Document Type : Reseach Article
Authors
1 Electronics and Telecommunication Engineering Department, P. R. Pote College of Engineering and Management, Amravati, India
2 School of Electronics and Electrical Engineering, Lovely Professional University, Phagwara, India
3 Department of Information Technology, Prof. Ram Meghe Institute of Technology and Research, Amravati, India
4 Department of CSE, Symbiosis Institute of Technology, Nagpur Campus, Symbiosis International (Deemed University), India
5 Department of Electronics and Communication Engineering, Symbiosis Institute of Technology (SIT), Symbiosis International University, Pune, India
Abstract
Video forensics includes understanding how to examine and identify crime in the footage. The process is constantly evolving with new technology and innovations. The world of video forensics experts is growing. The realm of video forensics is simply a growing community of specialists linked with the digital video forensics sector. The State-of-the-art examinations and crimes consistently cross global and language fringes these days. With rapidly advancing technology, video has emerged as the foremost and indispensable tool in the fight against those who break the law, capturing them in the act. The computerized video forensics industry is rapidly expanding. Rapid technological advancements have made video a powerful and essential tool for law enforcement. Technology changes quickly, and innovators work with computerized images to catch criminals. Video forensics examination helps to know how accurate the input video is. In this paper, the proposed method used a soft computing technique, i.e. YOLOv3, to detect suspicious persons, the guns, or the masks by extracting frames and features from a video. In the dataset, it compares the extracted edge with images and generates output with bounding boxes for suspicious persons, the guns, or the masks. The realm of video forensics and its outcomes are also examined by this paper. When tested on different datasets, the proposed method outperforms existing techniques. For both the models, such as YOLO and customized Convolutional Neural Network (CNN), execution measurements were taken and are shown to supersede the customized CNN with its identification of guns and masks. The accuracy for YOLO design is 100% for both guns and mask detection, respectively, whereas accuracy for the customized CNN with guns and mask detection is 61.54% and 61.55%, respectively. Experimental results show that the proposed methodology outperforms the other existing methods.
Keywords
- Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach. Learn., vol. 2, pp. 1-127, 2009. doi: 10.1561/2200000006.
- G. Hinton, S. Osindero, Y. The, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, pp. 1527-1554, 2006. doi: 10.1162/neco.2006.18.7.1527
- L. Deng, "Expanding the scope of signal processing," IEEE Signal Processing Mag., vol. 25, pp. 2-4, 2008. doi: 10.1109/MSP.2008.920380
- Y. Tang, C. Eliasmith, "Deep networks for robust visual recognition," Proc. 27th International Conference on Machine Learning, pp. 1055-1062, 2010. doi: 10.5555/3104322.3104456
- G. Hinton, "A practical guide to training restricted Boltzmann machines," Univ. Toronto, Tech. Rep., 7700, 2012. doi: 10.1007/978-3-642-35289-8_32
- A.K. Kushwaha, A.P. Wadhe, "Design and Implementation of Forensic Framework for Video Forensics," Int. J. Curr. Eng. Technol., vol. 5, pp. 1015-1018, 2015.
- S. Milani, M. Fontani, P. Bestagini, M. Barni, A. Piva, M. Tagliasacchi, S. Tubaro, "An overview on video forensics," SIP, vol. 1, pp. 1-18, 2012. doi: 10.1017/ATSIP.2012.2.
- S.V. Militante, N.V. Dionisio, "Real-Time Facemask Recognition with Alarm System using Deep Learning," In 2020 11th IEEE Control and System Graduate Research Colloquium (ICSGRC), pp. 106-110, 2020. doi: 10.1109/ICSGRC49013.2020.9232610.
- N. Damer, J.H. Grebe, C. Chen, F. Boutros, F. Kirchbuchner, A. Kuijper, "The effect of wearing a mask on face recognition performance: an exploratory study," In 2020 Int. Conf. Biometrics Special Interest Group (BIOSIG), pp. 1-6, 2020. doi: https://doi.org/10.48550/arXiv.2007.13521
- N. Abudarham, L. Shkiller, G. Yovel, "Critical features for face recognition," Cognition, vol. 182, pp. 73-83, 2019. doi: 10.1016/j.cognition.2018.09.002.
- H. Zhi, S. Liu, "Face recognition based on genetic algorithm," J. Vis. Commun. Image Represent., vol. 58, pp. 495-502, 2019. doi: https://doi.org/10.1016/j.jvcir.2018.12.012
- S.K. Nanda, D. Ghai, P.V. Ingole, S. Pande, "Soft Computing Techniques based Digital Video Forensics for Anomaly Detection," J. Comput. -Assist. Methods Eng. Sci., vol. 30, pp. 111-130, 2022. doi: http://dx.doi.org/10.24423/cames.447.
