[1] E.J. Davison, “A method for simplifying linear dynamic systems”, IEEE Trans. Automat. Contr. Vol.11, No.1, pp.93–101, 1996.
[2] M.R. Chidambara, “Further comments by M.R. Chidambara”, IEEE Trans. Automat. Cont. Vol.AC-12, No.1, pp. 799–800, 1967.
[3] E.J. Davison, “Further reply by E.J. Davison”, IEEE Trans. Automat. Control. Vol.12, No.1, p. 800, 1967.
[4] M.R. Chidambara, “Two simple techniques for the simplification of large dynamic systems”, Proc. Conf. joint automatic control, JAC, pp. 669–674, 1969.
[5] Z. Elrazaz, N.K. Sinha, “On the selection of dominant poles of a system to be retained in a low-order model”, IEEE Trans. Automat. Contr., Vol.24, No.5, pp.792-793, 1979.
[6] M. Hutton, B. Friedland, “Routh approximations for reducing order of linear, time-invariant systems”, IEEE Trans. Automat. Control., Vol.20, No.3 pp.329–337, 1975.
[7] R.K. Appiah, “Linear model reduction using Hurwitz polynomial approximation”, Int. J. Control, Vol.28, No.3, pp. 477-488, 1978.
[8] R.K. Appiah, “Pade methods of Hurwitz polynomial with application to linear system reduction”, Int. J. Control. 29, No.1 pp. 39-48, 1979.
[9] T.C. Chen, C.Y. Chang and K.W. Han, “Reduction of transfer functions by the stability equation method”, J. Franklin Inst. Vol.308, No.4, pp. 389-404, 1979.
[10] T.C. Chen, C.Y. Chang and K.W. Han, “Model reduction using the stability equation method and the continued fraction method”, Int. J. Control. Vol.32, No.1, pp. 81-94, 1980.
[11] L.G. Gibilaro, F.P. Lees, “The reduction of complex transfer function models to simple models using the method of moments”, Chemical Engineering Science. 24, No.1, pp. 85–93, 1969.
[12] F.P. Lees, “The derivation of simple transfer function models of oscillating and inverting process from the basic transformed equation using the method of moments”, Chemical Engineering Science. Vol.26, No.8, pp. 1179-1186, 1971.
[13] Y.P. Shih, C.S. Shieh, “Model reduction of continuous and discrete multivariable systems by moments matching”, Computer & Chemical Engineering. Vol.2, No.4, pp. 127-132, 1978.
[14] V. Zakian, “Simplification of linear time-variant system by moment approximation”, Int. J. Control. Vol.18, No.8, pp. 455-460, 1973.
[15] C.F. Chen, L.S. Shieh, “A novel approach to linear model simplification”, Int. J. Control. Vol.8, No.6, pp. 561–570, 1968.
[16] C.F. Chen, “Model reduction of multivariable control systems by means matrix continued
Majlesi Journal of Electrical Engineering Vol. 9, No. 1, March 2015
35
fractions”, Int. J. Control. Vol.20, No.2, pp. 225-238, 1974.
[17] D.J. Wright, “The continued fraction representation of transfer functions and model simplification”, Int. J. Control. Vol.18, No.3, pp. 449-454, 1973.
[18] Y. Shamash, “Stable reduced-order models using Pade type approximation”, IEEE Trans. Automat. Control. Vol.19, No.5, pp.615-616, 1974.
[19] D.A. Wilson, “Optimal solution of model reduction problem”, Proc. Institute of Electrical Engineering. Vol.117, No.6, p. 1161-1165.
[20] D.A. Wilson, “Model reduction for multivariable systems”, Int. J. Control Vol.20, No.1, pp. 57–64, 1974.
[21] G. Obinata, H. Inooka, “A method of modeling linear time-invariant systems by linear systems of low order”, IEEE Trans Automat. Contr. Vol.21, No.4, pp.602–603, 1976.
[22] G. Obinata, H. Inooka, “Authors reply to comments on model reduction by minimizing the equation error”, IEEE Trans Automat Control. 28, No.1, pp.124–125, 1983.
[23] E. Eitelberg, “Model reduction by minimizing the weighted equation error”, Int. J. Control. Vol.34, No.6, pp. 1113-1123, 1981.
[24] R.A. El-Attar, M. Vidyasagar, “Order reduction by L1 and L∞ Norm minimization”, IEEE Trans Automat Control. Vol.23, No.4, pp.731–734, 1978.
[25] B.C. Moore, “Principal component analysis in linear systems: controllability”, observability and model reduction, IEEE Trans Automat Control Vol.26, No.1, pp. 17–32, 1981.
[26] L. Pernebo, L. M. Silverman, “Model reduction via balanced state space representation”, IEEE Trans Automatic Control. Vol.27, No.2, pp. 382–387, 1982.
[27] D. Kavranoglu, M. Bettayeb, “Characterization of the solution to the optimal H∞ model reduction problem”, System & Control Letters. Vol.20, No.2, pp. 99–107, 1993.
[28] L. Zhang, J. Lam, “On H2 model reduction of bilinear system”, Automatica. Vol.38, No.2, pp. 205–216, 2002.
[29] W. Krajewski, A. Lepschy, G.A. Mian and U. Viaro, “Optimality conditions in multivariable L2 model reduction, J. Franklin Inst. Vol.330, No.3, pp.431–439, 1993.
[30] D. Kavranoglu, M. Bettayeb, “Characterization and computation of the solution to the optimal L∞ approximation problem, IEEE Trans Automat Control. Vol.39, No.9, pp.1899–1904, 1994.
[31] G. Parmar, S. Mukherjee and R. Prasad, “Reduced Order Modeling of Linear Dynamic Systems using Particle Swarm Optimized Eigen Spectrum Analysis”, Int. J. Computer and Mathematical Science. Vol.1, No.31, pp.45-52, 2007.
[32] G. Parmer, R. Prasad and S. Mukherjee, “Order Reduction of Linear Dynamic Systems using Stability Equation Method and GA”, W