[1] M. Noel, “A new gradient based particle swarm optimization algorithm for accurate computation of global minimum”, Applied Soft Computing, Vol. 12, pp. 353–359, 2012.
[2] K. Izui, S. Nishiwaki, M. Yoshimura, “Swarm algorithms for single- and multi-objective optimization problems incorporating sensitivity analysis”, Engineering Optimization, Vol. 39, No. 8, pp. 981–98, 2007.
[3] V. Plevris, M. Papadrakakis, “A Hybrid Particle Swarm—Gradient Algorithm for Global Structural Optimization”, Computer-Aided Civil and Infrastructure Engineering, Vol. 26, pp. 48–68, 2011.
[4] S. Chen, T. Mei, M. Luo, X. Yang, “Identification of nonlinear system based on a new hybrid gradient-based PSO algorithm”, in Proceedings of the International Conference on Information Acquisition, ICIA. 2007.
[5] L. D. S. Coelho, V. C. Mariani, “Particle swarm optimization with quasi-Newton local search for solving economic dispatch problem”, in Conference Proceedings— IEEE International Conference on Systems, Man and Cybernetics, 2007.
[6] S. Das, P. Koduru, M. Gui, M. Cochran, A. Wareing, S. M. Welch, B. R. Babin, “Adding local search to particle swarm optimization”, in IEEE Congress on Evolutionary Computation, CEC, 2006.
[7] Y, Maeda, T. Kuratani, “Simultaneous perturbation particle swarm optimization”, Proceedings of IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada,pp. 2687–2691, 2006.
[8] K.. Funahashi, “On the approximate realization of continuous mappings by neural networks”, Neural Networks 2, pp.183-192, 1989.
[9] M.D. Oca, T. Stützle, M. Birattar, M. Dorigo, “Frankenstein’s PSO: a composite particle swarm optimization algorithm”, IEEE Transactions on Evolutionary Computation, Vol. 13, 2009.
[10] M. J. Grimble, “GMV control of nonlinear multivariable systems”, UKACC Conference Control, University of Bath, UK, ID-005, 2004.
[11] J. Marsden, Elementary Classical Analysis. San Francisco, CA.: Freeman Publishing, 1974.
[12] C. Cartis, N. I. M. Gould, Ph. L. Toint, “On the complexity of steepest descent, Newton’s and regularized Newton’s methods for nonconvex unconstrained optimization”, Siam journal on optimization, Vol. 20, No. 6, pp. 2833-2852, 2010.
[13] Y. Nesterov, “Introductory Lectures on Convex Optimization”, Applied Optimization, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004.
[14] D. M. Bates, D. G. Watts, Nonlinear regression analysis and its applications, John Willey & Sons, New York, 1988.
[15] R. K. Pearson, B. A. Ogunnaike, “Nonlinear process identification”, in M. Henson and D. Seborg, eds, `Nonlinear Process Control', Prentice Hall, Upper Saddle River, N.J., pp. 11-102, 1997.
[16] F. J. Doyle, A. Packard, M. Morari, “Robust controller design for a nonlinear CSTR”, Chemical Engineering Science 44, 1929-1947, 1989.
[17] T. D. Knapp, H. M. Budman, “Robust control design of non-linear processes using empirical state affine models”, Int. J. Control, Vol. 73, No. 17, pp. 1525-1535, 2000.
[18] W. Yu, “Variance Analysis For Nonlinear Systems”, PHD thesis, Queen's University Kingston, Ontario, Canada October, 2007.
[19] CPC Control Group, University of Alberta, University of Alberta Computer Process Control Group, Multivariate Controller Performance Assessment program, Limited Trial Version, Version 2.1,2010.
[20] B. Huang, S. L. Shah, “Practical issues in multivariable feedback control performance assessment”, Proc IFAC ADCHEM, Banff, Canada, pp. 429–434, 1997.