- Z. Zhou, D. Tang, X. Wang, W. Han, X. Liu, K. Zhang, "Invisible mask: Practical attacks on face recognition with infrared," Cryptography and Security, 2018. doi: 10.48550/arXiv.1803.04683.
- I. Masi, Y. Wu, T. Hassner, P. Natarajan, "Deep face recognition: A survey," In 2018 31st SIBGRAPI Conf. on Graphics, Patterns, and Images (SIBGRAPI), pp. 471-478, 2018. doi: 10.1109/SIBGRAPI.2018.00067
- Z. Mahmood, N. Muhammad, N. Bibi, T. Ali, "A review on state-of-the-art face recognition approaches," Fractals, vol. 25, 1750025, 2017. doi: https://doi.org/10.1142/S0218348X17500256
- W. Zhao, R. Chellappa, P.J. Phillips, A. Rosenfeld, "Face recognition: A literature survey," ACM Comput. Surv., vol. 35, pp. 399-458, 2003. doi: https://doi.org/10.1145/954339.954342
- Y. Sun, D. Liang, X. Wang, X. Tang, "Deepid3: Face recognition with deep neural networks," Computer Vision and Pattern Recognition. doi: 10.48550/arXiv.1502.00873.
- Y. Kortli, M. Jridi, Al Falou, M. Atri, "Face recognition systems: A Survey," Sensors, vol. 20, pp. 342, 2020. doi: https://doi.org/10.3390/s20020342
- Q. Wan, K. Panetta, S. Agaian, "A video forensic technique for detecting frame integrity using the human visual system-inspired measure," In 2017 IEEE Int. Symp. on Technologies for Homeland Security (HST), pp. 1-6, 2017. doi: 10.1109/THS.2017.7943466
- H. Kaur, K.R. Choudhary, "Digital forensics: implementation and analysis for Google Android framework," Information Fusion for Cyber-Security Analytics, pp. 307-331, 2017.
- M. Kaushala, B.S. Khehrab, A. Sharma, "Soft Computing based Object Detection and Tracking Approaches: State-of-the-Art Survey," Appl. Soft Comput., vol. 70, pp. 423-464, 2018. doi: https://doi.org/10.1016/j.asoc.2018.05.023
- K. Muhammad, J. Ahmad, I. Mehmood, S. Rho, S.W. Baik, "Convolutional Neural Networks based Fire Detection in Surveillance Videos," IEEE Access, vol. 6, pp. 18174-18183, 2018. doi: 10.1109/ACCESS.2018.2812835
- M.F. Bajestani, S.S.H.R. Abadi, S.M.D. Fard, R. Khodadadeh, "AAD: Adaptive Anomaly Detection through Traffic Surveillance Videos," In 2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS), pp. 1-7, 2018. doi: https://doi.org/10.48550/arXiv.1808.10044
- M. Conti, A. Dehghantanha, K. Franke, S. Watson, "Internet of Things security and forensics: Challenges and opportunities," Sci. Direct., vol. 78, pp. 544-546, 2018. doi: https://doi.org/10.1016/j.future.2017.07.060
- Q. Chen, L. Sang, "Facemask recognition for fraud prevention using the Gaussian mixture model," J. Vis. Commun. Image Represent., vol. 55, pp. 795-801, 2018. doi: https://doi.org/10.1016/j.jvcir.2018.08.016
- M. A. Khatun, M. A. Yousuf, S. Ahmed, M. Z. Uddin, S. A. Alyami, S. Al-Ashhab, H.F. Akhdar, A. Khan, A. Azad, M. A. Moni, "Deep CNN-LSTM with self-attention model for human activity recognition using wearable sensor," IEEE Journal of Translational Engineering in Health and Medicine, vol. 10, pp. 1-16, 2022. doi: 10.1109/JTEHM.2022.3177710.
- S. T. Sarcar, M. A. Yousuf, "Detecting violent arm movements using CNN-LSTM," In 2021 5th IEEE International Conference on Electrical Information and Communication Technology (EICT), pp. 1-6, 2021. doi: 10.1109/EICT54103.2021.9733510.
- K. Rezaee, S. M. Rezakhani, M. R. Khosravi, M. K. Moghimi, "A survey on deep learning-based real-time crowd anomaly detection for secure distributed video surveillance," Personal and Ubiquitous Computing, vol. 28, pp. 135-151, 2024. doi: https://doi.org/10.1007/s00779-021-01586-5
- R. Lohiya, P. Shah, "Video-Based Face Detection and Tracking for Forensic Applications," Int. J. Comput. Sci. & Commun., vol. 7, pp. 210-218, 2016. doi: 10.090592/IJCSC.2016.033
- Y. Ayyappa, P. Neelakanteswara, A. Bekkanti, Y. Tondeti, C.Z. Basha, "Automatic Face Mask Recognition System with FCM AND BPNN," In 2021 5th Int. Conf. on Computing Methodologies and Communication (ICCMC), pp. 1134-1137, 2021. doi: 10.1109/ICCMC51019.2021.9418243.
