan, and B. S. Yarman, “A 54 μW CMOS auto-trimming bandgap references (ATBGR) achieving 90 dB PSRR for artificial intelligence of things (AIoT) chips,” Micromachines, vol. 14, no. 9, p. 1724, 2023, doi: 10.3390/mi14091724.
- R. Nagulapalli, R. K. Palani, and S. Bhagavatula, “A 24.4 ppm/°C voltage mode bandgap reference with a 1.05V supply,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 68, no. 4, pp. 1088–1092, Apr. 2021, doi: 10.1109/TCSII.2020.3034256.
- S. A. Hosseini Asl, R. E. Rad, A. Hejazi, Y. Pu, and K.-Y. Lee, “A 64-MHz 2.15-μW/MHz on-chip relaxation oscillator with 130-ppm/°C temperature coefficient,” Electronics, vol. 12, no. 5, p. 1144, 2023, doi: 10.3390/electronics12051144.
- T. Xingyuan, Z. Zhangming, and Y. Yintang, “A 2.87 ppm/°C 65 nm CMOS bandgap reference with nonlinearity compensation,” Int. J. Electron., vol. 98, no. 9, pp. 1269–1279, 2011, doi: 10.1080/00207217.2011.593134.
- J. Wei, L. Luo, S. Ma, F. Ye, and J. Ren, “A high precision bandgap voltage reference with MOS transistor curvature compensation in 65-nm CMOS process,” in Proc. IEEE Int. Conf. Solid-State Integr. Circuit Technol. (ICSICT), Qingdao, China, 2018, pp. 1–3, doi: 10.1109/ICSICT.2018.8564883.
- Z. Zhou, J. Cao, Y. Wang, L. Sun, X. Wang, and J. Wu, “A nanoscale low-power resistorless voltage reference with high PSRR,” Nanoscale Res. Lett., vol. 14, p. 33, 2019, doi: 10.1186/s11671-019-2864-7.
- Z. Luo, Y. Lu, M. Huang, J. Jiang, S.-W. Sin, S.-P. U, and R. P. Martins, “A sub-1V 78-nA bandgap reference with curvature compensation,” Microelectron. J., vol. 63, pp. 35–40, 2017, doi: 10.1016/j.mejo.2017.02.016.
- B. Zhou, S. Liu, and P. Chiang, “Low-complexity 0.55-V 2.5-μW bandgap reference and power-on reset hybrid circuit,” Electron. Lett., vol. 52, no. 5, pp. 346–348, 2016, doi: 10.1049/el.2015.2637.
- B. Razavi, “The design of a low-voltage bandgap reference [The analog mind],” IEEE Solid-State Circuits Mag., vol. 13, no. 3, pp. 6–16, Summer 2021, doi: 10.1109/MSSC.2021.3088963.
- M. Jalalifar, M. Yavari, and F. Raissi, “A novel frequency compensation technique in three stage amplifiers with active feedback,” Majlesi J. Elctr. Eng., vol. 4, no. 1, Feb. 2024, doi: 10.1234/mjee.v4i1.216.
- F. Shirani Bidabadi and S. V. Mir-Moghtadaei, “Low power broadband sub-GHz CMOS LNA with 1 GHz bandwidth for IoT applications,” Majlesi J. Elctr. Eng., vol. 16, no. 4, Dec. 2022, doi: 10.30486/mjee.2022.696519.
- A. Daghighi and A. R. Neshat-Niko, “VCO design and simulation using TSMC 0.18 μm process to meet IEEE802.11a requirements,” Majlesi J. Elctr. Eng., vol. 2, no. 2, Feb. 2024, doi: 10.1234/mjee.v2i2.56.