[1] F. F. M. El-Sousy, “Robust adaptive H∞ position control via a wavelet-neural-network for a DSP-based permanent-magnet synchronous motor servo drive system”, IET Electric Power Applications, Vol. 4, pp. 333-347, 2010.
[2] Y. J. Liu, S. Tong, C. L. Philip Chen, “Adaptive fuzzy control via observer design for uncertain nonlinear systems with unmodeled dynamics”, IEEE Trans. Fuzzy Systems, Vol. 21, pp. 275-288, 2013.
[3] Y .C. Chang, “Adaptive fuzzy-based tracking control for nonlinear SISO systems via VSS and H∞ approaches,” IEEE Trans. Fuzzy Systems, Vol. 9, pp. 278-292, 2001.
[4] W. Y. Wang, M. L. Chan, C. C. James Hsu, and T. T. Lee, “H∞ tracking-based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy-neural approach,” IEEE Trans. Systems, Man, and Cybernetics, Vol. 32, pp. 483-492, 2002.
[5] M. Roopaei, M. Zolghadri, S. Meshksar, “Enhanced adaptive fuzzy sliding mode control for uncertain nonlinear systems,” Communications in Nonlinear Science and Numerical Simulation, Vol. 14, pp. 3670-3681, 2009.
[6] Y. Pan, Y. Zhou, T. Sun, and M. Joo Er, “Composite adaptive fuzzy H∞ tracking control of uncertain nonlinear systems,” Neurocomputing, Vol. 99, pp. 15-24, 2013.
[7] Q. Zhang, A. Benveniste, “Wavelet networks,” IEEE Trans. Neural Networks, Vol. 3, pp. 889-898, 1992.
[8] C. L. Liu, “A tutorial of the wavelet transform NTUEE,” Taiwan, 23 Feb, 2010.
[9] C. F. Hsu, C. M. Lin, and T. T. Lee, “Wavelet adaptive backstepping control for a class of nonlinear systems,” IEEE Trans Neural Networks, Vol. 17, pp. 1175-1183, 2006.
[10] F. Sheikholeslam, M. Zekri, “Design of adaptive fuzzy wavelet neural sliding mode controller for uncertain nonlinear systems,” ISA transactions, Vol. 52, pp. 342-350, 2013.
[11] V. Vapnik, “The nature of statistical learning theory,” Springer, 2000.
[12] C. Cortes, V. Vapnik, “Support-vector networks,” Machine learning, Vol. 20, pp. 273-297, 1995.
[13] F. Q. Han, D. C. Wang, C. h. D. Li, X. F. Liao, “A multiresolution wavelet kernel for support vector regression,” Advances in Neural Networks-ISNN 2006, Springer, Berlin Heidelberg, pp. 1022-1029, 2006.
[14] Y. Tong, D. Yang, and Q. Zhang, “Wavelet kernel support vector machines for sparse approximation,” Journal of Electronics (China), Vol. 23, pp. 539-542, 2006.
[15] L. Zhang, W. Zhou, and L. Jiao, “Wavelet support vector machine,” IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 34, pp. 34-39, 2004.
[16] J. George, R. Kumaraswamy, “A Hybrid Wavelet Kernel Construction for Support Vector Machine Classification,” DMIN, pp. 96-101, 2008.
[17] Z. Yu, Y. Cai, “Least squares wavelet support vector machines for nonlinear system identification,” Advances in Neural Networks–ISNN 2005, Springer, Berlin Heidelberg, pp. 436-441, 2005.
[18] G. Y. Chen, W. F. Xie, “Multiwavelet support vector machines,” Proc. of Image and Vision Computing, pp. 28-29, 2005.
[19] H. Nourisola, “Wavelet Kernel Based on Identification for Nonlinear Hybrid Systems,” TELKOMNIKA Indonesian Journal of Electrical Engineering, Vol. 12, pp. 5235-5243, 2014.
[20] M. Melanie, An Introduction to Genetic Algorithms, A Bradford Book The MIT Press, , pp. 8-9, 1999.
[21] R. L. Haupt, S. E. Haupt, “Practical genetic algorithms,” New York: John Wiley & Sons, 2004.
[22] B. S. Chen, C. H. Lee, Y. C. Chang, “H∞ tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach,” IEEE Trans. Fuzzy Systems, vol. 4, pp. 32-43, 1996.
[23] D. D. Zhao, C. L. Xie, and P. C. Wang, “Direct Adaptive H∞ Control for a Class of Nonlinear Systems based on LS-SVM,” Applied Mathematics & Information Sciences, Vol. 8, pp. 287-292, 2014.
[24] L. X. Wang, “Adaptive fuzzy systems and control: design and stability analysis,” Prentice-Hall, Inc, 1994.