- X. Zhang, Y. Han, W. Xu, Q. Wang, "HOBA: A novel feature engineering methodology for credit card fraud detection with a deep learning architecture," Information Sciences, vol. 557, pp. 302-316, 2021. doi: 10.1016/j.ins.2019.05.023.
- E. Ileberi, Y. Sun, Z. Wang, "A machine learning based credit card fraud detection using the GA algorithm for feature selection," Journal of Big Data, vol. 9, no. 24, 2022. doi: 10.1186/s40537-022-00573-8.
- T.R. Mim, M. Amatullah, S. Afreen, M.A. Yousuf, S. Uddin, S.A. Alyami, K.F. Hasan, M.A. Moni, "GRU-INC: An inception-attention based approach using GRU for human activity recognition," Expert Systems with Applications, vol. 216, 119419, 2023. doi: 10.1016/j.eswa.2022.119419.
- L. Geng, S. Zhang, J. Tong, Z. Xiao, "Lung segmentation method with dilated convolution based on VGG-16 network," Comput. Ass. Surg., vol. 24, pp. 27-33, 2019. doi: https://doi.org/10.1080/24699322.2019.1649071
- S. Srivastava, P. Kumar, V. Chaudhry, A. Singh, "Detection of Ovarian Cyst in Ultrasound Images Using Fine-Tuned VGG-16 Deep Learning Network," SN Comput. Sci., vol. 1, pp. 1-8, 2020. doi: https://doi.org/10.1007/s42979-020-0109-6
- M. Rezaee, Y. Zhang, R. Mishra, F. Tong, H. Tong, "Using the VGG-16 network for individual tree species detection with an object-based approach," In 2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS), pp. 1-7, 2018. doi: 10.1109/PRRS.2018.8486395.
- S. Islam, S.I.A. Khan, M.M. Abedin, K.M. Habibullah, A.K. Das, "Bird species classification from an image using the VGG-16 network," In Proc. 2019 7th Int. Conf. on Computer and Communications Management, pp. 38-42, 2019. doi: https://doi.org/10.1145/3348445.3348480
- A. Kamilaris, F.X. Prenafeta-Boldú, "Deep learning in agriculture: A survey," Comput. Electron. Agric., vol. 147, pp. 70-90, 2018. doi: https://doi.org/10.1016/j.compag.2018.02.016
- A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, J. Dean, "A guide to deep learning in healthcare," Nature Med., vol. 25, pp. 24-29, 2019. doi:10.1038/s41591-018-0316-z
- A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, S. Chintala, "Pytorch: An imperative style, high-performance deep learning library," Machine Learning, 2020. doi: 10.1049/iet-cvi.2015.0238.
- Z. Zhang, P. Cui, W. Zhu, "Deep learning on graphs: A survey," IEEE Trans. Knowledge Data Eng., vol. 34, pp. 249-270, 2022. doi: 10.1109/TKDE.2020.2981333
- K. Sindhu, K. Sivasankaran, Y. Balasubramanian, "Forensic video solution using facial feature-based synoptic Video Footage Record," IET Comput. Vis., 2017. doi: 10.1049/iet-cvi.2015.0238.
- D. Lillis, B. Becker, T. O'Sullivan, M. Scanlon, "Current Challenges and Future Research Areas for Digital Forensic Investigation," Cryptography and Security, 2016. doi: 10.48550/arXiv.1604.03850.
- F. Galvan, S. Battiato, "Image/Video Forensics: Theoretical Background, Methods and Best Practices- Part Two: From Analog to Digital World," SICUREZZA eGIUSTIZIA S-I/MMXIX, pp. 45-50, 2020.
- E. Primeau, "Video Forensic Services," 2020. Available: https://www.videoforensicexpert.com/contact-us/.
- A. Krizhevsky, I. Sutskever, G.E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," Commun. ACM, vol. 60, pp. 84-90, 2017. doi: 10.1145/3065386.
- "Image Category Classification using Deep Learning," MathWorks, 2020. Available: https://www.mathworks.com/help/vision/examples/image-category-classification-using-deep-learning.html.
- J. Sanchez, F. Perronnin, "High-dimensional signature compression for large-scale image classification," In 2011 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 1665-1672, 2011. doi: 10.1109/CVPR.2011.5995504
- "Types of Convolutional Neural Networks: LeNet, AlexNet, VGG-16 Net, ResNet and Inception Net," CompleteGate, 2020. Available: https://www.completegate.com/2017022864/blog/deep-machine-learning-images-lenet-alexnet-cnn/allpages.
