Document Type : Review Article

Authors

Department of Electrical Engineering, Hamedan University of Technology, Hamedan, Iran.

Abstract

This paper proposes a backstepping terminal sliding mode control with adaptive algorithm which applied to Quadrotor for free chattering, finite time convergence and robust aims. First of all, dynamic equation of a quadrotor has been obtained based on Euler-Lagrangian equations with considering additional disturbance and uncertainty. Furthermore, a nonlinear control scheme has been proposed to deal against defined perturbations. In the proposed control scheme, instead of using regular control input, the derivative of the control input has 

Keywords

[1] F. Lewis, “Dynamic inversion with zero-dynamics stabilisation for quadrotor control,” IET Control Theory and Applications, 2009, Vol. 3, lss. 3, pp. 303-314.
[2] S. Bouabdallah and R. Siegwart, “Backstepping and Sliding-mode Techniques Applied to an Indoor Micro Quadrotor,” in Proc. of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 2247–2252, April 2005.
[3] T.Madani and A.Benallegue, “Backstepping Control for a Quadrotor Helicopter,” in the 2006 IEEE/RSJ International Conference on Intelligent Robots andSystems, China, 2006, pp.3255–3260.
[4] M. Bouchoucha, S. Seghour, H. Osmani, and M. Bouri, ”Integral Backstepping for Attitude Tracking of a Quadrotor System,” ELEKTRONIKA IR ELEKTROTECHNIKA, No. 10(116), 2011.
[5] Z. Fang and W. Gao, “Adaptive integral backstepping control of a Micro_Quadrotor,” The 2nd International Conference on Intelligent Control and Information Processing. Harbin, pp. 910-915, july 2011.
[6] H. Bouadi, M. Bouchoucha, and M. Tadjine, “Modelling and stabilizing Control Laws Design Based on Sliding Mode for an UAV Type-Quadrotor,” Engineering Letters, 15:2, EL_15_2_24, 2007.
[7] R. Xu and Ü. Özgnüer. “Sliding Mode Control of a Quadrotor Helicopter,” in 45th IEEE Conference on Decision & Control, USA, 2006, pp.4957-4962.
[8] L. Besnarda, Y. B. Shtessel, and Brian Landrum, “Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer,” Journal of The Franklin Institute, Vol. 349, 2012, pp. 658-684.
[9] L. Derafaa, A. Benallegueb,n and L. Fridman, “Super twisting control algorithm for the attitude tracking of a four rotors UAV,” Journal of The Franklin Institute, Vol. 349, 2012, pp. 685-699.
[10] D. Lee, H. J. Kim, and S. Sastry, “Feedback Linearization vs. Adaptive Sliding Mode Control for a Quadrotor Helicopter,” International Journal of Control, Automation and Systems, Vol. 7, No. 3, pp. 419–428, jun 2009.
[11] A. Tayebi and S. McGilvray, “Attitude stabilization of a four-rotor aerial robot,” in
Proc. of the IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, dec 2004, pp. 1216–1221.
[12] A. Tayebi and S. McGilvray, “Attitude Stabilization of a VTOL Quadrotor Aircraft,” in IEEE Transactions on Control Systems Technology, Vol. 14, may 2006, pp. 562–571.
[13] C. Nicol, C.J.B. Macnab and A. Ramirez-Serrano, “Robust adaptive control of quadrotor helicopter,” Mechatronics, Vol. 21, 2011, pp. 927-938.
[14] Z.T. Dydek, Anuradha M. Annsawany and Eugene Lavrestsky, “Adaptive control of quadrotor UAVs: Adesign trade study with flight evaluations,” IEEE Transactions on control systems technology, 2012.
[15] H. Wang, Z. Han, Q. Xie, and W. Zhang, “Finite-time chaos synchronization of unified chaotic system with uncertain parameters," Commun. Nonlinear Sci. Numer. Simulat, Vol. 14, 2009, pp. 2239–2247.
[16] S.P. Bhat and D.S. Bernstein, “Finite-time stability of continuous autonomous systems,” SIAM J. Control Optim, Vol. 38, pp. 751–766.
[17] E. Slotineb and W. Li, Applied Nonlinear Control. First edition: Prentice.Hall, 1991.
[18] H. Xu and M. Mirmirani, “Adaptive sliding mode control design for a hypersonic flight vehicle,” Journal of Guidance,Control and Dynamic, Vol. 27, Issue 5, 2004, pp. 829 – 838.
[19] S. Yu, X. Yu, and B. Shirinzadeh, “Continuous finite time control for robotic manipulators with terminal sliding mode,” Automatica, Vol. 41, Issue. 11,2005, pp. 1957 – 1964.
[20] R. ZHANG, C. SUN, J. ZHANG, and Y. ZHOU, “Second-order terminal sliding mode control for hypersonic vehcile in cruising flight with sliding mode disturbnce observer,” J Control Theory Appli. Vol. 11, Issue. 2, 2013, pp. 299-305.
[21] F. Plestan, Y. Shtessel, V. Bregeault, and A. Poznyak, “New methodologies for adaptive sliding mode control,” International Journal of Control, Vol. 9, No. 9, pp. 1907-1919.
[22] D. Zhao, S. Li, and F. Gao, “A new sliding mode control for robotic manipulators,” International Jouranl of Control, Vol. 82, Issue. 10, 2009, pp. 1804–1813.