Document Type : Review Article

Authors

Albert-Ludwigs-Universität Freiburg

Abstract

Here a fully 3D algorithm for automatic liver segmentation from CT volumetric datasets is presented. The algorithm starts by smoothing the original volume using anisotropic diffusion. The coarse liver region is obtained from the threshold process that is based on a priori knowledge. Then, several morphological operations is performed such as operating the liver to detach the unwanted region connected to the liver and finding the largest component using the connected component labeling (CCL) algorithm. At this stage, both 3D and 2D CCL is done subsequently. However, in 2D CCL, the adjacent slices are also affected from current slice changes. Finally, the boundary of the liver is refined using graph-cuts solver.  Our algorithm does not require any user interaction or training datasets to be used. The algorithm has been evaluated on 10 CT scans of the liver and the results are encouraging to poor quality of images.  

Keywords

[1] Beck A. and Aurich V.; “HepaTux – A Semiautomatic Liver Segmentation System”, 3D Segmentation in The Clinic: A Grand Challenge, pp. 225-233, (2007)
[2] Xu C. and Prince J.L.; “Snakes, Shapes and Gradient Vector Flow”, IEEE Transactions on Image Processing, Vol. 7, pp. 359-369, (1998)
[3] Chen E.L., Chung P.C. and Tsai H.M. and Chang C.I.;“An Automatic Diagnostic System for CT Liver Image Classification”, IEEE Transactions on Biomedical Engineering, Vol. 45, No. 6, pp. 783-794, (1998)
[4] Furukawa D., Shimizu A. and Kobatake H.; “Automatic Liver Segmentation Method based on Maximum A Posterior Probability Estimation and Level Set Method”, 3D Segmentation in The Clinic: A Grand Challenge, pp. 117-124, (2007)
[5] Gerig G., Kübler O., Kikinis R. and Jolesz F.A.; “Nonlinear Anisotropic Filtering of MRI Data”, Medical Imaging, IEEE Transactions, Vol. 11, No. 2, pp. 221-232, (1992)
[6] Lamecker H., Lange T. and Seebass M.; “A Statistical Shape Model for the Liver”, In Proc. Medical Image Computing and Computer Assisted Intervention, Vol. 2489, pp. 422-427, (2002)
[7] Lee J., Kim N., Lee H., Seo J.B., Won H.J., Shin Y.M., Shin Y.G. and Kim S.H.; “Efficient Liver Segmentation Using a Level-Set Method with Optimal Detection of the Initial Liver Boundary from Level-set Speed Images”, Computer Methods and Programs in Biomedicine, Vol. 88, pp. 26-38, 2007.
[8] Ma L. and Yang L., “Liver Segmentation Based on Expectation Maximization and Morphological Filters in CT Images”, IEEE, pp. 690-693, (2007)
[9] Freiman M., Eliassaf O., Taieb Y., Joskowicz L., Azraq Y. and Sosna J.; “An Iterative Bayesian Approach for Nearly Automatic Liver Segmentation: Algorithm and Validation”, International Journal CARS, Vol. 3, pp. 439-446, (2008)
[10] Kass M., Witkin A. and Terzopoulos D.; “Snakes: Active Contour Models”, International Journal of Computer Vision, pp. 321-331, (1988)
[11] Aspert N., Cruz D.S. and Ebrahimi T.; “MESH: Measuring Errors Between Surfaces Using The Hausdorff Distance”, In Proc. of the IEEE International Conference in Multimedia and Expo, Vol. 1, pp. 705--708, (2002)
[12] El-Zehiry N. and Elmaghraby A.; “An Active Surface for Volumetric Image Segmentation”, In Proc. of Biomedical Imaging: From Nano to Macro (ISBI 2009), pp. 1358-1361. (2009)
[13] Perona P. and Malik J.; “Scale-space and Edge Detection Using Anisotropic Diffusion”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 12, pp. 629-639, (1990)
[14] Campadelli P., Casiraghi E. and Esposito A.; “Liver Segmentation from Computed Tomography Scans: A Survey and a New Algorithm”, Artificial Intelligence in Medicine, Vol. 45, pp. 185-196, (2009)
[15] Enficiaud R., “Algorithmes Multidimensionnels et Multispectraux en Morphologie Mathematique: Approche par Meta-programmation”, Centre de Morphologie Mathematique - École des Mines de Paris, (2007)
[16] Huang S., Wang B. and Huang X.; “Using GVF Snake to Segment Liver from CT Images”, Proceedings of the 3rd IEEE-EMBS International Summer School and Symposium on Medical Devices and Biosensors, pp. 145-148, (2006)
[17] Lim S.J., Jeong Y.Y. and Ho Y.S.; “Automatic Liver Segmentation for Volume Measurement in CT Images”, Journal of Visual Communication and Image Representation, Vol. 17:4, pp. 860-875, (2006)
[18] Pan S., Dawant B.M.; “Automatic 3D segmentation of the Liver from Abdominal CT Images: A Level Set Approach”, Proc. of SPIE Medical Imaging 2001: Image Processing, Vol. 4322, pp. 128-138, (2001)
[19] Heimann T., Meinzer H.P. and Wolf I., “A Statistical Deformable Model for the Segmentation of Liver CT Volumes”, 3D Segmentation in The Clinic: A Grand Challenge, pp. 161-166, (2007)
[20] Heimann T., B. Van Ginneken, Styner M.A. and Arzhaeva Y., Aurich V., Bauer C., Becker A., Beichel R., Bekes G., Bello F., Binnig G., Bischof H., Bornik A., Cashman P.M.M., Chi Y., Cordova A., Dawant B.M., Fidrich M., Furst J.D., Furukawa D., Grenacher L., Hornegger J., Kainmüller D., Kitney R.I., Kobatake H., Lamecker H., Lange T., Lee J., Lennon B., Li R., Li S., Meinzer H.P., Nemeth G., Raicu D.S., Rau A.M., Van Rikxoort E.M., Rousson M., Rusko L., Saddi K.A., Schmidt G., Seghers D., Shimizu A., Slagmolen P., Sorantin E., Soza G., Susomboon R., Waite J.M., Wimmer A. and Wolf I., “Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets”, IEEE Transactions on Medical Imaging, Vol. 28, pp. 1251-1265, (2009)
[21] Gui T., Huang L.L. and Shimizu A.; “Liver Segmentation for CT Images Using an Improved GGVF-Snake”, SICE Annual Conference 2007, pp. 676-681, (2007)
[22] Cootes T.F., Taylor C.J., Cooper D.H. and Graham J.; “Active Shape Models - Their Training and Application”, Computer Vision and Image Understanding, Vol. 61, pp. 38-59, (1995)
[23] Caselles V., Kimmel R. and Sapiro G., “Geodesic Active Contours”, International Journal of Computer Vision, Vol. 22, pp. 66-79, (1995)
[24] Yussof W.N.J.W. and Burkhardt H.; “3D Anisotropic Diffusion for Liver Segmentation”, Proceedings of World Academy of Science, Engineering and Technology, Vol. 57, pp. 108-112, (2009)
[25] Yussof W.N.J.W. and Burkhardt H.; “3D Liver Segmentation using Hybrid Segmentation Techniques”, Proceedings of the International Conference of Soft Computing and Pattern Recognition, pp. 404-408, (2009)
[26] Boykov Y. and Lea G.F.; “Graph Cuts and Efficient N-D Image Segmentation”, International Journal of Computer Vision, Vol. 70, Issue 2, pp. 109–131, (November 2006)