- M. Sabokrou, M. Fayyaz, M. Fathy, Z. Moayed, R. Klette, "Deep-Anomaly: Fully Convolutional Neural Network for Fast Anomaly Detection in Crowded Scenes," Comput. Vis. Image Underst., vol. 172, pp. 88-97, 2018. doi: https://doi.org/10.1016/j.cviu.2018.02.006
- C.B. Jin, S. Li, H. Kim, "Real-Time Action Detection in Video Surveillance using Sub-Action Descriptor with Multi-CNN," Comput. Vis. Pattern Recognit., pp. 1-29, 2017. doi: 10.48550/arXiv.1710.03383.
- H.T. Vu, T.D. Nguyen, D. Phung, "Energy-Based Localized Anomaly Detection in Video Surveillance," In Proc. of Advances in Knowledge and Data Mining, Jeju, South Korea, pp. 641-653, 2017. doi: https://doi.org/10.48550/arXiv.2105.03270
- R.K. Sinha, R. Pandey, R. Pattnaik, "Deep Learning for Computer Vision Tasks: A Review," In Int. Conf. on Intelligent Computing and Control, pp. 1-5, 2017. doi: https://doi.org/10.48550/arXiv.1804.03928
- M. Nasir, K. Muhammad, J. Lloret, A.K. Sangaiah, M. Sajjad, "Fog Computing Enabled Cost-Effective Distributed Summarization of Surveillance Videos for Smart Cities," J. Parallel Distrib. Comput., vol. 126, pp. 161-170, 2019. doi: https://doi.org/10.1016/j.jpdc.2018.11.004
- K. Muhammad, R. Hamza, J. Ahmad, J. Lloret, H.H.G. Wang, S.W. Baik, "Secure Surveillance Framework for IoT Systems using Probabilistic Image Encryption," IEEE Trans. on Industrial Informatics, vol. 14, pp. 3679-3689, 2018. doi: 10.1109/TII.2018.2791944
- M. Munir, S.A. Siddiqui, A. Dengel, S. Ahmed, "DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection in Time Series." IEEE Access, vol. 7, pp. 1991-2005, 2019. doi: 10.1109/ACCESS.2018.2886457
- R.D. Singh, N. Aggarwal, "Video Content Authentication Techniques: A Comprehensive Survey," Multimedia Systems, vol. 24, pp. 211-240, 2018. doi: https://doi.org/10.1007/s00530-017-0538-9
- W. Sultani, C. Chen, M. Shah, "Real-World Anomaly Detection in Surveillance Videos." In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6479-6488, 2018. doi: 10.1109/CVPR.2018.00678.
- S. Li, K.K.R. Choo, Q. Sun, W.J. Buchanan, J. Cao, "IoT forensics: Amazon echoes as a use case," IEEE Internet of Things Journal, vol. 6, pp. 6487-6497, 2019. doi: 10.1109/JIOT.2019.2906946
- M. Jerian, S. Paolino, F. Cervelli, S. Carrato, A. Mattei, L. Garofano, "A forensic image processing environment for the investigation of surveillance video," Forensic Science International, vol. 167, pp. 207-212, 2007. doi: https://doi.org/10.1016/j.forsciint.2006.06.048
- N.U. Haq, M.M. Fraz, T.S. Hashmi, M. Shahzad, "Orientation aware weapons detection in visual data: a benchmark dataset," Computing, vol. 104, pp. 2581-2604, 2022. doi: 10.1007/s00607-022-01095-0.
- S.K. Nanda, D. Ghai, S. Pande, "VGG-16-Based Framework for Identification of Facemask Using Video Forensics." In: D. Gupta, Z. Polkowski, A. Khanna, S. Bhattacharyya, O. Castillo (eds) Proceedings of Data Analytics and Management. Lecture Notes on Data Engineering and Communications Technologies, vol. 91, Springer, Singapore, 2022. doi: 10.1007/978-981-16-6285-0_54.
- S.K. Nanda, D. Ghai, P.V. Ingole, "Future of video forensics in IoT," Electronic Devices and Circuit Design Challenges and Applications in the Internet of Things, pp. 113-133, 2022. ISBN 9781003145776.
- S.K. Nanda, D. Ghai, P.V. Ingole, "Analysis of video forensics system for gun, mask, and anomaly detection using soft computing techniques," Journal of Cyber Security and Mobility, pp. 549-574, 2022. doi:10.13052/jcsm2245-1439.1143.
- D. Ghai, S. Saxena, G. Dhingra, S.L. Tripathi, “A comprehensive review on performance-based comparative analysis, categorization, classification and mapping of text extraction system techniques for images,” Multimed Tools Appl 84, 2327–2484 (2025). doi: https://doi.org/10.1007/s11042-024-20257-0