[1] S. P. Banks, Mathematical theories of nonlinear systems, Prentice Hall, 1988.
[2] J. Slotine, W. Li, Applied nonlinear control, Prentice Hall, 1991.
[3] M. Samavat, A. K. Sedeegh , S. P. Banks, On the approximation of pseudo linear systems by linear time varying systems, Int. J. Eng. , Volume 17, No 1, pp. 29-32, 2004.
[4] W. L. Chen, Y. P. Shih, Parameter estimation of bilinear systems via Walsh functions, Journal of the Franklin Institute, Volume 305, Issue 5, pp. 249-257, 1978.
[5] K. Maleknejad, M. Shahrezaee, H. Khatami, Numerical solution of integral equations system of the second kind by block–pulse functions, Applied Mathematics and Computation, 166, pp. 15–24, 2005.
[6] X. T. Wang, Yuan Min Li, Numerical solutions of integro-differential systems by hybrid of general block-pulse functions and the second Chebyshev polynomials, Applied Mathematics and Computation, 209, pp. 266–272, 2009.
[7] H. Jaddu and E. Shimemura, Solution of nonlinear optimal control problem using Chebyshev polynomials. In Proceeding of the 2nd Asian ControlConference, Seod, Korea, pages 1-417-420, 1997.
[8] S. G. Mouroutsos, P. D. Sparis , Taylor series approach to system identification, analysis and optimal control, Journal of the Franklin Institute, Volume 319, Issue 3, pp. 359-371, 1985.
[9] M. Gülsu, M. Sezer, A Taylor polynomial approach for solving differential-difference equations, Journal of Computational and Applied Mathematics 186, pp. 349–364, 2006
[10] S.Yalcinbas, Taylor polynomial solution of nonlinear Volterra–Fredholm integral equations, Appl. Math. Comput. 127(2002) 195–206.
[11] M.L. Nagurka, V. Yen, Fourier-based optimal control of nonlinear dynamic systems, Trans. ASME J. Dyn. Syst. Meas. Control 112 (1) (1990) 17–26.
[12] B. A. Ardekani, A. Keyhani, Identification of non-linear systems using the exponential Fourier series, Int. J. Control, VOL. 50, No. 4, pp. 1553-1558, 1989.
[13] B. A. Ardekani, M. Samavat, H. Rahmani, Parameter identification of time-delay systems via exponential Fourier series, Int. J. Sys. Sci, Vol. 22, No. 7, pp. 1301-1306, 1991.
[14] M. Samavat, A. J. Rashidi, A new algorithm for Analysis and Parameter Identification of time varying systems, ACC proceedings, 1995.
[15] R. Ebrahimi, M. Samavat, M. A. Vali, A. A. Gharavisi, Application of Fourier series direct method to the optimal control of singular systems, ICGST –ACSE Journal, Volume 7, Issue 2, 2007.
[16] S.Dong-Her, K.Fan-Chu, Analysis and parameter estimation of a scaled system via shifted Legendre polynomials, International Journal of Systems Science, Volume17, No 3, pp.401- 408,1986
[17] M. Razzaghi, S. Yousefi, Legendre Wavelets method for the Solution of Nonlinear Problems in the calculus of Variations, Mathematical and Computer Modelling 34, pp. 45-54, 2001.
[18] J.Wang, S.Wang, Approximation of nonlinear functional via general ortoghonal polynominals and application to control problems, Int. J. Sys. Sci. Vol. 23, No. 8, pp. 1261-1276, 1992.